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1.

Introduction to metric spaces

Important notions to learn in this Chapter:

1. The definition of a metric space.

2. The notion of subspace metric, and of product of metric spaces.

3. The example of the discrete distance on any set.

4. The example of the distance dp on Rn, for p = 1, 2, . . . and for p =∞.

5. The examples of the metric spaces (of sequences) (`p,dp) for for p =

1, 2, . . . and for p =∞.

6. The example of the space of continuous functions C[0, 1] endowed
with the distance dL1 , and with the distance dL∞ .

7. The notion of an isometry of metric spaces, and that of isometric metric
spaces.

In this chapter we set the scene for the main characters of this module,
the notion of a distance and that of a metric space. These notions were first
singled out in the first decade of the XX century and are by now ubiquitous
in Mathematics.

The idea is to have a set enriched with a tool (a distance) to measure
how far apart are any two of its elements. This tool needs to satisfy some
basic axioms, like the fact that if two points have zero distance, then they
must coincide. The main axiom of a distance is the triangle inequality, which
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Introduction to metric spaces

in a nutshell says that it always takes more to go from a point A to a point
B passing for a third point C, then it takes to go from A to B directly.

The main examples that will be discussed are the different metrics on
Rn, the space C[0, 1] of continuous functions [0, 1] → R, and the spaces of
sequences `p. The main technical tool to prove that the distances dp that
we will introduce on the sets Rn and `p satisfy the triangle inequality is
the so-called Minkowski inequality. The case p = 2 is the usual Euclidean
distance d2 familiar from Year 1 (the Minkowski inequality in case p = 2
takes the name of Cauchy–Schwarz inequality).

In terms of the general theory of Metric Spaces, in this chapter we will
first see the definition and then discuss how to form metric spaces from
subsets and as products. Finally, we will discuss when two metric spaces
can be considered equivalent (or isometric).

In later chapters we shall see that most of the real analysis that was
introduced in Year 1 (convergence of sequences, continuity of functions,
. . . ) can be recast more generally for arbitrary metric spaces.

1.1. Starting out

Let’s begin with a guiding example. Let:

• X = set of cities in Great Britain,

• Point A = Liverpool,

• Point B = London.

Then we have several different notions of distance from A to B, namely:

1. The length of the shortest path from A to B,

2. The length of the shortest road that connects A to B,

3. The length of the shortest railway that connects A to B,

4. The cheapest possible train ticket that allows one to travel from A to
B (at a given time).

Depending on the particular context, it may be convenient to consider
different notions of distance. For example, if we intend to walk from A to
B, then the first distance would be the one that we would matter. On the
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1.1 Starting out

other hand, if we are driving from A to B we would only care about the
second, etc.

In the example above we highlighted what is a distance of two given
points A and B of X. Note that in all examples above the distance is a real
number, and that it is never negative. The notion of a distance on X should
give the ability to produce one such number for all pairs of elements of X,
not only A and B (for example, we may be interested in establishing the
distance from A to C =Edinburgh, to D =Cardiff, or also to establish the
distance between B and C etc.).

The notion of a distance (or a metric) on Xwill then be the assignment of
a (non-negative) real number to all pairs of elements of X. Here comes the
formal definition, which will accompany us throughout this course.

Definition 1.1.1. — Let X be a set. A distance on X is a function

d : X×X→ R>0

(to the non-negative real numbers) that satisfies the following axioms

(M1) for every x,y ∈ X, d(x,y) = 0 if and only if x = y,

(M2) for every x,y ∈ X, d(x,y) = d(y, x) (called symmetry),

(M3) for every x,y, z ∈ X, d(x, z) 6 d(x,y) + d(y, z) (called the triangle
inequality).

Note that we have initially required a distance to be a non-negative real
number, this is spelled out as a separate axiom (M0) in some textbooks.

Definition 1.1.2. — A metric space is a pair (X,d), where X is a set and d is a
distance on X.

Aside: Recall that if A and B are two sets, the cartesian product A× B is
defined to be the set

X× Y := {(x,y) : x ∈ X,y ∈ Y}

of ordered pairs such that the first element of the pair belongs to X and the
second element of the pair belongs to Y.

Example 1.1.3. — If

X = {Dog, Cat, Horse}, Y = {1, 2},
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Introduction to metric spaces

then

X× Y = {(Dog, 1), (Cat, 1), (Horse, 1), (Dog, 2)(Cat, 2)(Horse, 2)}.

Definition 1.1.4. — The number of elements in a finite set X is denoted by
#X. (In fact, the symbol # can be extended to infinite sets, but this will not
be needed in this course).

Note that by definition #(X× Y) = #X× #Y.

Now let R be the set of real numbers. We call:

• R×R = R2 the real (2-dimensional) plane. Elements x ∈ R2 are vectors
of real numbers that we write as x = (x1, x2).

• R ×R ×R = R3 the real (3-dimensional) space. Similarly, we write
x = (x1, x2, x3) ∈ R3.

• R× . . .×R︸ ︷︷ ︸
n− times

= Rn the real n−space. We write x = (x1, . . . , xn) ∈ Rn.

Let’s now see the first example of a distance, which should be familiar
from Year 1.

Example 1.1.5. — Let X = R and define the function

d1(x,y) := |x− y| .

(Recall the absolute value |z| of some z ∈ R is defined by |z| := max(z,−z)).
We now show that d1 is a distance on R or, in other words, that (R,d1)

is a metric space. We start out by observing that for all x,y ∈ R we have
indeed that d1(x,y) = |x− y| ∈ R>0.

(M1): Suppose x = y. Then |x− y| = |0| = 0. Similarly, if d1(x,y) = 0, then
|x− y| = 0 means that x− y = 0, which is equivalent to x = y.

(M2): We have d1(x,y) = |x− y| = |y− x| = d1(y, x).

(M3): To prove the triangle inequality, we will use the following lemma:

Lemma 1.1.6. — For all a,b, c,d ∈ R, we have

max(a+ b, c+ d) 6 max(a, c) + max(b,d)
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1.1 Starting out

Proof. We have that

a 6 max(a, c), b 6 max(b,d), c 6 max(a, c), d 6 max(b,d)

by definition of the function max.
This implies that

a+ b 6 max(a, c) + max(b,d),

and similarly for c+ d.
Therefore we have that

max(a+ b, c+ d) 6 max(a, c) + max(b,d).

Using Lemma 1.1.6, we can now complete the proof that the function
d1 : R×R→ R>0 of the example is actually a distance.
To prove the triangle inequality, take in the above lemma

A = x− y B = y− z

C = y− x D = z− y

We have then

d(x, z) = |x− z| = max(x− z, z− x)

6 max(x− y,y− x) + max(y− z, z− y)

= |x− y|+ |y− z|

= d(x,y) + d(y, z).

This concludes our proof that d1 is a distance on R.

Let us move on to more examples, and try to think of distances on R2.
Of course the first thing that comes to mind is the usual (or Euclidean)
distance, which is the length of the line that connects any two points. This
should of course be a distance in the sense of our Definition 1.1.1 (otherwise
the theory that we are introducing would be quite strange!). We will anal-
yse this distance later, as proving that it satisfies the axioms of a distance is
not that easy.

Example 1.1.7. — For now let’s take X = R2, and define d1 : R2 ×R2 →
R by the formula d1(x,y) := |x1 − y1| + |x2 − y2|. We will now see that
this function defines a distance on R2 that is also known as the Manhat-
tan distance. (See Figure below. You should imagine the white squares as
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Introduction to metric spaces

skyscrapers seen from above, and the black lines as streets. The thick black
path is one of the shortest paths connecting A to B, and its total length is
the distance d1(A,B).).

Proposition 1.1.8. — The function d1 is as distance on R2.

Proof. Before we verify the three properties we observe that

d1(x,y) = |x1 − y1|+ |x2 − y2| > 0,

so d1 is indeed a function to R>0 as required by the definition.

(M1):
d1(x,y) = 0 ⇐⇒ |x1 − y1|︸ ︷︷ ︸

>0

+ |x2 − y2|︸ ︷︷ ︸
>0

= 0

⇐⇒ |x1 − y1| = |x2 − y2| = 0

⇐⇒ x1 = y1, x2 = y2

⇐⇒ x = y.

(M2):
d1(x,y) = |x1 − y1|+ |x2 − y2|

= |y1 − x1|+ |y2 − x2|

= d1(y, x).

(M3):
d1(x, z) = |x1 − z1|+ |x2 − z2|

6 |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2|

= d1(x,y) + d1(y, z).
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In fact, the above result generalizes to the case where x,y ∈ Rn for
every n— define

d1(x,y) := |x1 − y1|+ |x2 − y2|+ . . . + |xn − yn| =

n∑
i=1

|xi − yi|. (1.1)

The proof is essentially the same as the proof of Proposition 1.1.8, but we
omit it here as the result will be later subsumed as a particular case of The-
orem 1.1.15.

As promised, it is now about time that we analyse the case of the “usual”
distance.

Example 1.1.9. — Consider now the case X = R2, and let d2 be defined by

d2(x,y) =
√
(x1 − y1)2 + (x2 − y2)2

This is the “usual”, “Euclidean” distance, which we can interpret as the
length of the segment from x to y in the plane. As we announced before,
we now show that this is indeed a distance on R2 (but this will be a bit
more difficult than the corresponding result for the function d1, which we
have just discussed).

Proposition 1.1.10. — The function d2 is a distance on R2.

Proof. As usual, we begin by observing that d2(x,y) ∈ R>0.

(M1): (As before — omitted).

(M2): (As before — omitted).

(M3): For convenience, define

a1 = x1 − y1, a2 = x2 − y2, b1 = y1 − z1, b2 = y2 − z2.

With this notation, we have

d2(x, z)2 = (a1 + b1)
2 + (a2 + b2)

2 = a2
1 + a

2
2 + b

2
1 + b

2
2 + 2(a1b1 + a2b2)

(1.2)
We will use the Cauchy–Schwarz inequality (with n = 2), which we
will prove in Lemma 1.1.11, which states

a1b1 + a2b2 6
√
a2

1 + a
2
2 ·
√
b2

1 + b
2
2 (1.3)
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for all a1,a2,b1,b2 ∈ R.

Plugging Inequality (1.3) into (1.2), we deduce

d2(x, z)2 6 a2
1 + a

2
2 + b

2
1 + b

2
2 + 2

√
a2

1 + a
2
2 ·
√
b2

1 + b
2
2

=

(√
a2

1 + a
2
2 +
√
b2

1 + b
2
2

)2

= (d2(x,y) + d2(y, z))2.

Now taking the square root of the left hand side and of the right hand
side of this inequality, and using that the real numbers d2(x, z),d2(x,y)
and d2(y, z) are all non-negative, we find

d2(x, z) 6 d2(x,y) + d2(y, z),

which concludes our proof.

In the proof we have used the following lemma:

Lemma 1.1.11 (Cauchy-Schwarz Inequality). — For every collection of num-
bers

a1, . . . ,an,b1, . . . ,bn ∈ R

the following inequality holds(
n∑
i=1

aibi

)2

6
n∑
i=1

a2
i ·

n∑
i=1

b2
i. (1.4)

(What we used above was this lemma for n = 2, but we will soon use
this Lemma for arbitrary n ∈N).

Proof. Let F : R→ R be defined by

t 7→ F(t) =

n∑
i=1

(tai + bi)
2 = At2 +Hs+B,

where we have set

A =

n∑
i=1

a2
i, H = 2

n∑
i=1

aibi and B =

n∑
i=1

b2
i.
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1.1 Starting out

For fixed A,H and B, F(t) is a polynomial of degree 2 in the variable t.
Because F(t) is a sum of squares, it must be greater than or equal to

zero for all t ∈ R. This means that the polynomial equation F(t) = 0 never
has more than 1 (real) solution. This implies that its discriminant, which
equals H2 − 4AB, must be smaller than or equal to zero. Expanding the
inequality H2 − 4AB 6 0 by replacing the values of H,A,B we precisely
obtain Inequality (1.4).

Remark 1.1.12. — In the proof of Lemma1.1.11 we used some properties of
a polynomial function F of degree 2. The figure below shows the graph of
any such function F defined by F(s) = As2 +Hs+ B in the three possible
scenarios: from left to right, when the discriminant is positive, when it is
zero, and when it is negative.

Similarly to the case of d1, also the distance d2 can be generalised to the
case of X = Rn, where it is defined by

d2(x,y) =
√
(x1 − y1)2 + . . . + (xn − yn)2 =

√√√√ n∑
i=1

(x1 − yi)2. (1.5)

That this formula actually defines a distance can be proved as for the case
of R2, by using the Cauchy–Schwarz inequality for arbitrary n (exactly the
statement of Lemma 1.1.11). This will again be a particular case of Theo-
rem 1.1.15.

Note that in the case where n = 1, we have

d2(x,y) =
√
(x− y)2 = |x− y| = d1(x,y),

whence on R = R1 we have that d1 = d2.

Let’s continue and consider more examples of distances.
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Example 1.1.13. — Consider the case of R2 again, with the distance d∞
defined by

d∞(x,y) = max(|x1 − y1| , |x2 − y2|).

Proposition 1.1.14. — The function d∞ is a distance on R2.

Proof. (M1): As before.

(M2): As before.

(M3):

d∞(x, z) = max(|x1 − z1| , |x2 − z2|)

6 max(|x1 − y1|+ |y1 − z1| , |x2 − y2|+ |y2 − z2|)︸ ︷︷ ︸
by the triangle inequality for d1 on R

6 max(|x1 − y1| , |x2 − y2|) + max(|y1 − z1| , |y2 − z2|)︸ ︷︷ ︸
by Lemma 1.1.6

= d∞(x,y) + d∞(y, z)

Again, one can prove similarly that d∞ defined by

d∞(x,y) = max
16i6n

|xi − yi|

is a distance on Rn.
We will now recollect the examples given above (except for d∞) and

generalise them to a unique result. Let n,p > 1 be integers, and consider
the distance dp defined on Rn by the formula

dp(x,y) =

(
n∑
i=1

|xi − yi|
p

) 1
p

.

Theorem 1.1.15. — The function dp defines a distance on Rn.

Note that the cases p = 1, 2 were discussed in (1.1), (1.5) respectively
(and the more specific cases when furthermore n = 2 are detailed in Propo-
sitions 1.1.8 and 1.1.10 respectively).

Proof. From its very definition, it is evident that dp(x,y) > 0 for all x,y ∈
Rn.
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(M1): As before.

(M2): As before.

(M3): Define the vectors in Rn

(a1, . . . ,an) = (x1 − y1, . . . , xn − yn)

and
(b1, . . . ,bn) = (y1 − z1, . . . ,yn − zn)

We need to prove that(
n∑
i=1

|ai + bi|
p

) 1
p

6

(
n∑
i=1

|ai|
p

) 1
p

+

(
n∑
i=1

|bi|
p

) 1
p

(1.6)

This is the Minkowski Inequality, which we will prove later in Theo-
rem 1.3.10.

(Note: Theorem 1.3.10 proves the inequality in the more general case
of real sequences, when the sum is infinite. Formula (1.6) can be ob-
tained from Theorem 1.3.10 by taking

A = (a1, . . . ,an, 0, 0, 0, . . .)

and
B = (b1, . . . ,bn, 0, 0, 0, . . .),

i.e. a n-dimensional vector can be made into a sequence (which in
the language of this module is always an infinite list indexed by the
natural numbers) by ”prolonging” it with infinitely many zeroes.)

Next, we observe how the various different distances dp are related
each to the other. We leave this as an exercise.

Exercise 1.1.16. — For fixed x,y ∈ Rn, prove that

dp(x,y) 6 dq(x,y)

for all p > q. (Don’t worry too much if you cannot do this, it’s not that easy!
You will be guided into solving this exercise step-by-step in a homework
assignment).
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Then use the previous paragraph to prove that

lim
p→∞dp(x,y) = d∞(x,y).

[Note that here we are regarding (dp(x,y))p∈N as a sequence of real num-
bers indexed by p ∈ N. This is then an exercise of convergence of se-
quences of real numbers as in Year 1.]

The examples of distances that we have given so far were all on Rn

for some n, and they were all given by some rather complicated formulas.
Let’s step back for a moment, and try to give the simplest possible example
of a distance that satisfies the required axioms, and that we can define on
an arbitrary set.

