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Complex Geometry

1. Let ωFS be the Fubini–Study metric on CPn.

(1) Compute the expression of ωFS using local coordinates.
(2) Compute the Ricci form Ric(ωFS).
(3) When n = 1, compute the integral

!
CP1 ωFS .

2. Let F be a sheaf of commutative rings on a topological space X and s ∈ F(X).
Show that the set

{x ∈ X|sx ∈ F∗
x}

is open in X, where F∗
x denote the group of units of the stalk Fx (namely F∗

x

consists of all the invertible elements in the ring Fx).
3. Let Ω ⊂ Cn be a domain. Let f ∈ O∗(Ω).

(1) Show that log |f |2 is a subharmonic function on Ω.
(2) If |f |2 is a constant, show that f must be constant.

4. Let X be a compact complex manifold. Assume that L is an ample line bundle
on X. Show that there exists a smooth Hermitian metric h on L with positive
Chern curvature.
5. Let O(1) be the dual of the tautological line bundle on CPn. Compute vol(O(1)).
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