2023 SUMMER SCHOOL ON DIFFERENTIAL GEOMETRY

Complex Geometry

1. Let ω_{FS} be the Fubini–Study metric on \mathbb{CP}^n .

(1) Compute the expression of ω_{FS} using local coordinates.

(2) Compute the Ricci form $\operatorname{Ric}(\omega_{FS})$.

(3) When n = 1, compute the integral $\int_{\mathbb{CP}^1} \omega_{FS}$.

2. Let \mathcal{F} be a sheaf of commutative rings on a topological space X and $s \in \mathcal{F}(X)$. Show that the set

$$\{x \in X | s_x \in \mathcal{F}_x^*\}$$

is open in X, where \mathcal{F}_x^* denote the group of units of the stalk \mathcal{F}_x (namely \mathcal{F}_x^* consists of all the invertible elements in the ring \mathcal{F}_x).

3. Let $\Omega \subset \mathbb{C}^n$ be a domain. Let $f \in \mathcal{O}^*(\Omega)$.

Show that log |f|² is a subharmonic function on Ω.
If |f|² is a constant, show that f must be constant.

4. Let X be a compact complex manifold. Assume that L is an ample line bundle on X. Show that there exists a smooth Hermitian metric h on L with positive Chern curvature.

5. Let $\mathcal{O}(1)$ be the dual of the tautological line bundle on \mathbb{CP}^n . Compute vol $(\mathcal{O}(1))$.