Example 1.1.17. — Let X be any set. Define the discrete distance ddiscr by

ddiscr(x,y) =

0 when x = y

1 when x 6= y

for all x,y ∈ X.
We show that ddiscr is indeed a distance. One sees from the formula that

d(x,y) = 0 if and only if x = y. Moreover, the formula is symmetric in x
and y.

For the third condition, if x = z, we see that ddiscr(x, z) = 0 and there
is nothing to prove. If ddiscr = 1, we have that x 6= z, so that y 6= z or
y 6= x. This implies that ddiscr(x,y) + ddiscr(y, z) equals 1 or 2, in particular
ddiscr(x,y) + ddiscr(y, z) > 1, so ddiscr(x,y) + ddiscr(y, z) > ddiscr(x, z), which
is what we wanted to show.

1.2. Subspace distance

In this short section we start addressing the problem of how to create a new
metric space from a given metric space. If we start from a metric space and
consider a subset of it, then we can just measure distances on the subset
using the global distance defined on the larger metric space. This will also
work and define a distance on the subset. Let’s see this a bit more formally.

Assume that we are given a set X and a subset Y ⊆ X, and suppose that
we have a distance dX on X. So dX is a function

dX : X×X→ R>0.
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1.3 Spaces of real sequences

The restriction of dX to the subset Y × Y ⊆ X×X, is a new function

dY := dX�Y×Y : Y × Y → R>0

known as the subspace distance. The three axioms that guarantee that dX is
a distance on X imply one by one the three axioms that guarantee that dY
is a distance on Y.

Example 1.2.1. — The distances d1,d2 and d∞, which we defined on Rn,
also define distances on subsets of Rn. For example, it makes sense to
speak of the distance d2 on the subsets

Y1 := {(x1, x2) ∈ R2 : x2
1 + x

2
2 < 1} ⊆ R2 = X,

Y2 := {(x1, x2) ∈ R2 : x1 > 0, x2 < 0} ⊆ R2 = X,

Y3 := {(x1, x2) ∈ R2 : x1 = 0, x2 < 1} ⊆ R2 = X.

1.3. Spaces of real sequences

So far all examples of metric spaces we have given, except for the discrete
distance, are on Rn for some n, or on its subsets. Here we consider some
more interesting, “infinite dimensional”, examples. We start by discussing
spaces whose elements are (infinite) sequences of real numbers. Note that
a vector x ∈ Rn can be regarded to as a finite sequence of real numbers
of length n. To avoid confusions, in this module we will ban this casual
use of the common language word “sequence”, and use that word only for
infinite sequences, as in the following definition.

Definition 1.3.1. — A sequence of real numbers (or a real sequence) is a func-
tion

A : N→ R

We will usually write the sequence asA = (A0,A1, . . . ,An, . . .) = (An)n∈N,
or more compactly as (An) when no confusion is likely to arise on the set
of indices.

(Note that we conventionally choose the natural number to contain 0.
This is sometimes annoying when considering sequences, for example the
sequence (xn) = (1/n)n∈N doesn’t quite make sense with this notation,
because 1/0 is not defined).
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Example 1.3.2. — The following are all sequences of real numbers

A = (1, 4, 9, 16, 25, . . . , (n+ 1)2, . . .)

B = (0, 0, 0, . . . , 0, . . .)

C = (π,−π,π,−π, . . . , (−1)nπ, . . .)

D = (1, 1/2, 1/3, . . . , 1/(n+ 1), . . .)

E = (1, 1/4, 1/9, . . . , 1/(n+ 1)2, . . .)

The purpose of this section is to extend our definition of distance dp to
spaces whose elements are sequences. By analogy with the formulas for dp
on Rn, for two sequences of real numbersA = (An) and B = (Bn), we may
attempt to define dp by

dp(A,B) :=

( ∞∑
n=0

|An −Bn|
p

) 1
p

= lim
N→∞

(
N∑
n=0

|An −Bn|
p

) 1
p

(1.7)

and

d∞((An), (Bn)) = sup
n∈N

|An −Bn| . (1.8)

We need some work to prove that these definitions actually produce
distances. In fact, none of these functions dp gives a well-defined distance
on the set of all sequences. For example, for the sequences A and B of
Example 1.3.2, the formula dp(A,B) gives +∞ for all p = 1, 2, . . . ,∞, and
+∞ is not even a real number! By definition, a distance is required to be a
non-negative real number, which +∞ is not.

Definition 1.3.3. — For p > 1, we let

`p :=

{
(An) real sequence such that

∞∑
n=0

|An|
p <∞}

For p =∞we set

`∞ := {(An) real sequence such that (An) is bounded}

(We say a sequence (An) is bounded if there existsM ∈ R such that |An| 6

M for all n ∈N.)
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1.3 Spaces of real sequences

For example, it is well-known from Year 1 that the (harmonic) sequence
(Dn) =

1
n+1 is not an element of `1 as the sum

∑ 1
n+ 1

=∞.

On the other hand, (En) = 1
(n+1)2 is in `1, and for the same reason (Dn) is

in `2. Both sequences in `∞.
(As for the other examples mentioned in 1.3.2, the sequence A is not in

`p for any p nor it is in `∞, the sequence B is in `p for all p including p =∞,
and C is in `p only for p =∞).

Theorem 1.3.4. — For all p > 1 (and also for p = ∞) the function dp defines a
distance on the set `p.

Proof. (Of Theorem 1.3.4) We start by proving that dp(A,B) is a nonneg-
ative real number for all A,B ∈ `p. Observe that, by its very definition,
dp(A,B) ∈ R>0 ∪ {+∞}, so we only have to rule out the possibility that
dp(A,B) equals +∞.

Case p < ∞. The Minkowski inequality, which we will prove in Theo-
rem 1.3.10, reads( ∞∑

n=0

|An +Bn|
p

) 1
p

6

( ∞∑
n=0

|An|
p

) 1
p

+

( ∞∑
n=0

|Bn|
p

) 1
p

. (1.9)

The right hand side is < ∞ because (An) ∈ `p and because (Bn) ∈ `p.
Therefore the left hand side must also be <∞.

Case p = ∞. Here d∞(A,B) is not +∞ for (An), (Bn) ∈ `∞, because if
both sequences (An) and (Bn) are bounded, then so is (An −Bn).

Properties M1 and M2 are proven as usual, and we omit the details here.
As for M3, let’s take C = (Cn),D = (Dn) and E = (En) in `p.

Consider first the case p <∞. Define the two real sequences

(An) = (Cn −Dn) and (Bn) = (Dn − En).

Then the Minkowski inequality, Equation 1.9, can be rewritten as

dp(C,E) 6 dp(C,D) + dP(D,E),

which is the triangle inequality for dp on `p.
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Introduction to metric spaces

When p =∞, the triangle inequality for the distance d∞ on Rn, applied
to the first N entries of the sequences C,D and E, reads

max
06n6N−1

|Cn − En| 6 max
06n6N−1

|Cn −Dn|+ max
06n6N−1

|Dn − En|.

Taking the limit for N 7→∞ of the left hand side and of the right hand side
(such limits exist because both the left hand side and the right hand side are
non-decreasing real sequences indexed by the natural number N), gives

sup
n∈N

|Cn − En| 6 sup
n∈N

|Cn −Dn|+ sup
n∈N

|Dn − En|.

This is the triangle inequality for d∞ on `∞, which concludes our proof.

We now show that the set `p can also be endowed with the metric dq
for all q > p, including the case when q =∞.

Proposition 1.3.5. — For p 6 q, the inclusion `p ⊆ `q holds (and this inclusion
also holds when q =∞).

Proof. Suppose (An) ∈ `p. This means that
∑∞
n=0 |An|

p < ∞, which im-
plies that limn→∞ |An| = 0. Therefore there is some N such that for all
n > N we have |An| < 1. It follows that |An|

q 6 |An|
p whenever n > N.

Taking the sum over n > N gives us

∞∑
n=N+1

|An|
q 6

∞∑
n=N+1

|An|
p <∞,

which implies that
∑∞
n=0 |An|

q <∞.
For the case when q =∞, recall from Year 1 the implication

∞∑
n=0

|An|
p <∞⇒ lim

n→∞An = 0,

which, in particular, implies that the sequence (An) is bounded.

From the construction of subspace distance that we discussed in Sec-
tion 1.2 we deduce:

Corollary 1.3.6. — (`p,dq) is a metric space (a subspace metric of (`q,dq))
whenever p 6 q.
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Example 1.3.7. — Let x ∈ R. The geometric sequence (xn)n∈N of ratio x
belongs to `p for all p > 1 if and only if |x| < 1.

Indeed, for x ∈ R, we have that
∞∑
n=0

|x|n =
1

1 − |x|
, when |x| < 1.

Therefore the sequence (An)n∈N where each element is defined by An =

xn belongs to `1, `2, . . . , `∞when |x| < 1, it does not belong to `1, `2, . . . and `∞
when |x| > 1. Finally, for |x| = 1 the sequence (An) does belong to `∞ but it
does not belong to `p for any other p <∞.

Exercise 1.3.8. — Let (An) = (4−n) = (1, 1
4 , 1

16 , . . . ), (Bn) = (0, 1, 0, 0, 0, . . . ).
Prove that (An), (Bn) ∈ `1, `2, `∞. Compute the distances d1,d2,d∞ be-
tween (An) and (Bn).

1.3.9. The Minkowski Inequality — (The essential inequality that we used
to prove that dp satisfies the triangle inequality on `p (and, in particular,
also on Rn)).

Theorem 1.3.10 (The Minkowski Inequality). — Let (An)n∈N and (Bn)n∈N

be two real sequences and let p > 1. Then the inequality( ∞∑
n=0

|An +Bn|
p

) 1
p

6

( ∞∑
n=0

|An|
p

) 1
p

+

( ∞∑
n=0

|Bn|
p

) 1
p

. (1.10)

holds.

In the following example we discuss the fact that the Minkowski In-
equality can be seen as a generalisation of the Cauchy-Schwarz inequality.

Example 1.3.11. — For p = 2, the Minkowski Inequality (1.10) becomes:√√√√ ∞∑
n=0

(An)2 +

∞∑
n=0

(Bn)2 + 2
∞∑
n=0

AnBn 6

√√√√ ∞∑
n=0

(An)2 +

√√√√ ∞∑
n=0

(Bn)2

After taking squares and simplifying the expression, this reduces to:

∞∑
n=0

AnBn 6

√√√√ ∞∑
n=0

(An)2
∞∑
n=0

(Bn)2

which could also have been obtained from the Cauchy-Schwarz inequality
(Theorem 1.1.11) by taking the limit for N→∞.
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We will now discuss a proof of the Minkowski inequality.

Proof. (of Theorem 1.3.10)

Define F : [0,∞) → [0,∞) by F(t) := tp. We will use the fact that the
function F is both increasing and convex, two facts that should be well-
known from Year 1. (The first is proven by showing that, for all x ∈ [0,∞),
the first derivative of F is > 0 and the second by showing the same for the
second derivative of F).

Since F is convex on [0,∞), for every t, t ′ > 0 we have

F(αt+βt ′) 6 αF(t) +βF(t ′)

for all 0 6 α,β 6 1 such that α+β = 1.

Let A := (
∑∞
n=0 |An|

p)
1
p , B := (

∑∞
n=0 |Bn|

p)
1
p . We will assume that

both A,B < ∞ for otherwise Inequality (1.10) holds trivially. We begin by
normalising the two sequences (An) and (Bn) by setting

Ân :=
An

A
, B̂n :=

Bn

B

for all n, so that
∞∑
n=0

∣∣Ân∣∣p =

∞∑
n=0

∣∣B̂n∣∣p = 1.

Then we have, for all n ∈N,

|An +Bn|
p 6 (|An|+ |Bn|)

p

= (A
∣∣Ân∣∣+B ∣∣B̂n∣∣)p

= (A+B)p
(

A

A+B

∣∣Ân∣∣+ B

A+B

∣∣B̂n∣∣)p
6 (A+B)p

(
A

A+B

∣∣Ân∣∣p + B

A+B

∣∣B̂n∣∣p)︸ ︷︷ ︸
by convexity

since A
A+B + B

A+B = 1. (The first inequality occurs because F is increasing).

Page 22



1.4 Spaces of functions

Summing over all n, we obtain
∞∑
n=0

|An +Bn|
p 6 (A+B)p

∞∑
n=0

(
A

A+B

∣∣Ân∣∣p + B

A+B

∣∣B̂n∣∣p)

= (A+B)p

 A

A+B

∞∑
n=0

∣∣Ân∣∣p︸ ︷︷ ︸
=1

+
B

A+B

∞∑
n=0

∣∣B̂n∣∣p︸ ︷︷ ︸
=1


= (A+B)p

(
A

A+B
+

B

A+B

)
︸ ︷︷ ︸

=1

= (A+B)p

Taking the p-th root in the last inequality we deduce the desired result.

Note that the Minkowski inequality is valid for any real p ∈ [1,∞),
the number p does not need to necessarily be an integer! For this reason,
we could have as well defined distances dp on Rn for an arbitrary p ∈
R>1 ∪ {+∞} (not just for p a natural number), and we could have done the
same for the spaces of sequences (`p,dp).

1.4. Spaces of functions

In this section we introduce more examples of “infinite dimensional” met-
ric spaces. We will discuss examples of metric spaces whose elements are
functions. We are just scratching the surface of an important and beautiful
theory, called functional analysis, which develops the tools of real analysis
(limits, derivatives etc.) for sets whose elements are functions (as opposed
to sets of numbers, such as R or vectors, such as Rn). The main motivation
is solving ordinary and partial differential equations. We will see a little bit
of this in a later chapter of these notes.

Our prototype example of a space of functins will be the following.

Definition 1.4.1. — We define C[0, 1] to be the set

C[0, 1] := {f : [0, 1]→ R such that f is continuous}.

(The notion of continuity for a function f : [0, 1] → R was defined in
Year 1. We will discuss that notion more thoroughly and generalise it in
Chapter 2 of these notes).
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What should a distance d(f,g) on C[0, 1] look like? We will take inspira-
tion from the cases of the distances dp that we introduced in the previous
sections. We will only describe the cases of p = 1,∞ (but one could simi-
larly discuss the cases of other p ∈ R>1).

Definition 1.4.2. — We define a distance dL1 on C[0, 1] by

dL1(f,g) =
∫ 1

0
|f(x) − g(x)|dx.

Similarly we define a distance dL∞ by

dL∞(f,g) = max
x∈[0,1]

|f(x) − g(x)| .

Remark 1.4.3. — We know from Year 1 that a continuous function

h : [0, 1]→ R

always has a maximum and that its integral exists and it is a real number.
This, together with the fact that the function |f− g| is both continuous and
nonnegative, implies that dL1 and dL∞ are both nonnegative real numbers.

Theorem 1.4.4. — dL∞ is a distance on C[0, 1].

Proof. (M1)
dL∞(f,g) = 0 ⇐⇒ max

x∈[0,1]
|f(x) − g(x)| = 0

⇐⇒ |f(x) − g(x)| = 0 ∀x ∈ [0, 1]

⇐⇒ f(x) = g(x) ∀x ∈ [0, 1]

⇐⇒ f = g

(M2) |f(x) − g(x)| = |g(x) − f(x)| is true for every x.
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(M3) For all functions f,g,h ∈ C[0, 1], we have

dL∞(f,h) = max
x∈[0,1]

|f(x) − h(x)|

=
∣∣f(x ′) − h(x ′)∣∣ for some x ′ ∈ [0, 1]

6
∣∣f(x ′) − g(x ′)∣∣+ ∣∣g(x ′) − h(x ′)∣∣

6 max
x∈[0,1]

|f(x) − g(x)|+ max
x∈[0,1]

|g(x) − h(x)|

= dL∞(f,g) + dL∞(g,h)

For the case of dL1 , we will need a lemma:

Lemma 1.4.5. — Let h : [0, 1]→ R>0 be a continuous function. Then:∫ 1

0
h(x) dx = 0⇒ h = 0.

For the first time here we are directly using the notion of continuity, as
learned in MATH101 - Calculus I. The notion will be reviewed and dis-
cussed extensively later in Chapter 2 of these notes.

Proof. If h 6= 0 then there exists an x ′ ∈ [0, 1] such that h(x ′) > 0. The func-
tion h is continuous at x ′. By MATH101, this means that for all sequences
(xn) that converge to x ′, we have that the sequence (h(xn)) converges to
h(x ′).

Claim: there exists an interval I = (x ′− δ, x ′+ δ) centered at x ′ for some
δ > 0 such that h(x) > h(x ′)

2 for all x ∈ I. Proof of the claim: if this wasn’t
the case, then for all n > 0 there would exist xn ∈ (x ′ − 1/n, x ′ + 1/n)
with h(xn) 6 h(x ′)/2. This would imply that xn → x ′, but h(xn) doesn’t
converge to h(x ′) (because h(xn) 6 h(x ′)/2 for all n ∈ N and h(x ′) > 0),
which contradicts the assumption that h is continuous at x ′.

Using the claim, we deduce:∫ 1

0
h(x) dx >

∫x ′+δ
x ′−δ

h(x) dx

>
∫x ′+δ
x ′−δ

h(x ′)

2
dx

= 2δ
h(x ′)

2
= δh(x ′) > 0.

(The first inequality follows because h(x) > 0 for all x, the second from the
claim, and the last step is the just integration of a constant function).
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The above Lemma is used to prove the first part of the following result.

Theorem 1.4.6. — dL1 is a distance on C[0, 1].

Proof. We start by pointing out that the integral of a nonnegative continuous
function on [0, 1] is always a nonnegative real number.

(M1) First, for all f ∈ C[0, 1] we have

dL1(f, f) =
∫ 1

0
|f(x) − f(x)| dx =

∫ 1

0
0 dx = 0.

Moreover, for all f,g ∈ C[0, 1], we have

dL1(f,g) =
∫ 1

0
|f(x) − g(x)|dx = 0 ⇒ f− g = 0

by Lemma 1.4.5, which means that f = g.

(M2) As usual (the formula for dL1 is symmetric in the two entries).

(M3) For all f,g,h ∈ C[0, 1] we have:

dL1(f,h) =
∫ 1

0
|f(x) − h(x)|dx

6
∫ 1

0
|f(x) − g(x)|+ |g(x) − h(x)|dx

=

∫ 1

0
|f(x) − g(x)|dx+

∫ 1

0
|g(x) − h(x)|dx

= dL1(f,g) + dL1(g,h).

Example 1.4.7. — We compute the distances dL1 and dL∞ of f and g where
f and g are defined by f(x) = x and g(x) = x2. The calculation is simplified
in this case by the fact that f(x) > g(x) for all x, so that |f− g| = f− g on
[0, 1].

dL∞(f,g) = max
x∈[0,1]

∣∣x− x2∣∣
= max
x∈[0,1]

(x− x2)
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1.5 Product metrics

Define h = f− g.
The maximum of h = f− g on the interval [0, 1], is either attained at the

values x where the derivative h ′(x) equals zero and h ′′(x) < 0, or at the
two extremes of the interval (0 and 1).

We calculate:
h ′(x) = 1 − 2x. Therefore

h ′(x) = 0 ⇐⇒ x =
1
2

and h ′′(x) = −2 which is always negative. On the other hand, we have
h(0) = h(1) = 0. We conclude that

dL∞(f,g) = max(h(0),h(1),h(1/2)) =
1
4

.

On the other hand,

dL1(f,g) =
∫ 1

0

∣∣x− x2∣∣dx
=

∫ 1

0
(x− x2)dx

=

[
x2

2
−
x3

3

]1

0

=
1
2
−

1
3
=

1
6

Exercise 1.4.8. — Compute dL1 and dL∞ of f and g, where f(x) = 1 and
g(x) = 2 sin(πx).

1.5. Product metrics

This section is an analogue of Section 1.2. Our aim is to expand on the
theory of how one can define new metric spaces from existing ones.
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Let X and Y be metric spaces with respective distances dX and dY . In
this section we define distances on the product X× Y. Taking inspiration
from the example X = Y = R, we have already seen that there isn’t a unique
way to “naturally” define one such distance.

For (x1,y1), (x2,y2) ∈ X× Y we define distances Dp for p = 1, 2,∞ on
X× Y by the formulas:

D1((x1,y1)(x2,y2)) := dX(x1, x2) + dY(y1,y2)

D2((x1,y1)(x2,y2)) :=
√
dX(x1, x2)2 + dY(y1,y2)2

D∞((x1,y1)(x2,y2)) := max(dX(x1, x2),dY(y1,y2))

As a homework exercise, you will be asked to prove that D1 and D∞ are
distances on X× Y. Here we will discuss the more difficult case of D2. The
proof is formally very similar to the proof that d2 is a distance on R2.

Theorem 1.5.1. — The function D2 is a distance on X× Y.

Proof. (M1)

D2((x1,y1), (x2,y2)) = 0

⇐⇒
√
dX(x1, x2)2 + dY(y1,y2)2) = 0

⇐⇒ dX(x1, x2) = 0 and dY(y1,y2) = 0

⇐⇒ (x1,y1) = (x2,y2)

(M2)

D2((x1,y1), (x2,y2)) =
√
dX(x1, x2)2 + dY(y1,y2)2

=
√
dX(x2, x1)2 + dY(y2,y1)2

= D2((x2,y2), (x1,y1))

(M3) Take three arbitrary elements (x1,y1), (x2,y2), (x3,y3) of X × Y. We
want to prove that the number

D2((x1,y1)(x3,y3)) =
√
dX(x1, x3)2 + dY(y1,y3)2

is smaller than or equal to the number

D2((x1,y1)(x2,y2)) +D2((x2,y2)(x3,y3)) =

=
√
dX(x1, x2)2 + dY(y1,y2)2 +

√
dX(x2, x3)2 + dY(y2,y3)2.
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1.5 Product metrics

After taking squares (all distances are nonnegative), this is equivalent
to proving the inequality:

dX(x1, x3)
2 + dY(y1,y3)

2 6 dX(x1, x2)
2 + dY(y1,y2)

2 + dX(x2, x3)
2 + dY(y2,y3)

2

+ 2
√
dX(x1, x2)2 + dY(y1,y2)2

√
dX(x2, x3)2 + dY(y2,y3)2

Call RHS (for Right Hand Side) the right hand side of the last inequal-
ity. By the Cauchy-Schwarz inequality (1.1.11) with n = 2:√

a2
1 + a

2
2 ·
√
b2

1 + b
2
2 > a1b1 + a2b2,

we have:

RHS > dX(x1, x2)
2 + dY(y1,y2)

2 + dX(x2, x3)
2 + dY(y2,y3)

2

+ 2dX(x1, x2)dX(x2, x3) + 2dY(y1,y2)dY(y2,y3)

= (dX(x1, x2) + dX(x2, x3))
2 + (dY(y1,y2) + dY(y2,y3))

2

> dX(x1, x3)
2 + dY(y1,y3)

2

which concludes our proof.

In fact, the cases p = 1, 2,∞ have nothing special, and one could have
as well taken any p ∈N∪ {+∞} (or even p ∈ R>1 ∪ {+∞}).

Example 1.5.2. — Let (X,dX) = (R2,d2) and (Y,dY) = (R,ddiscr). Let x =

((1, 2), 3) and y = ((4, 5), 6) be elements of R2 ×R. Then

D∞(d2,ddiscr)(x,y) = max(d2((1, 2), (4, 5)),ddiscr(3, 6))

= max(
√

32 + 32, 1)

= 3
√

2

The fact that, unlike for the case of subspace distances (see Section 1.2),
the definition of a product distance isn’t natural (it depends on a choice
of p) may seem disappointing. We will later comment on the fact that all
these choices define “equivalent metrics” in some precise sense that will be
introduced and explored in Chapter 3.
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1.6. Isometries

In this section we will introduce the notion of an isometry between metric
spaces (X,dX) and (Y,dY). Two isometric metric spaces are two spaces that
are in some sense indistinguishble from the metric viewpoint.

Definition 1.6.1. — An isometry from (X,dX) to (Y,dY) is a functionφ : X→
Y such that

(I1) for every x1, x2 ∈ X, dY(φ(x1),φ(x2)) = dX(x1, x2), and

(I2) φ is surjective.

(Note: some textbooks have a more relaxed notion of an isometry and
do not require it to be surjective).

Lemma 1.6.2. — An isometry is injective.

Proof. With the same notation as in the above definition, assume x1, x2 ∈ X.
Then

φ(x1) = φ(x2) ⇐⇒ dY(φ(x1),φ(x2)) = 0

⇐⇒ dX(x1, x2) = 0

⇐⇒ x1 = x2.

Definition 1.6.3. — Two metric spaces (X,dX), (Y,dY) are isometric if there
exists an isometry φ : (X,dX)→ (Y,dY).

Note that if two metric spaces are isometric, then typically there is more
than 1 isometry between them.

The rest of this section is to give examples of isometries and of isometric
metric spaces. We will do so first in the most familiar situations, and then
in the less familiar ones.

Example 1.6.4. — The metric spaces ([0, 1],d1) and ([2, 3],d1) are isometric.
Define φ by φ(x) = x+ 2. Then

(I1) d1(φ(x1)φ(x2)) = |(x1 + 2) − (x2 + 2)| = |x1 − x2| = d1(x1, x2).

(I2) for every y ∈ [2, 3], we can take x to be y − 2. This is in [0, 1], and
φ(x) = y, so φ is surjective.
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Therefore the function φ is an isometry according to our definition. Note
that there is another isometryφ ′ : ([0, 1],d1)→ ([2, 3],d1), defined byφ ′(x) =
3 − x (we will leave it to the reader to check that this is also an isometry).

Example 1.6.5. — The metric spaces ([0, 2],d1) and ([0, 1],d1) are not iso-
metric. If there existed an isometry φ between them, then we would have

d1(φ(0),φ(2)) = d1(0, 2) = 2.

But no two points in [0, 1] have a distance between them greater than 1.

We now briefly discuss translations, rotations and reflections.

Exercise 1.6.6. — Show that f : Rn → Rn defined by

(x1, . . . , xn)→ (x1 + v1, . . . , xn + vn)

for some (v1, . . . , vn) ∈ Rn (a translation) defines an isometry (Rn,dp) →
(Rn,dp) for all p > 1 (including p =∞).

Exercise 1.6.7. — Let f : R2 → R2 be given by

f(x1, x2) = (cos(θ)x1 − sin(θ)x2, sin(θ)x1 + cos(θ)x2)

for some θ ∈ R. From year 1 linear algebra you know that f is the counter-
clockwise rotation of angle θ centered at the origin.

Show that f is an isometry from R2 endowed with the Euclidean dis-
tance d2 to R2 with the same distance.

Are these isometries when R2 is endowed with any other distance dp?
(Hint: think first about the cases of p = 1 or of p =∞. What are the points
that have distance equal to 1 from the origin?)

Exercise 1.6.8. — Let f : R2 → R2 be given by

f(x1, x2) = (cos(θ)x1 + sin(θ)x2, sin(θ)x1 − cos(θ)x2)

for some θ ∈ R. This f is the the reflection along the line centered at the
origin and of slope θ/2.

Show that f is an isometry from R2 endowed with the Euclidean dis-
tance d2 to R2 with the same distance.
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Remark 1.6.9. — It is a theorem in elementary Euclidean plane geometry
that every isometry φ : (R2,d2) → (R2,d2) is the composition of a transla-
tion, a rotation and a reflection. (A similar statement is valid for all isome-
tries in Rn, but this is considerably more complicated to state and prove
rigorously, and it doesn’t belong in this course.)

Example 1.6.10. — The closed square S of edge length 2 and the closed unit
disk D are not isometric with the standard Euclidean metric d2. To prove
this, observe that the distance of two opposite vertices of S equals 2

√
2, but

the maximum distance of two points of D equals 2.

Exercise 1.6.11. — 1. Prove that if φ : (X,dX) → (Y,dY) is an isometry,
p ∈ X and SdX1 (p) is the set of points of X that have distance 1 from p,
and SdY1 (φ(p)) is the set of points of Y that have distance 1 from φp,
then the restriction of φ to SdX1 (p) defines an isometry of the latter
with SdY1 (φ(p)) (both with the induced metrics from X and Y respec-
tively).

2. Prove that (R2,d2) and ({(x1, x2) ∈ R2 : x1 = 0},d2) are not isometric.

3. Prove that (Rn,d2) and (Rn,d∞) are not isometric.

4. Let φ : X → Y be a bijection and let dY be a distance on Y. Define a
distance dX on X such that φ is an isometry (X,dX)→ (Y,dY).

(One could prove, using the ideas of the previous exercise, that two
distances dp and dq on Rn are never isometric unless of course when p
equals q).

The next example shows what are the isometries when one considers
discrete metric spaces.
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Example 1.6.12. — Any bijection φ : X → Y is an isometry of (X,ddiscr) to
(Y,ddiscr). Indeed, the following equivalences hold

ddiscr(φ(x1),φ(x2)) = 0 ⇐⇒ φ(x1) = φ(x2)

⇐⇒ x1 = x2

⇐⇒ ddiscr(x1, x2) = 0

ddiscr(φ(x1),φ(x2)) = 1 ⇐⇒ φ(x1) 6= φ(x2)

⇐⇒ x1 6= x2

⇐⇒ ddiscr(x1, x2) = 1

To conclude, we give a couple of worked examples of isometries first
between spaces of functions, and then between spaces of real sequences.
We are giving these examples as a further way to illustrate how to play with
those metric spaces, we are not attempting a classification of isometries in
those spaces.

Example 1.6.13. — Let A,B ⊆ C[0, 1] be sets defined by

A = {f : [0, 1]→ R such that f(1/2) = 0} ,

and
B = {f : [0, 1]→ R such that f(1/2) = 1} .

We claim that (A,dL∞) and (B,dL∞) are isometric. Let the proposed isome-
try be given by φ : A→ B, f 7→ f+ 1, where f+ 1 is the function

f+ 1 : x 7→ f(x) + 1 for all x.

We show that this is indeed an isometry:

(I1)
dL∞(φ(f1)φ(f2)) = max

x∈[0,1]
|f1(x) + 1 − (f2(x) + 1)|

= max
x∈[0,1]

|f1(x) − (f2(x))|

= dL∞(f1, f2)

(I2) φ is also surjective. Let g ∈ B. Define f := g− 1. Since

g(1/2) = 1 ⇐⇒ f(1/2) = 0

and g is continuous if and only if f is continuous, we deduce that f is
in A. Finally, φ(f) = f+ 1 = g so φ is surjective.
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Example 1.6.14. — There are functions L,R : `p → `p (shift to the Left and
shift to the Right respectively) defined by

L(a0,a1, . . . ,an, . . .) = (a1,a2, . . .),

and
R(a0,a1, . . . ,an, . . .) = (0,a0,a1, . . .).

Neither L nor R is an isometry. The first is not injective, and the second is
not surjective. (For those who know a bit of linear algebra, the maps L and
R are linear maps from the vector space `p to itself. Note that a linear map
from a finite dimensional vector space to itself is injective if and only if it is
surjective).

However, L does define an isometry

L : {(An) ∈ `p : A0 = 0}→ `p

(source and target endowed with the same distance dp), and R does define
an isometry

R : `p → {(An) ∈ `p : A0 = 0}.

(source and target endowed with the same distance dp)

Example 1.6.15. — Let

X = {(An) ∈ `∞ such that A0 = 1,A2 < 3}

and
Y = {(An) ∈ `∞ such that A0 = 2,A1 > 0}.

Then there is an isometry φ : X→ Y given by

φ(A0,A1,A2, . . . ) = (A0 + 1,−A2 + 3,A1,A3,A4, . . .).

We check the first condition of an isometry, and leave the proof of surjec-
tivity as an easy exercise to the reader.

d∞(φ(A),φ(B)) = sup(|A0 + 1 − (B0 + 1)| , |−A2 + 3 − (−B2 + 3)| , |A1 −B1| , |A3 −B3| , . . .)

= sup(|A0 −B0| , |A2 −B2| , |A1 −B1| , |A3 −B3| , . . .)

= d∞(A,B)

In general it is an interesting, and difficult, question to characterise
all isometries (if any) between two given metric spaces, or even all auto-
isometries (isometries from a metric space to itself). This topic could be an
advanced course of its own, and we will not discuss any of it. In MATH241
we will only use isometries in an elementary way.
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2.

Continuity and convergence in metric spaces

Important notions to learn from this section:

1. The notion of convergence for a sequence of elements of a metric
space.

2. The notion of continuity for a function between metric spaces.

3. A characterization of continuity by means of convergence of sequences
(Lemma 2.2.7).

4. The notion of open/closed balls.

5. A characterization of continuity using open balls (Lemma 2.2.4) .

In this chapter we introduce the notion of convergence for a sequence
of elements of a metric space, and the notion of continuity for a function
between metric spaces. We also discuss how these two notions are related.
The key notion is that of an open (and that of a closed) ball in a metric
space.

2.1. Convergence in metric spaces

Let’s first review the notion of convergence for real sequences that is famil-
iar from Year 1. You can find more details on the Calculus I (MATH101)
notes.
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Definition 2.1.1. — A sequence (xn)n∈N of real numbers converges to ` ∈ R

if for all ε > 0 there exists N ∈N such that |`− xn| < ε for every n > N.
A sequence (xn) of real numbers converges if there exists ` ∈ R such that

(xn) converges to `, according to the previous definition.

This notion of convergence captures the notion of a limit of a real se-
quence (from Year 1), except in the case when the limit is +∞ or −∞, where
the definition is slightly different.

Example 2.1.2. — Let (xn)n∈N = ( 1
n+1), then (xn) converges to ` = 0.

Indeed, for every ε > 0, take N to be any natural number larger than 1
ε .

Then

|xn| =

∣∣∣∣ 1
n+ 1

∣∣∣∣ < 1
N+ 1

<
1
N

6
1

1/ε
= εwhenever n > N.

We have already encountered and worked with the notion of a real se-
quence. There is nothing special with the real number, we can consider
sequences of an arbitrary set, as defined in the following.

Definition 2.1.3. — A sequence of elements of a set X is a function x : N→ X,
which we will write as x = (xn)n∈N or simply as x = (xn).

We now generalise the notion of convergence of a real sequence to the
case of a sequence of an arbitrary metric space, by replacing d1(`, xn) =

|`− xn| with an arbitrary distance.

Definition 2.1.4. — Let (X,d) be a metric space and (xn) be a sequence of
elements of X and ` ∈ X. Then we say a sequence (xn) converges to ` in X if
for every ε > 0, there exists N ∈N such that d(xn, `) < ε for all n > N.

Definition 2.1.5. — Let (X,d) be a metric space and (xn) be a sequence of
elements of X. Then we say that (xn) converges, if there exists ` ∈ X such
that (xn) converges to ` in X (according to Definition 2.1.4).

Notation. — In a general metric space (X,d), if (xn) is a sequence of X and
` ∈ Xwe will write

lim
n→∞ xn = `

to mean that the sequence (xn) converges to the limit `. Alternatively, if we
want to emphasise that the sequence converges with respect to the given
distance d, we write

xn
d−→ `.

Page 36
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Exercise 2.1.6. — Let (X,d) be a metric space and (xn) be a sequence of X
and ` ∈ X. Set yn = d(xn, `). Then (yn)n∈N is a sequence of real numbers.
Show that

xn
d−→ ` ⇐⇒ yn

d1−→ 0.

Solution: The fact that the sequence (xn) converges to ` means that for
all ε > 0 there is N such that d(xn, `) < ε for all n > N. Because

d1(yn, 0) = |yn − 0| = d(xn, `),

we have that the previous sentence is the same as saying that (yn) con-
verges to 0 in (R,d1).

This notion of convergence can be restated in a more geometric manner
by introducing the notion of a ball in an arbitrary metric space.

Definition 2.1.7. — Let (X,d) be a metric space, p be an element of X and
R ∈ R>0 be a positive real number. Then the open ball of radius R centered at
the point p ∈ X is defined by:

BR(p) = {x ∈ X : d(x,p) < R}.

Similarly the closed ball of radius R centered at the point p ∈ X is defined
by:

BR(p) = {x ∈ X : d(x,p) 6 R}.

We will sometimes write BdR(p) and BdR(p) when we want to emphasise that
the balls are defined using the distance d.

We will now look at examples of balls in the metric spaces that we have
been considering.

Example 2.1.8. — Examples of balls in R2:

1. Bd2
R ((0, 0)) = {(x1, x2) ∈ R2 : d2((x1, x2), (0, 0)) < R}
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2. Bd∞R ((0, 0)) = {(x1, x2) ∈ R2 : d∞((x1, x2), (0, 0)) < R}

3. Bd1
R ((0, 0)) = {(x1, x2) ∈ R2 : d1((x1, x2), (0, 0)) < R}

Exercise 2.1.9. — Draw the balls BdpR ((0, 0)) in R2 for other values of p > 1.

Example 2.1.10. — Balls with the discrete distance. Let X be a set and con-
sider the metric space (X,ddiscr). Let x0 ∈ X and R > 0. Then

B
ddiscr
R (x0) =

{x0} if R 6 1

X if R > 1

and

B
ddiscr
R (x0) =

{x0} if R < 1

X if R > 1.

Example 2.1.11. — Balls in (C[0, 1],dL∞). Fix a continuous function f ∈
C[0, 1] and make this the centre of a ball. Let R ∈ R>0. Then the open (resp.
closed) balls in this metric space are

B
dL∞
R (f) = {g ∈ C[0, 1] : max |f(x) − g(x)| < R}

B
dL∞
R (f) = {g ∈ C[0, 1] : max |f(x) − g(x)| 6 R} .

In other words, a function g is in the ball if and only if its graph is a
subset of the shaded area in the picture below.

Page 38



2.1 Convergence in metric spaces

(If the graph of g touches the edges of the shaded area then g is in the closed
ball but it is not in the open ball).

Example 2.1.12. — Balls in (`∞,d∞).
Let A = (An) = (0, 0, . . .) be the zero sequence and R = 1. What are the

sequences B = (Bn) in the open ball B1(A) and in the closed ball B1(A)?
The second question is easier.

Indeed we have

B ∈ Bd∞1 (A) ⇐⇒ sup
n

|Bn| 6 1 ⇐⇒ |Bn| 6 1 for all n ∈N.

At this point it might be tempting to guess that B ∈ B1(A) if and only
if |Bn| < 1 for all n ∈ N, but this is wrong! Indeed, consider the sequence
(Bn) = (1 − 1/n). All of its elements are nonnegative and < 1, but the
supremum of Bn equals 1, therefore B /∈ B1(A)! This example shows that it
is possible for the supremum to equal 1 even when each individual element
of the sequence satisfies |Bn| < 1.

We have therefore

B ∈ BdL∞1 (A) ⇐⇒ sup
n

|Bn| < 1 ⇐⇒ ∃ε > 0 : |Bn| 6 1 − ε ∀n ∈N.

After having seen all these examples, we are now ready to restate the
definition of convergence of a sequence using the notion of a ball.

Definition 2.1.13. — Let (X,d) be a metric space. Then we say that (xn)
converges to ` ∈ X if for every ε > 0 there exists an N ∈ N such that
xn ∈ Bε(`) for all n > N.

We will see later that the notion of convergence really depends on the
choice of the distance on X: we will produce examples of sequences that
converge for some distance d but that do not converge for another distance
d ′ on the same set X.
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Remark 2.1.14. — What does it mean to say that (xn) does not converge in
(X,d)? In logical notation we can write this condition as

¬(∃` ∈ X : ∀ε > 0 ∃N ∈N : xn ∈ Bε(`) ∀n > N)

Through the use of De Morgan’s laws, we can rewrite this as the following:

∀` ∈ X ∃ε > 0 : ∀N ∈N, ∃n > N : xn /∈ Bε(`)

There are also some very special sequences of X, that converge for any
notion of a distance d that we could define on X.

Definition 2.1.15. — We say a sequence (xn) in X is eventually constant if
there exists an ` ∈ X and a natural number N such that xn = ` for every
n > N.

Exercise 2.1.16. — Let (X,d) be a metric space and (xn) be a sequence of
X. Show that if (xn) is eventually constant, it converges (and it converges
precisely to the value that it is eventually constant to).

Exercise 2.1.17. — Let d be a distance on X. Prove that a sequence (xn) is
eventually constant and equal to ` if and only if there exists an N such that
for every ε > 0, we have xn ∈ Bε(`) for every n > N. [Note that, unlike in
Definition 2.1.4, here we are requiringN to be chosen independently of ε.]

Exercise 2.1.18. — We have already observed that if a sequence (xn) is
eventually constant, then it converges. The converse is also true in the very
special case when X is endowed with the discrete metric.

Proof. Since (xn) is convergent, there exists an ` such that for all ε > 0 there
exists N ∈ N such that xn ∈ Bε(`) for every n > N. To show that in fact
(xn) is eventually constant, take any ε < 1. Then there exists an N such
that xn ∈ {`} for every n > N, which is true if and only if xn = ` for every
n > N.

Example 2.1.19. — Let (X,d) = (C[0, 1],dL∞). Let fn(x) = x
n+1 and f(x) = 0.

We claim that (fn) converges to f in X. Note that

max
x∈[0,1]

|fn(x) − f(x)| = max
x∈[0,1]

fn(x) =
1

n+ 1
,

so proving that fn converges to f is equivalent to proving that 1
n+1 con-

verges to 0 in (R,d1), which is what we did in Example 2.1.2.
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Example 2.1.20. — Let (X,d) = (C[0, 1],dL∞), fn(x) = xn and f(x) = 0 for
all x ∈ [0, 1]. We claim that fn does not converge to f in dL∞ . But this is
clear - if we take ε = 1

2 , then for every N,

max
x∈[0,1]

|fN(x) − f(x)| = |fN(1) − f(1)| = 1 >
1
2

.

We now want to produce some example of convergence in the spaces
of sequences `p. For this, we will need to introduce some notation and
clarifications first.

Notation. — Let’s now try and write a sequence of elements in `p and see
if it converges or not. This might at first sight be a bit confusing (and we
have to be extra careful with language), because an element of `p is already
a sequence itself! A sequence of elements in `p is therefore a sequence of
sequences.

Now a sequence (Ak)k∈N of elements of `p is the datum of a function
Ak : N→ `p for every k ∈N, that we can therefore write as

(Ak,0,Ak,1, . . . ,Ak,n, . . .) = ((Ak,n)n∈N)k∈N

where each Ak,n is a real number. Then we have that each of

(A0,n)n∈N, (A1,n)n∈N, (A2,n)n∈N, . . . , (Ak,n)n∈N, . . .

is an element of `p. (In fact this notation would work for any sequence of
sequences of real numbers, the fact that we are considering elements of the
space `p has played no role here).

If we write each element of the sequence (of sequences) on a subse-
quent row, then what we obtain looks like a matrix with infinite rows and
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columns
(A0,n)n∈N = (A0,0,A0,1, . . . ,A0,n, . . . )

(A1,n)n∈N = (A1,0,A1,1, . . . ,A1,n, . . . )
...

(Ak,n)n∈N = (Ak,0,Ak,1, . . . ,Ak,n, . . . )
...

with the only peculiarity that the indices for row and columns start from
zero rather than from one.

Example 2.1.21. — Consider the sequence of sequences defined by(
(Ak,n)n∈N

)
k∈N

=

(
(−1)n

k+ 1

)
.

Set Ak = (Ak,n)n∈N for all k ∈ N. We claim that each Ak is an element of
`∞. This is formally obvious because

sup
n∈N

|Ak,n| =
1

k+ 1
<∞

for all k ∈N. To avoid any confusion, let’s write out the first few elements
of this sequence:

(A0,n)n∈N = (1,−1, 1,−1, 1,−1, . . . )

(A1,n)n∈N =

(
1
2

,−
1
2

,
1
2

,−
1
2

,
1
2

,−
1
2

, . . .
)

(A2,n)n∈N =

(
1
3

,−
1
3

,
1
3

,−
1
3

,
1
3

,−
1
3

, . . .
)

...
After having written it out, it should be evident that the sequence (Ak)k∈N

is converging, and that it is converging to the zero sequence B = (0, 0, . . .).
Here is a proof. For every ε > 0, choose an integer N greater than 1

ε . Then

sup
n∈N

|Ak,n −Bn| =
1

k+ 1
6

1
N
< ε.

for all k > N.
As usual, we write

Ak
d∞−→ B

or equivalently
(Ak,n)n∈N

d∞−→ (Bn)n∈N
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to mean that the sequence (Ak)k∈N converges to B for k→∞.
(For the record, it should be clear that

(
(Ak,n)n∈N

)
k∈N

does not define
a sequence in `p for any p <∞).

Let’s now consider a similar example, where we swap the roles of the
two indices k and n.

Example 2.1.22. — Consider now the sequence of sequences

(
(Ak,n)n∈N

)
k∈N

=

(
(−1)k

n+ 1

)
,

obtained from the previous example by swapping the roles of the indices k
and n on the right hand side. Writing out the first few sequences gives:

(A0,n)n∈N =

(
1,

1
2

,
1
3

, . . .
)

(A1,n)n∈N =

(
−1,−

1
2

,−
1
3

, . . .
)

(A2,n)n∈N =

(
1,

1
2

,
1
3

, . . .
)

...

It should be quite clear that, for each fixed k, the sequence (Ak,n)n∈N is in
`p for all p > 1, including p =∞.

We claim that the sequence (Ak)k∈N does not converge in (`∞,d∞) (and
in fact it also does not converge in any (`p,dp) for any p > 1). [The idea
of the proof is that if (Ak) did converge for k → ∞ then, in particular,
the real sequence (Ak,0) that consists of the first coordinates of each Ak
would also converge in (R,d1). That sequence is ((−1)k)k∈N, which does
not converge.]

Proof. Assume that (Ak)k∈N converges to some sequence B. We fix ε = 1
2 .

Then by definition of convergence, there exists K ∈ N such that for all
k > K

1
2
> sup

n

|Ak,n −Bn| > |Ak,0 −B0| .

For k > K even, this constrains B0 to satisfy 1
2 < B0 <

3
2 . On the other

hand, for k > K odd, this constrains B0 to satisfy −3
2 < B0 < −1

2 . It is not
possible for B0 to satisfy both constraints, and this shows that the sequence
(Ak)k∈N does not converge in `∞.
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(Try to prove yourself that the same sequence does not converge as a
sequence of `p for any p > 1. It is essentially the same argument!)

After having seen some examples, let’s go back to the general theory of
convergence of sequences in metric spaces. You have seen in Year 1 that a
real sequence cannot possibly converge to two different limits. The same is
true of a sequence of an arbitrary metric space.

Lemma 2.1.23 (Uniqueness of the limit). — Let (X,d) be a metric space, and
let (xn) be a sequence of X. Then, if we have `1, `2 ∈ X such that limn xn = `1

and limn xn = `2, then `1 = `2.

Proof. Suppose `1 6= `2. Take ε =
d(`1,`2)

3 . Then ε > 0 because d(`1, `2) > 0
since `1 6= `2.

Using the definition of convergence with this ε, we find N1 such that
d(xn, `1) < ε for every n > N1, and similarly an N2 such that d(xn, `2) < ε
for every n > N2. Take now N ′ > max(N1,N2). Then by the triangle
inequality for dwe have:

d(`1, `2) 6 d(`1, xN ′) + d(`2, xN ′) <
2
3
d(`1, `2).

This is a contradiction, because no positive real number can be smaller than
or equal to its two-thirds! This concludes our proof.

2.2. Continuity in metric spaces

We now review the notion of continuity of a real function of 1 variable
and then generalise it to the case of a function between two abstract metric
spaces. We take a slightly different approach from the previous chapter.
We start from a definition of continuity that is different from the one that
was given in MATH101, but we will show the equivalence with the Year 1
notion in Lemma 2.2.7.

Definition 2.2.1. — Let f : R→ R be a function. We say that f is continuous
at x0 if for every ε > 0 there exists δ > 0 such that

|f(x) − f(x0)| = d1(f(x), f(x0)) < ε

whenever |x− x0| = d1(x, x0) < δ. We say that f is continuous if f is continu-
ous at every x0 ∈ R.
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We say that the limit of f at x0 is equal to ` ∈ R (written limx→x0 f(x) = `)
if for every ε > 0, ∃δ > 0 such that

|f(x) − `| = d1(f(x), `) < ε

whenever 0 < |x− x0| < δ.

We now extend these definitions to the general case of functions be-
tween metric spaces.

Definition 2.2.2. — Let (X,dX), (Y,dY) be metric spaces. Let f : X → Y be a
function, and let x0 ∈ X. Then we say f is continuous at x0 if for every ε > 0
there exists a δ > 0 such that

dY(f(x), f(x0)) < ε

whenever dX(x, x0) < δ. We say that f is continuous if it is continuous at x0

for every x0 ∈ X.
Let now ` ∈ Y. We say the limit of f at x0 is equal to ` (and we write

limx→x0 f(x) = `) if for every ε > 0, ∃δ > 0 such that

dY(f(x), `)) < ε

whenever 0 < dX(x, x0) < δ.

The notion of limit and of continuity are intimately related. Indeed, it
immediately follows from the definition that f is continuous at x0 if and
only if limx→x0 f(x) exists and it equals f(x0).

We will now describe the notion of continuity in other equivalent man-
ners. First we recall some notation.

Remark 2.2.3 (Direct and Inverse images of a function). — Here we recall
some notation.

Let f : X→ Y be a function. Then we have that f(x) ∈ Y.
We can define, for a subset A ⊆ X, its direct image

f(A) := {y ∈ Y : ∃x ∈ A such that f(x) = y}.

(Note that if A = {x} consists of one element, then f(A) = {f(x)}, the set that
contains precisely one element: f(x)).

Similarly, for a subset B ⊆ Y we define its inverse image (or preimage)

f−1(B) := {x ∈ X such that f(x) ∈ B}.
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Using this notation, we now rewrite the definition of continuity using
only the notion of balls in the source and in the target metric space. Let
(X,dX) and (Y,dY) be metric spaces, and f : X→ Y. Then

f is continuous at x0 ⇐⇒ ∀ε > 0 ∃δ > 0 such that dX(x, x0) < δ⇒ dY(f(x), f(x0)) < ε

⇐⇒ ∀ε > 0 ∃δ > 0 such that f(BdXδ (x0)) ⊆ BdYε (f(x0))

where we have emphasized the distance that defines each ball by denot-
ing it with a superscript. We will write what we have just observed in a
corollary.

Corollary 2.2.4. — Let (X,dX), (Y,dY) be metric spaces. Let f : X → Y be a
function, and let x0 ∈ X. Then f is continuous at x0 if and only if

∀ε > 0 ∃δ > 0 such that f(BdXδ (x0)) ⊆ BdYε (f(x0))

This characterization is quite useful, and permits for example to give a
slick proof of the following result.

Lemma 2.2.5. — Let (X,dX), (Y,dY), (Z,dZ) be metric spaces. Suppose that
x0 ∈ X, f : X → Y,g : Y → Z. If f is continuous at x0 and g continuous at f(x0),
then g ◦ f is continuous at x0.

Corollary 2.2.6. — If f and g are both continuous (i.e. they are continuous at all
points where they are defined), then so is g ◦ f.

Proof. (Of Lemma 2.2.5) Let ε > 0. Since g is continuous at f(x0) we can find
a δ1 such that g(Bδ1(f(x0)) ⊆ Bε(g(f(x0))). Similarly since f is continuous
at x0 we can find a δ > 0 such that f(Bδ(x0)) ⊆ Bδ1(f(x0)). Applying the
function g to both sides of this second inclusion gives us

g(f(Bδ(x0))) ⊆ g(Bδ1(f(x0))) ⊆ Bε(g(f(x0)))

⇒ g(f(Bδ(x0)) ⊆ Bε(g(f(x0)))

and so using Corollary 2.2.4, we see that g ◦ f is indeed continuous at x0 as
claimed.

We will now see how the notion of continuity relates to the one of con-
vergence. More precisely, the notion of continuity can be recast completely
in terms of convergence of sequences in the source and in the target. This
equivalent formulation is the one that was used as the definition of conti-
nuity in Year 1.
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Lemma 2.2.7. — Let (X,dX) and (Y,dY) be metric spaces, f : X → Y a function
and p ∈ X. The following are equivalent:

1. f is continuous at p.

2. for every sequence (xn) in (X,dX) such that xn
dx−→ p, f(xn)

dY−→ f(p).

Remark 2.2.8. — If f is continuous at p, by the above we have that

f
(

lim
n
xn

)
= lim

n
f(xn).

i.e. limits can be moved in and out of a parenthesis, when the correspond-
ing function is continuous.

The above lemma is often useful when trying to show that certain func-
tions are not continuous, as we see in the following example.

Example 2.2.9. — Let (X,d) = (C[0, 1],dL1) . Define

φ : C[0, 1]→ R

be defined by f 7→ max
x∈[0,1]

f(x). Then we claim that φ is not continuous at

g = 0. To see this, let (fn)(x) = xn. Then in Xwe have fn
d
L1−→ g, since∫ 1

0
fn(x) dx =

1
n+ 1

→ 0.

However, φ(fn) = 1 for every n, whilst φ(g) = 0. Therefore

φ(lim fn)︸ ︷︷ ︸
=0

6= limφ(fn)︸ ︷︷ ︸
=1

and so φ is not continuous at g.

Exercise 2.2.10. — Prove that the function φ of the previous example is
continuous if C[0, 1] is endowed with the dL∞ distance (instead of dL1).

Solution: The difficult part of this exercise is proving the inequality∣∣∣∣ max
x∈[0,1]

f(x) − max
x∈[0,1]

g(x)

∣∣∣∣ 6 max
x∈[0,1]

|f(x) − g(x)| (2.1)

for all f,g ∈ C[0, 1]. Assuming (2.1), for g ∈ C[0, 1] we prove continuity of
Φ at g by defining δ = ε for all ε > 0. Then by (2.1) we deduce

dL∞(f,g) < δ =⇒ |Φ(f) −Φ(g)| 6 dL∞(f,g) < δ = ε.
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In order to prove (2.1) we observe that, by definition of the absolute
value, it is equivalent to showing the two inequalities

− max
x∈[0,1]

|f(x) − g(x)| 6 max
x∈[0,1]

f(x) − max
x∈[0,1]

g(x) 6 max
x∈[0,1]

|f(x) − g(x)|

We only prove the second inequality and leave the first to the reader.
Let t ∈ [0, 1] be one value where f attains its in maximum in [0, 1], so

maxx∈[0,1] f(x) = f(t). Then

f(t) − g(t) 6 max
x∈[0,1]

(f(x) − g(x)) 6 max
x∈[0,1]

|f(x) − g(x)| (2.2)

On the other hand, −g(t) > −maxx∈[0,1] g(x), therefore

f(t) − max
x∈[0,1]

g(x) 6 f(t) − g(t). (2.3)

Combining (2.2) and (2.3) we deduce

max
x∈[0,1]

f(x) − max
x∈[0,1]

g(x) 6 max
x∈[0,1]

|f(x) − g(x)| ,

which is what we wanted to prove.

We now proceed with the proof of Lemma 2.2.7.

Proof of Lemma 2.2.7. Assume that f is continuous at p and suppose we have
a sequence (xn) of (X,dX) such that

lim
n→∞ xn = p.

Since f is continuous, for every ε > 0 we can find a δ > 0 such that
f(Bδ(p)) ⊆ Bε(f(p)). Since (xn) → p, we can find an N ∈ N such that
for every n > N, xn ∈ Bδ(p). Therefore f(xn) ∈ f(Bδ(p)) ⊆ Bε(f(p)) and
so we have convergence in Y too.

Conversely, suppose f is not continuous at p. Then there exists an ε > 0
such that for every δ > 0, f(Bδ(p)) 6⊆ Bε(f(p)). In other words, for all δ > 0,
there exists a y ∈ f(Bδ(p)) such that y /∈ Bε(f(p)). Therefore take

δ = 1 −→ find a y1 ∈ f(B1(p)) : y1 /∈ Bε(f(p))

δ =
1
2
−→ find a y2 ∈ f(B 1

2
(p)) : y2 /∈ Bε(f(p))

...

δ =
1
n
−→ find a yn ∈ f(B 1

n
(p)) : yn /∈ Bε(f(p))

...
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For all n ∈ N, because yn ∈ f(B 1
n
(p)), there is xn ∈ B 1

n
(p) such that

f(xn) = yn. Therefore we have constructed a sequence (xn) in X such that,
for all n ∈N,

xn ∈ B 1
n
(p)︸ ︷︷ ︸

so xn−→p

but f(xn) = yn /∈ Bε(f(p))︸ ︷︷ ︸
so f(xn) 6−→f(p)

This gives the required contradiction.
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3.

The topology of metric spaces

Important notions to learn from this section:

1. The notion of open and closed subset of a metric space.

2. Formal properties of open subsets.

3. A characterisation of closed sets by convergence of sequences.

4. A characterisation of convergence/continuity using only open sub-
sets.

5. The notion of equivalence for two distances on the same set.

6. The notions of homeomorphism and of homeomorphic metric spaces.

The central notion of this chapter is that of open (and that of closed) sub-
set of a metric space. We will see how the notions of convergence and conti-
nuity can be rephrased in alternative definitions that only refer to the open
subsets. The two core notions of convergence and continuity are therefore
insensitive of the actual distance, as they only sense it via the underlying
“topology” of the metric space (by topology we mean the “ability to distin-
guish” the open subsets within the collection of all subsets). This leads us
to define a second notion of equivalence for metric spaces, called “home-
omorphism”, which is less rigid than the notion of an isometry that we
encountered in the first chapter. The main point is that two homeomorphic
metric spaces are, in some sense, indistinguishable from the point of view
of convergence and continuity.
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3.1. Open and closed sets

In this section we introduce and discuss the notion of open and that of closed
subsets of a metric space. These notions should already be somehow famil-
iar from Year 1 for the subsets of the real line R endowed with the standard
(Euclidean) distance. The standard examples to keep in mind are that of
the open interval (0, 1) ⊂ R and that of the closed interval [0, 1] ⊂ R.

Definition 3.1.1. — Let (X,d) be a metric space, and let A ⊆ X be a subset
of X. Then we say that A is open in (X,d) if for every p ∈ A, there exists an
ε > 0 such that Bε(p) ⊆ A. If B ⊆ X then we say that B is closed in (X,d) if
X\B is open.

Note that in common language the word ”open” means the opposite
of the word ”closed. This is not so in technical mathematical language: a
subset may fail to be open and closed, and a subset may be simultaneously
open AND closed.

Example 3.1.2. — 1. The open interval (0, 1) is open in (R,d1). Indeed,
for all p ∈ (0, 1), take 0 < ε < min(p, 1 − p). Then

Bε(p) = (p− ε,p+ ε) ⊆ (0, 1).

2. The closed interval [0, 1] is closed in (R,d1). Indeed,

R \ [0, 1] = (−∞, 0)∪ (1,∞)

is open because for all p ∈ (−∞, 0) ∪ (1,∞) we will choose ε any
positive real number that satisfiesε < p− 1 if p > 1

ε < −p if p < 0.

With this choice of ε, we have

Bε(p) = (p− ε,p+ ε) ⊆ (−∞, 0)∪ (1,∞).

3. There is nothing special about the values 0 and 1 in the previous two
examples. With a similar reasoning, one can easily see that all open
intervals of the form (a,b) for a,b ∈ R are indeed open subsets of
(R,d1) and all closed intervals of the form [a,b] ∈ R are closed sub-
sets of (R,d1).
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4. A subset can be neither open nor closed! Let A = [0, 1). Then A is
neither open nor closed in (X,d) = (R,d1).

To see it isn’t open, let p = 0. Then for every ε > 0,

Bε(p) = (p− ε,p+ ε) 6⊆ [0, 1).

Likewise to see that A isn’t closed, take p = 1. Then for every ε > 0,

Bε(1) = (1 − ε, 1 + ε) 6⊆ R\[0, 1).

5. In fact a subset may even be simultaneously open and closed! Take
A = R, then we claim that A is open and closed in (R,d1).

It is clear that A is open. Indeed, for all p ∈ A = R, we have that
Bε(p) ⊆ A = R for all possible choices of ε!

To see that A is also closed will require a small effort of logic. Indeed,
the complement R \ R is the empty set ∅. How do we check that
the empty set is open in (R,d1)? For all p ∈ ∅ we have to verify
something, but ∅ has no elements, so there is nothing to verify!

Incidentally, because A = R is open and closed in (R,d1), then the
same applies to R \A = ∅, so we find that ∅ is also open and closed
in (R,d1).

6. Arguing as in the previous point, we see that the empty set and X are
open and closed subsets of any metric space (X,d). This apparently
bizarre observation will become especially relevant later.

Let’s see now an example that is not a subset of the real line.

Example 3.1.3. — Let (X,d) = (R2,d2) and R > 0. Then the open ball BR(0)
is actually an open subset. To show this, let p be a point in BR(0). Then we
can write p = (r cos θ, r sin θ) where r < R and θ ∈ [0, 2π). For ε = R− r,
then Bε(p) ⊆ BR(0).

On the other hand, we can also see that BR(0) is not closed. Consider
now the point p = (R, 0) ∈ R2\BR(0). Then for every ε > 0,

Bε(p) 6⊆ R2\BR(0).

(There is nothing special about the origin in this example, one could
have considered the open ball centered at an arbitrary point).

In the same metric space, it is not difficult to explicitly verify that the
closed ball BR(0) is closed and not open.
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The notion of being “open” is relative rather than absolute, in the sense
that it also depends on the ambient space (X,d). Let us illustrate this im-
portant subtlety with some more examples.

7. Let (X,d) = ([0,∞),d1),A = [0, 1). Then A is open in X. For p ∈ [0, 1),
take ε = 1 − p > 0. Then

Bε(p) = (p− ε,p+ ε)∩ [0,∞) ⊆ [0, 1),

because p+ ε = p+ 1 − p = 1.

8. Let (X,d) = ([0, 1]∪ [2, 3],d1) and A = [0, 1]. Then A is both open and
closed in X. Indeed, as seen in the previous example, for ε sufficiently
small one has Bε(0) = [0, ε) and Bε(1) = (1 − ε, 1]. Similarly, one
shows that [2, 3] is also open in X, hence that [0, 1] is closed.

9. Let (X,d) = (C[0, 1],dL∞) and

A = {f ∈ X : f(1/3) > 1}.

We claim that A is open in X. To see this, take f0 ∈ A. Then let
ε = f0(

1
3) − 1. Then

Bε(f0) = {f : max |f(x) − f0(x)| < ε}.

Then ε is positive because f0 ∈ A and

f ∈ Bε(f0) =⇒ −ε < f(1/3) − f0(1/3) < ε

=⇒ f(1/3) > f0(1/3) − ε = 1

i.e. Bε(f0) ⊆ A.

Similarly, one could prove that A is not closed in (X,d).

10. Let (X,d) = (X,ddiscr) and A be any subset of X. Then A is both open
and closed. To see this, for every p ∈ A, take ε = 1

2 . The statement
follows since

p ∈ A =⇒ B
ddiscr
1
2

(p) = {p} ⊆ A.

11. Now let (X,d) be any metric space and let R ∈ R>0. Then
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(a) Each open ball BR(p) is actually an open subset. Indeed, for any
x0 ∈ BR(p), take ε > 0 such that ε < R − d(p, x0) (note that
R− d(p, x0) > 0 because x0 ∈ BR(p)). Then we have

Bε(x0) = {x ∈ X : d(x, x0) < ε}.

Applying the triangle inequality we deduce

d(x,p) 6 d(x, x0) + d(x0,p) < ε+ d(p, x0) < R,

when x ∈ Bε(x0). From this it follows that if x ∈ Bε(x0), then
x ∈ BR(p), so the open ball Bε(x0) is a subset of BR(p). This
concludes the proof that BR(p) is open.

(b) Similarly we could prove that each closed ball BR(x0) is actually
closed.

(c) The subsets ∅ and X are both open and closed in X. This is pretty
much immediate from the definitions. The subset ∅ is open since
there are no elements in X, so the property of being open follows
without having anything to check. The subset X is also open
because Bε(p) is a subset of X for any choice of p and ε.

The last example inspires us to observe that the collection of open sub-
sets of a given metric space satisfies some formal properties that we are
now going to list and prove.

Lemma 3.1.4 (Formal properties of open sets). — Let (X,dX) be a metric
space.

1. The subsets ∅ and X are open.

2. An arbitrary union of open sets is open.

3. A finite intersection of open sets is open.

To see why we are only allowed to take an intersection of finitely many
sets, as an example take (X,d) = (R,d1) and the infinite collection of sub-
sets Ak = (− 1

k , 1
k) for k = 1, 2, 3, . . . . Then Ak is open for every k, whilst

∞⋂
k=1

Ak = {0},
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which is not open in (R,d1) (because any ball of positive radius centred at
0 contains elements other than 0).

It may be worth at this point recalling the notation for taking intersec-
tions and unions of sets.

Remark 3.1.5. — If A,B are any two sets, then we define:

A∩B = {x such that x ∈ A and x ∈ B},

A∪B = {x such that x ∈ A or x ∈ B}.

If A1,A2, . . . ,AN are sets, then we define

N⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩AN = {x : x ∈ A1, x ∈ A2, . . . , x ∈ AN},

N⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪AN = {x : x ∈ A1 or x ∈ A2. . . or x ∈ AN}.

More generally, if I is a set (to be regarded as a set of indices) and Ai is
a set for all i ∈ I, then we define⋂

i∈I
Ai = {x such that x ∈ Ai for every i ∈ I},⋃

i∈I
Ai = {x such that x ∈ Ai for some i ∈ I}.

As an example, take I = N\{0} and if Ak = (− 1
k , 1
k) for all k ∈N. Then⋂

i∈I
Ai = {0}

is the example that we have just discussed immediately before to show that
the intersection of infinitely many open sets might fail to be open.

Proof of Lemma 3.1.4. 1. This was observed before..

2. Suppose the subsets Ai are open in (X,d) for all i ∈ I. For all p ∈⋃
i∈IAi, we must have that p ∈ Aj for some j ∈ I. Because Aj is

open, there exists an ε > 0 such that

Bε(p) ⊆ Aj ⊆
⋃
i∈I
Ai.

This proves then that
⋃
i∈IAi is open in (X,d).
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3. Suppose that we have open sets A1,A2, . . . ,AN which are all open.
Assume p ∈ A1 ∩ · · · ∩AN. For all j = 1, . . . ,N, because Aj is open
in (X,d), we can find an εj > 0 and a ball Bεj(p) ⊆ Aj. Now define
ε = min(ε1, ε2, . . . , εN). Then ε > 0 and we have the inclusion

Bε(p) =

N⋂
i=1

Bεj(p) ⊆
N⋂
i=1

Ai.

Because this argument is valid for all p ∈ A1 ∩ · · · ∩AN, the latter is
an open subset of (X,d).

Similar formal properties are enjoyed by the collection of closed sets, by
simply taking the complement and observing that(⋂

i∈I
Ai

)c
=
⋃
i∈I
Aci and

(⋃
i∈I
Ai

)c
=
⋂
i∈I
Aci .

(The upper c on a subset S of X here is used as a shorthand notation for
Sc = X \ S, the complement of S in X).

Corollary 3.1.6. — 1. The subsets ∅,X are closed in X.

2. The arbitrary intersection of closed sets is closed.

3. A finite union of closed sets is closed.

Example 3.1.7. — The set Ak = [0, 1 − 1
k ] is closed for every k > 1. How-

ever, the infinite union
⋃∞
k=1Ak equals [0, 1), which is not closed in (R,d1).

So far we have explained how to see if a subset of a metric space is and
if it is not open. It is often easier to check if a subset is closed, due to the fol-
lowing lemma that relates the property of being closed to the convergence
of sequences.

Lemma 3.1.8. — Let (X,d) be a metric space, and let A ⊆ X. The following are
equivalent:

1. The subset A is closed.

2. For every sequence (xn) of A, if (xn) converges to ` ∈ X then ` ∈ A.

We may informally phrase this lemma by saying that ”closed” for a
subset means that it is closed for the operation of taking limits of sequences.
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Proof. SupposeA isn’t closed. ThenX\A is not open, so there exists ` ∈ X\A
such that for every ε > 0 we have Bε(`) 6⊆ X\A. Therefore set

ε1 = 1 B1(`) 6⊆ X\A then find an x1 ∈ B1(`) : x1 ∈ A

ε2 =
1
2

B1/2(`) 6⊆ X\A then find an x2 ∈ B1/2(`) : x2 ∈ A

...

εn =
1
n

B1/n(`) 6⊆ X\A then find an xn ∈ B1/n(`) : xn ∈ A

...
Then we have constructed ` ∈ X \A and a sequence (xn) that converges to
`, which contradicts the second statement.

Conversely, assume that the second statement is false. Then there ex-
ists a sequence (xn) of A and ` ∈ X\A such that (xn) converges to `.
Then because (xn) converges to ` for every ε > 0, there exists n such that
xn ∈ Bε(`) and xn /∈ X\A, so X\A is not open, hence A is not closed.

We will now exploit Lemma 3.1.8 to give more examples of closed and
of non-closed subsets.

Example 3.1.9. — 1. [−1, 1) is not closed in (R,d1). Let

(xn) =

(
1 −

1
n+ 1

)
.

Then (xn) ∈ [−1, 1) but its limit lim
n→∞xn = 1 /∈ [−1, 1).

2. Let (X,d) = (C[0, 1],dL∞) and

A = {f ∈ X : ∃ x ′ such that f(x ′)2 < 1}.

We claim that A is not closed. Take (fn) = (1 − 1
n+1) for every x ∈

[0, 1] and g(x) = 1. Then fN
dL∞−→ g and fn ∈ A ∀n ∈ N, but we have

g /∈ A.

3. Take Q ⊆ (R,d1). Then Q is not closed. To see this, take any x ∈ R\Q.
Let (xn) be the decimal approximation of x toN places. For example,
if x = π, then we have

x1 = 3.1

x2 = 3.14

x3 = 3.141
...
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Then xn ∈ Q for all n ∈N, but x /∈ Q.

4. Let p < q, then `p ⊆ `q and `p is not closed in (`q,dq).

To see this, take any element B ∈ `q such that B /∈ `p. For example,
take (Bn) =

(
1
n1/p

)
. Then define the sequence of sequences

Ak,n :=

 1
n1/p n < k

0 n > k.

Then for every kwe have (Ak,n)n∈N = Ak ∈ `p (because only finitely
many terms of the sequence are different from zero), and we also have

lim
k→∞Ak = B

in the distance dq (Exercise: prove this in detail using the definition
of limit!). However, by definition B /∈ `p. This completes the proof
that `p is not closed in (`q,dq) for p < q.

3.2. Introduction to topology

Here we allow ourselves to make a small digression in a topic that has by
now become central in modern mathematics and that you will encounter
in your further studies. Inspired by the formal properties observed enjoyed
by the collection of open sets (the properties that we proved in Lemma 3.1.4),
we now define another notion of a “space”, more general then that of a met-
ric space: the notion of a topological space.

Definition 3.2.1. — A topology U on X is a collection of subsets Ui of X,
called the open subsets of X, that satisfies the following properties.

(T1) The subsets ∅,X ∈ U.

(T2) If Ui ∈ U for all i ∈ I⇒
⋃
i∈IUi ∈ U.

(T3) If U1, . . . ,UN ∈ U⇒
⋂N
i=1Ui ∈ U.

A topological space is a pair (X,U) where X is a set and U is a topology on X.

One thing that might confuse at first is that the elements of a topology
on a set X are subsets of X.
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Remark 3.2.2. — Let X be a set. Let P(X) be the set of all subsets of X, in
other words

P(X) := {A : A ⊆ X}.

Then a topology is a subset U of P(X) that satisfies the conditions T1, T2

and T3.

Example 3.2.3. — For example, if X is a finite set, then the number of ele-
ment #P(X) equals 2#X. In particular, the number of subsets of P(X) equals
22#X

. The number of subsets U of P(X) such that ∅,X ∈ U equals 22#X−2.
This number gives a very coarse upper bound on the number of different
topologies on a finite set X, for it ignores the two constraints T2 and T3.

Example 3.2.4 (The Main Example of a Topological Space in MATH241). —
Let (X,dX) be any metric space. Then we set

U = {A ⊆ X such that A is open in (X,dX)}.

By Lemma 3.1.4, the pair (X,U) is a topological space. We call U the topol-
ogy generated/induced by the distance dX.

The previous example points to the fact that the notion of a topological
space is more general than the notion of a metric space, the main notion of
this module.

Remark 3.2.5. — Note that for any set X, the set P(X) is always a topology
on X (the three axioms T1, T2, T3 are trivially satisfied). As we have seen
in part 10 of the list of examples above, if X is equipped with the discrete
metric, all its subsets are open. We conclude that the topology P(X) is gen-
erated/induced by the discrete metric. (For this reason, the topology P(X)

is sometimes referred to as the discrete topology on X.)
On the opposite end of the spectrum, another topology that is always

available is the smallest possible topology, also known as the trivial topol-
ogy (or indiscrete topology), which consists only of U = {∅,X}. (It is also
straightforward to prove that this topology satisfies the three axioms).

Let’s see some more examples of topologies on finite sets.

Example 3.2.6. — 1. Let X = {A} be a set containing a unique elementA.
Then U = {∅, {A}} is the only possible topology on X.
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2. If X = {A,B} is a set with 2 elements, then the possible topologies on
X are

U1 = {∅, {A,B}} - the trival topology on X ,

U2 = {∅, {A}, {A,B}},

U3 = {∅, {B}, {A,B}},

U4 = {∅, {A}, {B}, {A,B}} - the topology induced by the discrete metric on X.

3. Let X = {A,B,C}. By the formula above the number of possible
topologies on X is less than or equal to 64. We list a few possible
collection of subsets:

U1 = {∅,X} - the trivial topology

U2 = {∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C},X} - the discrete topology

U3 = {∅,X, {A,B}, {A,C}}

Note that U3 is not actually a topology since

{A,B}∩ {A,C} = {A} /∈ U3.

In fact, one can spend some time to verify (or check on Wikipedia)
that there are 29 different topologies on X; this is far fewer than the
total number of collections of subsets of P(X) that contain ∅ and X,
which is 2(23−2) = 26 = 64.

Exercise 3.2.7. — Let X be a finite set. Prove that if a topology is generated
by a metric, then it must be the discrete topology P(X) (see Remark 3.2.5).
Does the metric need to necessarily be the discrete metric?

We will now see how the notions of convergence and continuity for
metric spaces may be rephrased purely in topological terms. We start with
convergence.

Theorem 3.2.8. — Let (X,d) be a metric space, (xn) a sequence of X, and let
` ∈ X. Then the following are equivalent:

1. (xn) converges to `.

2. for every open subset U ⊆ X with ` ∈ U, there exists an N ∈ N such that
xn ∈ U for every n > N.
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Proof. Suppose (xn) converges to `. For any open subset U ⊆ X containing
`, sinceU is open we can find an ε > 0 such that Bε(`) ⊆ U. Then since (xn)

converges to `we find an N such that xn ∈ Bε(`) ⊆ Uwhenever n > N.

The converse is obvious — just take the ball Bε(`) as the open subset.

And now we see how continuity can be expressed only referring to the
open sets, without the need for a distance.

Theorem 3.2.9. — Let (X,dX) and (Y,dY) be metric spaces, and let f : X → Y.
Then the following are equivalent:

1. f is continuous,

2. for every open set U ⊆ Y, the inverse image f−1(U) is open in X.

Before we write the proof, let’s recall how we expressed the notion of f
being continuous using open balls and the direct image of a set. A function
f : X→ Y is continuous if for all x0 ∈ X, for all ε > 0 there exists δ > 0 such
that

f(BdXδ (x0)) ⊆ BdYε (f(x0)). (3.1)

By applying f−1 to both sides of that inclusion, this is the same as requiring
the inclusion

BdXδ (x0) ⊆ f−1(BdYε (f(x0))). (3.2)

We will use (3.2) instead of (3.1) in the proof below.

Proof. Let’s start our proof. Assume that f satisfies the second condition.
For x0 ∈ X we prove continuity of f at x0. For the ε > 0 dictated by the
definition of continuity of f at x0, take U = Bε(f(x0)) for the open set. The
second condition guarantees then that the inverse image f−1(Bε(f(x0))) is
open, which means that there exists δ > 0 such that

Bδ(x0) ⊆ f−1(Bε(f(x0))).

This inclusion proves then that f is continuous at x0.
Now assume that f is continuous. TakingU ⊆ Y open, we need to show

that f−1(U) is open in X. For x0 ∈ f−1(U), we aim at finding a ball centered
at x0 that is completely contained in the inverse image f−1(U).
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1. Because U is open, we can find ε > 0 such that Bε(f(x0)) ⊆ U.

2. Because f is continuous at x0, for the ε > 0 given above we can find a
δ > 0 such that Bδ(x0) ⊆ f−1(Bε(f(x0))).

Therefore we have found δ > 0 such that the ball Bδ(x0) is contained in
f−1(Bε(f(x0))) ⊆ f−1(U). This concludes our proof.

In the following remark we observe that the above characterisation of
continuous functions could have been made with closed subsets instead of
open subsets.

Remark 3.2.10. — For a function f : X → Y for every open subset U ⊆ Y,
f−1(U) is open if and only if for every closed set C ⊆ Y, f−1(C) is closed.

This follows since X\f−1(C) = f−1(Y\C), so f−1(Y\C) is open if and
only if f−1(C) is closed. Moreover, by definition C is closed if and only if
Y\C is open.

Note that the second conditions of Theorems 3.2.8 and 3.2.9 only re-
quires knowledge of the open subsets, and as such it can be used to extend
the notions of convergence and that of continuity for topological spaces:

Definition 3.2.11. — A sequence (xn) in a topological space converges to the
limit ` if for every open subset U ⊆ X with ` ∈ U, there exists an N ∈ N

such that xn ∈ U for every n > N.
A function f of topological spaces is continuous if the inverse image via

f of every open set is open.

Note that, whilst’ this formulation of continuity is very elegant, it is
usually harder (and totally inconvenient for metric spaces) to use this in
exercises to prove that a given function is continuous (or that a given se-
quences converges).

3.3. Equivalent distances

Because convergence and continuity for metric spaces only depend on the
underlying notions of open sets, it makes sense to introduce the follow-
ing notion of equivalence for distances on the same set, with the idea that
two distances are equivalent if the notions of convergence and continuity
defined using one are the same as those defined using the other.
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Definition 3.3.1. — Let X be a set. Let d,d ′ be two different distances on X.
Then we say that d and d ′ are equivalent whenever the open sets of (X,d)
coincide with those of (X,d ′). We write d ∼ d ′ to denote that two distances
are equivalent.

(We could have said that that d is equivalent to d ′ when the topology on
X induced by d is the same as the topology on X induced by d ′). We shall
see later in 3.3.7 that the different distances dp on Rn are all equivalent
according to this definition.

First we shall see some consequences of the notion of equivalent dis-
tances. From Theorem 3.2.8 and Theorem 3.2.9, we immediately deduce
the following corollaries:

Corollary 3.3.2. — Let (X,d) and (X,d ′) be metric spaces with d ∼ d ′, and let
(xn) be a sequence of X and ` ∈ X. Then we have

xn
d−→ ` ⇐⇒ xn

d ′−→ `.

Corollary 3.3.3. — Let (X,dX), (X,d ′X) and (Y,dY), (Y,d ′Y) be metric spaces
where dX ∼ d ′X and dY ∼ d ′Y . Then

f : (X,dX)→ (Y,dY)︸ ︷︷ ︸
is continuous

⇐⇒ f : (X,d ′X)→ (Y,d ′Y)︸ ︷︷ ︸
is continuous

Before we go any further, let’s give a simple example of two metrics that
are not equivalent.

Example 3.3.4. — Let X = R. Then ddiscr and d1 are not equivalent. Indeed,
the subset [0, 1) is open with the discrete metric (all subsets are!) but it is
not open with the standard metric d1.

We will now aim to prove Corollary 3.3.6, which gives an easy sufficient
condition for two distances to be equivalent. That criterion will follow im-
mediately from this Lemma.

Lemma 3.3.5. — Let (X,d), (X,d ′) be metric spaces on the same underlying set.
Suppose there exists C > 0 such that

d(x,y) 6 C · d ′(x,y)

for every x and y. Then U ⊆ (X,d) is open implies that U ⊆ (X,d ′) is also open.
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Proof. For every p ∈ U, since U is open in (X,d), we can find an R > 0 such
that

BdR(p) = {x : d(x,p) < R} ⊆ U.

Because of the inequality d(x,p) 6 C · d ′(x,p), we have that

d ′(x,p) <
R

C
=⇒ d(x,p) < R,

hence the inclusion of balls

Bd
′

R/C(p) ⊆ B
d
R(p),

so Bd
′

R/C(p) ⊆ U and therefore U is also open in (X,d ′).

From the previous result, we immediately deduce the following.

Corollary 3.3.6. — Suppose d,d ′ are distances on a set X. Then if there exist
constants C and C ′ > 0 such that

d(x,y) 6 C · d ′(x,y) and d ′(x,y) 6 C ′ · d(x,y)

for every x,y ∈ X, then d is equivalent to d ′.

From this we can for example deduce that the different distances dp that
we have introduced in Chapter 1 are all equivalent on Rn (in particular,
they are all equivalent to the standard Euclidean distance d2). We have
observed at the end of Chapter 1 that in general (Rn,dp) and (Rn,dq)
are not isometric. (And in fact one could even prove that they are never
isometric unless of course when p equals q).

Corollary 3.3.7. — On Rn, the distances dp and dq are equivalent for all
p,q > 1 including p,q =∞.

Proof. Suppose p > q. Then in Assignment 1 in B2.1 we have proved the
inequalities:

d∞(x,y) 6 dp(x,y) 6 dq(x,y) 6 d1(x,y) (3.3)

and

d1(x,y) 6 n · d∞(x,y). (3.4)

(See solutions to Assignment 1).
The result follows immediately from the above inequalities and Corol-

lary 3.3.6 with d = dp, d ′ = dq, C = 1 and C ′ = n.
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Corollary 3.3.7 is a very special feature that occurs for ”finite dimen-
sional spaces”. We will now see how the other examples of metric spaces
that we have introduced in Chapter 1 (spaces of sequences and spaces of
continuous functions) behave very differently.

We first look at the case of the space of functions C[0, 1], and compare
the two distances dL1 and dL∞ .

Lemma 3.3.8. — The inequality dL1(f,g) 6 dL∞(f,g) holds for all f,g ∈ C[0, 1],

Proof. ∫ 1

0
|f(x) − g(x)| dx 6

∫ 1

0
max |f(x) − g(x) |dx

= (1 − 0) · max
x∈[0,1]

|f(x) − g(x)|

= dL∞(f,g)

This, by Lemma 3.3.5, says that a subset of C[0, 1] that is open with the
distance dL1 is also open with the distance dL∞ . The converse is not true, as
we see in the next example.

Remark 3.3.9. — The distances dL1 and dL∞ are not equivalent. Set

fn(x) = x
n, f(x) = 0.

Then we have already seen that fn
d
L1−→ f whilst fn

dL∞
6−→ f. So by Corol-

lary 3.3.2, the distances dL1 and dL∞ are not equivalent.

To show that dL1 and dL∞ are not equivalent: we have exhibited a se-
quence that converges with the former distance, but not with the latter. The
following exercise illustrates that the converse cannot happen.

Exercise 3.3.10. — Prove that if fn
dL∞−→ f, then fn

d
L1−→ f. Hint: use the

definition of convergence and Lemma 3.3.8.

Exercise 3.3.11. — More generally, show that if d,d ′ are distances on X such
that there exists C > 0 such that

d(x,y) 6 C · d ′(x,y)

for all x,y ∈ X, then if (xn) is a convergent sequence in (X,d ′), it must also
converge in (X,d) (and to the same limit).
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We now analyse the spaces of sequences, and see that if we endow the
same space `p with different metrics dq, the resulting metric spaces are not
equivalent (note the contrast with Corollary 3.3.7).

Remark 3.3.12. — We have already discussed that, for fixed p > 1, the
space of sequences `p can be endowed with distances dq and dq ′ for all
p 6 q < q ′. These two distances are not equivalent, as we will see in the
following two examples.

By taking the limit for n → ∞ of both sides of Inequality (3.3) (both
sides can be considered as sequences in n for n the dimension of Rn), we
deduce the inequality

dq ′(A,B) 6 dq(A,B), (3.5)

for all A,B ∈ `p. A reverse inequality cannot be obtained by the same
reasoning, because the right hand side of Inequality (3.4) tends to ∞ for
n→∞!

Example 3.3.13. — Consider the space of sequences `1 — we will produce
a sequence of elements of `1 that converges in d∞ but not in d1. By Corol-
lary 3.3.2, we deduce that d1 and d∞ are not equivalent on `1.

Define ((Ak,n)n∈N)k∈N by

(A1,n)n∈N = (1, 0, 0, 0, 0, . . .)

(A2,n)n∈N =

(
1
2

,
1
2

, 0, 0, 0, . . .
)

(A3,n)n∈N =

(
1
3

,
1
3

,
1
3

, 0, 0, . . .
)

...

(Ak,n)n∈N = (
1
k

, . . . ,
1
k︸ ︷︷ ︸

k times

, 0, . . .)

and (Bn)n∈N = (0, 0, . . .). Then it is not difficult to see that

((Ak,n)n∈N)k∈N
d∞−→ (Bn)n∈N for k→∞, but

((Ak,n)n∈N)k∈N

d1
6−→ (Bn)n∈N for k→∞.

(Indeed, the supremum of the difference of Ak and B equals 1/k, but the
sum of the absolute values of the difference of Ak and B equals 1 for all k).
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Example 3.3.14. — Building on the previous example, we claim that on
`p the distances dq and dq ′ are not equivalent for all p 6 q < q ′. (The
previous example describes the case where p = q = 1 and q ′ =∞.) Again
we reason using Corollary 3.3.2.

On `p, by Inequality (3.5) we have that convergence with the distance
dq implies convergence with the distance dq ′ . To see that the reverse im-
plication does not hold, consider the sequences

((Ak,n)n∈N)k∈N = (
1
q
√
k

, . . . ,
1
q
√
k︸ ︷︷ ︸

k times

, . . . , 0, . . . )

(Bn) = (0, 0, 0, 0, . . . )

We claim that (Ak) converges to B in the dq ′-metric, but not in the dq-
metric. To see this, we compute

lim
k→∞dq ′(Ak,B) = lim

k→∞
(
k · 1
kq
′/q

)1/q ′

= lim
k→∞

(
1

k
q ′
q −1

)1/q ′

=

0 for q ′ > q

1 when q ′ = q.

Finally, in the following exercise we observe that any of the product dis-
tances of two metric spaces (which we defined in Chapter 1) are equivalent.
The argument goes along the same lines of Corollary 3.3.7.

Exercise 3.3.15. — Let (X,dX) and (Y,dY) be metric spaces. Prove the in-
equalities

D∞((x1,y1)(x2,y2)) 6 D2((x1,y1)(x2,y2)) 6 D1((x1,y1)(x2,y2))

and
D1((x1,y1)(x2,y2)) 6 2 ·D∞((x1,y1)(x2,y2)).

Use this to deduce that the three product distances D1,D2,D∞ are equiva-
lent on X× Y.

3.4. Homeomorphisms

In the previous section we have discussed the topology of a metric space
and we then defined a notion of when two distances on the same set ought
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to be considered equivalent from the point of view of convergence and con-
tinuity. What about the situation when we have not only two different dis-
tances, but also two different sets? Can we make a formal definition of
a function that identifies two sets as well as the notions of open subsets
therein? The answer is provided by the important notion of homeomorphism
that we introduce in the next definition.

The key idea is to build on Theorem 3.2.9 and observe that one way to
identify two sets and the underlying open sets is to have a bijection that is
continuous and whose inverse is also continuous.

Definition 3.4.1. — Let (X,dX), (Y,dY) be metric spaces. We say that f : X→
Y is a homeomorphism when

1. f is bijective and

2. both f and f−1 are continuous.

We say that (X,dX) and (Y,dY) are homeomorphic when there exists a home-
omorphism f : X→ Y.

The second condition means that the bijection f identifies the open sets
of (X,dX) with those of (Y,dY) by the mappings

U 7→ f(U), V 7→ f−1(V).

Note that the notion of homeomorphism makes perfect sense more gener-
ally for topological spaces.

We will drop the distance from this definition when the meaning is
clear. In general we have the motto ”Two spaces are homeomorphic when
we can deform one to the other without tearing or breaking.”

The first general example of a homeomorphism is that of an isometry.

Example 3.4.2. — Let f : (X,dX) → (Y,dY) be an isometry. Then f is a
homeomorphism. We know that f is a bijection X → Y. Moreover, f is
continuous because for all ε > 0, taking δ = ε we have dY(f(x), f(x0)) < ε

for dX(x, x0) < δ because dY(f(x), f(x0)) = dX(x, x0). For the same reason,
f−1 is also continuous.

Remark 3.4.3. — Note that “being isometric” and “being homeomorphic”
define two different equivalence relations on the collection of all metric
spaces, and by Example 3.4.2, each equivalence class of the former is con-
tained in an equivalence class of the latter.
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Let’s now see examples of homeomorphisms that are not isometries.

Example 3.4.4. — 1. The intervals [0, 1] and [0, 2] with the distance d1 are
homeomorphic. f : X → Y given by f(x) = 2x is a homeomorphism
with inverse g(y) = 1

2y.

2. The interval (−π/2,π/2) and R with the distance d1 are homeomor-
phic. A possible homeomorphism is given by tan : (−π/2,π/2) → R

with continuous inverse given by arctan.

3. The sets X = {f ∈ C[0, 1] : 0 6 f(x) 6 1} and Y = {f ∈ C[0, 1] :

0 6 f(x) 6 2} are homeomorphic with the distance dL∞ . A possible
homeomorphism is φ : X→ Y given by φ(f) = 2f.

4. If we look at letters, O and D with the usual distance induced from
R2 we could prove that they are homeomorphic while I and P are not!
(We will later explain how this can be proved).

5. The interval [0, 1] and R (both with the distance d1) are not homeo-
morphic. Also, the intervals [0, 1] and (0, 1) (still with the distance d1)
are not homeomorphic. We will see later why.

Example 3.4.5. — Consider Id : (X,d) → (X,d ′) where Id is the identity
function i.e. defined by Id(x) = x. Then Id is a homeomorphism ⇐⇒ d

and d ′ are equivalent.
Indeed, for all open sets U ⊆ X, Id−1(U) = U so we see that U is open

in (X,d) ⇐⇒ U is open in (X,d ′).

Establishing whether two spaces (topological or metric) are or not home-
omorphic is, in general, a difficult problem. One of the main points of the
mathematical field of topology is precisely to give methods to settle this.
One way to establish that two topological spaces are not homeomorphic,
is to try to find some property that is preserved under homeomorphisms.
Such properties are called topological properties. In the following chapter we
will study the notion of compactness and we will prove that it is a topologi-
cal property.
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Important notions to learn from this section:

1. The notion of a Cauchy sequence and that of a complete metric space.

2. Completeness of the metric space (Rn,dp).

3. Theorem 4.1.6 relating completeness and closedness.

4. The notions of limit inferior and limit superior for a sequence.

5. The notion of a contraction, and the Contraction Mapping Theorem
(CMT).

6. The notion of a compact metric space.

7. Compactness is preserved by continuous surjections. The Min/Max
property of compact metric spaces. Compactness is a topological
property.

8. Theorem 4.4.11 characterising the compact subsets of (Rn,dp).

9. Compact implies complete.

In Year 1 (MATH101) you defined the set of real numbers using one of
their axiomatic characterisations. The idea was to observe that R is a field
(it has two operations that satisfy certain properties), it is ordered (it has an
ordering that respects the operations in the field), and it is complete. The last
property was stated without proof. An important fact that was highlighted
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but not proven is the fact that the set of real numbers is unique with respect
to the above three properties. (More precisely, if F is any other complete
ordered field, there exists a unique field isomorphism R → F (defined in
MATH247), and that field isomorphism preserves the order).

Among those listed above, the property that we here want to generalise
is completeness. For the set of real numbers, that property was stated as
follows.

Theorem 4.0.1 (Fact 1.3 in MATH101). — Let ∅ 6= A ⊆ R. Then the set of
upper bounds

Ub(A) = {x ∈ R : x > a for all a ∈ A}

is either empty or it has a minimum called the supremum of A, denoted by
sup(A). (If Ub(A) is empty we also say that sup(A) = +∞).

Similarly, the set of lower bounds

Lb(A) := {x ∈ R : x 6 a for all a ∈ A}

is either empty or it has a maximum called the infimum of A, denoted by inf(A).
(If Lb(A) is empty we also say that inf(A) = −∞).

The property of the real numbers that is highlighted in the above result,
and which was called completeness, makes essential use of the ordering
of real numbers, and as such it is not viable for generalisation to arbitrary
metric spaces. For this reason, in MATH241 we will use the word complete
for a different notion that we will introduce via the notion of Cauchy con-
vergence of sequence. When the metric space is R with the distance d1, this
new notion is equivalent to the property stated in Theorem 4.0.1.

After having introduced the notion of completeness, we discuss and
prove the main result that makes essential use of that property, which is
the celebrated contraction mapping theorem (CMT). The CMT will be used in
later chapters to prove some other important results in real analysis.

The last part of this chapter is devoted to the notion of compactness for
metric spaces. Compactness is formally a generalisation of finiteness for a
metric space. It is important theoretically, because it allows to distinguish
metric spaces that are not homeomorphic (when one is compact and the
other isn’t). It is also crucial in applications, because of the Min/Max prop-
erty (which generalises the analogue property seen in Year 1).
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4.1. Cauchy convergence and completeness

The main idea is to define an alternative notion of convergence of sequences.
One unsatisfactory issue in the notion of convergence of a sequence (xn) in
a metric space X is that one has to introduce an extra ` ∈ X to make sense
of it. Can we make a notion of convergence that only refers to the elements
of (xn) without first having to guess a potential limit `? One possible way
is given by the notion of Cauchy convergence.

Definition 4.1.1. — Let (X,d) be a metric space and let (xn) be a sequence
of X. We say that it is Cauchy convergent (or just Cauchy) if for every ε > 0
there exists an N ∈N such that d(xn, xm) < ε for every n,m > N.

The following shows that Cauchy convergence generalises the notion
of convergence that we introduced in Chapter 2.

Lemma 4.1.2. — If (xn) is convergent, then (xn) is Cauchy.

Proof. Since (xn) is convergent, there exists ` such that for every ε ′ > 0
there exists an N ∈ N such that d(xn, `) < ε ′ for all n > N. Take ε ′ = ε/2.
Then for every n,m > N, we have

d(xn, xm) 6 d(xn, `) + d(xm, `) < ε/2 + ε/2 = ε.

At this point, one may wonder if all Cauchy sequences converge. The
answer, in general, is negative.

Example 4.1.3. — 1. Let (X,d) = (Q,d1). Then π = 3.1415 . . . /∈ Q. Let
(xn) be the decimal approximation of π to the n-th digit. Then (xn) is
Cauchy.

This follows since |xn − xm| < 2
10N for m,n > N. Therefore, for ev-

ery ε > 0, we can find N > 0 such that 2
10N < ε which shows that

|xn − xm| < ε. This sequence however does not converge in (Q,d1)

(because it converges to the irrational number π in (R,d1)).

2. Let (X,d) = ((0, 1),d1), (xn) = ( 1
n+1). Then (xn) is Cauchy but it does

not converge (in ((0, 1),d1)). Let’s prove this more conceptually than
in the previous example.
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First of all (xn) converges to 0 in (R,d1), of which ((0, 1),d1) is a sub-
space metric. Therefore the sequence (xn) is Cauchy, because it con-
verges in (R,d1). However (xn) does not converge in (0, 1) because
it converges to 0 in (R,d1), and because limits in metric spaces are
unique.

We call complete the metric spaces for which the answer is always(= for
all sequences) affirmative:

Definition 4.1.4. — A metric space (X,d) is complete if every Cauchy se-
quence converges.

Example 4.1.3 shows that the metric spaces (Q,d1) and ((0, 1),d1) are
not complete. The main example of a complete metric space is (R,d1), a
proof will soon be given in Theorem 4.2.1.8.

Here are some further important examples of complete metric spaces
that we will consider in this module.

Example 4.1.5. — 1. For all n,p, the metric space (Rn,dp) is complete.
(A proof is given in Corollary 4.2.2.3).

2. The space of continuous functions (C[0, 1],dL∞) is complete. (A proof
will be given in Chapter 5, but you may already assume this fact in
this week’s exercises).

3. The space of sequences (`p,dp) is complete (we will not prove this).

4. Every discrete metric space (X,ddiscr) is complete.

Proof. (That every discrete metric space is complete.) To see the last exam-
ple is complete, let (xn) be a Cauchy sequence in X. Take ε = 1/2, so there
exists an N such that ddiscr(xn, xm) < 1/2 for every n,m > N, so (xn) is
constant after N, so (xn) converges.

Assuming these results for now, here is a way to produce lots of other
examples of complete metric spaces.

Theorem 4.1.6. — Let (X,d) be a metric space, and A ⊆ X be a subset, and let
dA be the distance induced by d on the subset A.

1. If (A,dA) is complete, then A is closed in (X,dX).

2. If (X,d) is complete andA is closed in (X,d), then (A,dA) is also complete.
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Note that this implies that if (X,d) is complete and Y ⊂ X, then (Y,d) is
complete if and only if Y ⊂ X is closed.

Proof. Both assertions follow as an application of Lemma 3.1.8.
For the first assertion, let (an) be a sequence of A which converges to

` ∈ X. By Lemma 3.1.8, to prove that A is closed it is enough to prove that
` ∈ A. Then since (an) converges in X, it is Cauchy in X, and therefore it is
Cauchy in A too. Then since (A,dA) is complete, (an) converges to some
` ′ ∈ A. Finally, by uniqueness of the limit, we must have that ` = ` ′ ∈ A.

For the second assertion, suppose A is closed. Let (an) be a Cauchy
sequence of A. Then (an) is Cauchy in X too. Since (X,d) is complete, (an)
converges to some ` ∈ X. Then since A is closed, by Lemma 3.1.8 the limit `
must belong to A. Therefore (an) is convergent in A and so A is complete.

We observe that two metric spaces may be homeomorphic, one of them
be complete, but not the other.

Remark 4.1.7. — We have already observed that ((−π/2,π/2),d1)︸ ︷︷ ︸
Not complete

is home-

omorphic to (R,d1)︸ ︷︷ ︸
Complete

, from which we see that completeness really depends

on the metric, not only on the underlying topology (the collection of open
subsets).

It is natural at this point to ask whether it is possible for two equiva-
lent metrics on the same set to have different Cauchy sequences. (Note that
from the previous Chapter we know that this does not happen for conver-
gent sequences!).

Exercise 4.1.8. — Give an example of a set X and two equivalent distances
d,d ′ and a sequence (xn) that is Cauchy for d but not for d ′. (Hint: combine
the example of Remark 4.1.7 with the 4th part of Exercise 1.6.11).

Exercise 4.1.9. — (To be compared with Lemma 3.3.5 and with Exercise 3.3.11).
Let X be a set and d,d ′ be two distances on X such that there exists

C > 0 such that
d(x,y) 6 C · d ′(x,y)

for all x,y ∈ X. Prove that if (xn) is a Cauchy sequence in (X,d ′), then (xn)

is also Cauchy in (X,d).
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We conclude this section by giving an important example of a non com-
plete metric space. (The details of the example should be considered as
EXTRA material.)

Example 4.1.10. — The space C[0, 1] is not complete when endowed with
the distance dL1 . Indeed, consider the sequence of functions

fn(x) =


0 for 0 6 x 6 n

2(2+n)

(n+ 2)x− n
2 for n

2(2+n) 6 x 6 1
2

1 for x > 1
2

Hint: draw a picture of fn. The value of each function fn is 1 after 1/2, and
it is zero before 1

2 − 1
n+1 = n

2(n+2) , and in between it is the unique line that
connects the points (

n

2(n+ 2)
, 0
)

and
(

1
2

, 1
)

.

In particular, each fn is a continuous function [0, 1]→ R. We will show that
(fn) is a Cauchy sequence, and that it does not converge in C[0, 1]. The idea
is that if (fn) converged in dL1 , its limit should be the discontinuous function

g(x) =

0 when 0 6 x < 1
2

1 when 1
2 6 x 6 1.

To prove that (fn) is Cauchy we observe that the sequence

I(n) =

∫ 1

0
|fn(x)| dx =

1
2
+

∫ 1
2

n
2(n+2)

fn(x) dx =
1
2
+

1
2(n+ 2)

=
n+ 3
2n+ 4

of integrals is Cauchy in (R,d1). This implies that (fn) is Cauchy because
fn(x) 6 fm(x) for all x ∈ [0, 1].

Finally, we prove that the sequence (fn) does not converge in (C[0, 1],dL1).
If it did, let g be that limit. We will find a contradiction by proving that g
must equal 0 on the interval [0, 1/2] and that it must equal 1 on the interval
[1/2, 1].

Indeed, since g is the limit of (fn), we have

dL1(fn,g) =
∫ 1

2

0
|g(x) − fn(x)| dx+

∫ 1

1
2

|g(x) − fn(x)| dx→ 0
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Because both summands are > 0, each of them converges to zero.
For the second summand, this implies∫ 1

1
2

|g(x) − 1| dx < ε

for all ε > 0, which implies ∫ 1

1
2

|g(x) − 1| dx = 0,

which implies that g equals 1 on the interval [ 1
2 , 1] because of Lemma 1.4.5

and the assumption that g is continuous.
A similar result is achieved for the first summand. Observe that on

C[0, 1/2] (the set of continuous functions from [0, 1/2] to R) we also have
a distance dL1 defined as for C[0, 1]. Then by restricting fn and g to the
interval [0, 1/2] we obtain elements of C[0, 1/2], and by uniqueness of the
limit in (C[0, 1/2],dL1), and the fact that∫ 1

2

0
|g(x) − fn(x)| dx→ 0

we deduce that g equals 0 on the interval [0, 1/2], a contradiction.

4.2. Completeness of RN

This section is entirely devoted to the proof that (RN,dp) is a complete
metric space.

4.2.1. The case N = 1 — The one-dimensional case essentially follows
from material seen in Year 1, which we now review in detail. (We will rely
on 4.0.1, which we will assume without proof).

Remark 4.2.1.1. — Suppose (xn) is an increasing sequence of real numbers
(i.e. xn 6 xn+1 for all n). Then

1. (xn) not bounded above⇒ lim
n→∞xn = +∞

2. (xn) bounded above⇒ ∃` ∈ R : lim
n→∞xn = `

Similarly, if (yn) is a decreasing sequence of real numbers, then if it is not
bounded below, it has limit −∞, and if it is bounded below, it has a finite
limit.
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Proof. Let A = {xn,n ∈N} and assume that A is bounded above (the proof
of the unbounded case is similar and left to the reader). Define ` := sup(A).
We want to show that ` = lim

n→∞xn.
First of all, note that xn 6 ` for all n since the supremum is an upper

bound. Since further to this the supremum is the minimum among all upper
bounds, for every ε > 0, there exists an N ∈N such that xN > `− ε. Then,
since (xn) is increasing, for every n > N we have that

`− ε < xN 6 xn 6 `

so in particular lim
n→∞xn = `.

While all monotonic real sequences (i.e. increasing or decreasing) always
admit a limit (which may be ±∞), the situation for an arbitrary real (An)
is more complicated, as this is very often not the case. This motivates the
following definitions:

Definition 4.2.1.2. — We define the limit superior and the limit inferior of a
sequence of real numbers (An) respectively to be

lim sup
n→∞ (An) :=


lim
m→∞

(
sup
n>m

An

)
when (An) is bounded above, and

+∞ otherwise;

lim inf
n→∞ (An) :=

 lim
m→∞

(
inf
n>m

An

)
when (An) is bounded below, and

−∞ otherwise.

Remark 4.2.1.3. — By Remark 4.2.1.1, these limits always exist (although
they might possibly equal ±∞).

Indeed, let (An) be a real sequence and define

Bm = sup
n>m

An,

then since
Bm = sup

n>m
An > sup

n>m+1
An = Bm+1,

we see that (Bm) is a decreasing sequence and hence it has a limit. (Note
that if the sequence (An) is not bounded above, then the sequence (Bm) is
a sequence of elements in R∪ {+∞}).

(A similar discussion holds for the lim inf).
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Example 4.2.1.4. — Let (An) = ((−1)nn+2
n+1). The first terms of this se-

quence are: (
2,−

3
2

,
4
3

,−
5
4

,
6
5

,−
7
6

. . .
)

Let (Bm) = sup
n>m

(An), so that

(Bm) =

(
2,

4
3

,
4
3

,
6
5

,
6
5

, . . .
)

and so we see that lim
m→∞Bm = 1. Similarly, if we set Cm = inf

n>m
(An), we

see that lim
m→∞Cm = −1. We can see this more directly if we notice that for

all k ∈N we have A2k+1 = −2k+3
2k+2 −→ −1, whilst A2k = 2k+2

2k+1 −→ +1.

Remark 4.2.1.5. — Since the infimum of a subset of R is always less than
or equal to the supremum of that set, we have on taking limits that

lim sup
n→∞ (An) > lim inf

n→∞ (An)

Lemma 4.2.1.6. — Let (An) be a sequence of real numbers, and let ` ∈ R.
Then the following are equivalent:

1. (An) converges to `.

2. lim inf
n→∞ (An) = lim sup

n→∞ (An) = `

Proof. Suppose that (An) converges to `. Then for every ε > 0 we find an
N such that `− ε < An < `+ ε for every n > N. We deduce then

⇒ `− ε 6 sup
n>N

An 6 `+ ε.

This means that

lim sup(An) = `.

A similar argument shows that lim inf(An) = `.
Conversely, suppose that lim inf

n→∞ (An) = lim sup
n→∞ (An) = `. Then for

every ε > 0 we find N1,N2 so that

`− ε < sup
n>N1

An < `+ ε

`− ε < inf
n>N2

An < `+ ε
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From this, for N > max(N1,N2) we obtain the chain of inequalities

`− ε < inf
n>N

An 6 sup
n>N

An < `+ ε,

in particular
`− ε < An < `+ ε

for all n > N, hence the real sequence (An) converges to ` as claimed.

Exercise 4.2.1.7. — Show the inequalities

lim sup
n→∞ (An +Bn) 6 lim sup

n→∞ (An) + lim sup
n→∞ (Bn).

lim inf
n→∞ (An +Bn) > lim inf

n→∞ (An) + lim inf
n→∞ (Bn).

(Once one knows that there are such inequalities, to remember which
way they go one can use the example (An) = ((−1)n) and (Bn) = ((−1)n+1).)

Hint: use the inequality max(a1 +b1,a2 +b2) 6 max(a1,a2)+max(b1,b2).
Taking limits gives the same inequality for sup, and taking limits again
gives the inequality for lim sup. (The inequality for the limit inferior fol-
lows similarly).

We deduce completeness of (R,d1) by exploiting the properties of lim inf
and lim sup (which is assuming Theorem 4.0.1 behind the scenes).

Theorem 4.2.1.8. — The metric space (R,d1) is complete.

Proof. Let (an) be a Cauchy sequence of (R,d1). Let

A = lim inf
n→∞ (an), A = lim sup

n→∞ (an).

By Remark 4.2.1.5 we have that A 6 A. To prove that they are equal, we
aim to prove the inequality A 6 A + ε for all ε > 0.

Since (an) is Cauchy, for any ε > 0, we can find an N such that

−ε/2 < an − am < ε/2

for every n,m > N. On taking lim sup
n→∞ we deduce the inequalities

−ε/2 6 A− am 6 ε/2 (4.1)

for all m > N. Now by the definition of lim inf, there is some k > N such
that

ak 6 A + ε/2
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By combining this with the second inequality of (4.1), we find

A 6 ak + ε/2 6 A + ε,

which concludes our proof.

4.2.2. The case N > 1 — Let us now move to the proof that (RN,dp) is
complete. (Here we use N for the exponent RN to avoid confusions with
the index n of a sequence (xn)n∈N!) The idea of the proof is to reduce to
the case when N = 1 by proving that a sequence converges (resp. it is
Cauchy) in RN if and only if all its coordinates converge (resp. are Cauchy
sequences) in R.

Lemma 4.2.2.1. — A sequence (xn) of (RN,dp) converges to ` ∈ RN if and
only if for all j = 1, . . . ,N, the sequence of j-th coordinates (xj,n) of (xn)
converges to the j-th coordinate `j of ` in (R,d1).

Proof. By Corollaries 3.3.2 and 3.3.7 we may assume p =∞.

=⇒ For all ε > 0, the definition of convergence of (xn)→ ` gives M such
that

max
j=1,...,N

|xj,n − `j| < ε

for all n > M. This implies that each coordinate

|xj,n − `j| < ε

for all n > M.

⇐= The fact that each coordinate (xj,n) converges to `j gives, for all ε > 0
aMj such that

|xj,n − `j| < ε

for all n > Mj. TakingM to be the maximum ofM1, . . . ,MN we have

max
j=1,...,N

|xj,n − `j| < ε

for all n > M.

A similar argument holds for Cauchy sequences.
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Lemma 4.2.2.2. — A sequence (xn) of (RN,dp) is Cauchy if and only if for
all j = 1, . . . ,N, the sequence of j-th coordinates (xj,n) is Cauchy in (R,d1).

For the proof of this Lemma we cannot argue exactly as in the proof
of the previous one. Indeed, it is in general false that equivalent metrics
always preserve the Cauchy property of a sequence (this was already ob-
served in Exercise 4.1.8).

Proof. From the inequalities d∞(x,y) 6 dp(x,y) and dp(x,y) 6 N ·d∞(x,y)
combined with Exercise 4.1.9 we deduce that a sequence is Cauchy with the
distance dp if and only if it is Cauchy with the distance d∞.

Therefore, we can assume p = ∞. The proof is then very similar to the
proof of 4.2.2.1, and we leave it as an exercise.

Corollary 4.2.2.3. — The metric space (RN,dp) is complete for all N and
p > 1 (including p =∞).

Proof. Assume (xn) is Cauchy. Then each coordinate sequence (xj,n) is
Cauchy for j = 1, . . . ,N by Lemma 4.2.2.2. By Theorem 4.2.1.8 each such
sequence admits a limit `j in (R,d1). We conclude that (xn) converges to
` = (`1, . . . , `N) by applying Lemma 4.2.2.1.

4.3. The Contraction Mapping Theorem (CMT)

The main reason why completeness is important in this module is that it
is the essential ingredient in the existence part of the proof of the Contrac-
tion Mapping Theorem, the main result on metric spaces that we discuss in
MATH241.

Definition 4.3.1. — Let X be a set, f : X → X a function and let p ∈ X. We
say that p is a fixed point of f if f(p) = p.

An interesting, general problem in mathematics is to decide if a given f
has a unique fixed point.

Example 4.3.2. — 1. Let X = R. Assume f is continuous, and satisfies
f(a) < a, f(b) > b for some a,b ∈ R. Then f : R → R has a fixed
point in [a,b] by the Intermediate Value Theorem (IVT) from Year 1.
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2. Suppose f : Rn → Rn is linear, so that f(x) = Ax for some n × n
matrix A. Then x = 0 is a fixed point. Suppose we have another fixed
point x 6= 0.

Ax = x ⇐⇒ Ax− x = 0

⇐⇒ (A− Id)x = 0

Therefore 0 is the unique fixed point ⇐⇒ (A− Id) is invertible ⇐⇒
the matrix A does not have 1 as an eigenvalue.

Also, the set of fixed points has the structure of a vector space, indeed
they form the eigenspaces of the eigenvalue 1.

Definition 4.3.3. — Let (X,d) be a metric space. Then f : X → X is a con-
traction when there exists 0 6 L < 1 such that d(f(x), f(y)) 6 L · d(x,y) for
every x,y ∈ X.

Theorem 4.3.4 (Contraction Mapping Theorem). — Suppose (X,d) is a com-
plete metric space. If f : (X,d)→ (X,d) is a contraction, then f has a unique fixed
point.

Remark 4.3.5. — The definition of a contraction cannot be relaxed to

d(f(x), (f(y)) < d(x,y)

for all x,y ∈ X, or the existence of a fixed point in Theorem 4.3.4 would in
general be lost.

To illustrate this, consider f : [1,∞) → [1,∞) given by f(x) = x + 1
x .

Then

|f(x) − f(y)| =

∣∣∣∣x+ 1
x
− y−

1
y

∣∣∣∣ = ∣∣∣∣x2y+ y− xy2 − x

xy

∣∣∣∣
=

∣∣∣∣(x− y)(xy− 1)
xy

∣∣∣∣
= |x− y|

∣∣∣∣xy− 1
xy

∣∣∣∣ .
Then clearly

∣∣∣xy−1
xy

∣∣∣ < 1 whenever xy > 1, so f satisifes our proposed con-
dition. However f is not a contraction as it clearly has no fixed points,
despite [1,∞) being complete with the distance d1.

As an example, we see how one can verify that f is a contraction on the
intervals in the real line.
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Lemma 4.3.6 (Criterion for a real function of one real variable to be a con-
traction.). — Let f : [a,b] → [a,b] be differentiable with |f ′(x)| 6 L < 1 for
every x ∈ [a,b]. Then f is a contraction when [a,b] is endowed with the distance
d1.

With the same hypotheses as above, if there is a point x0 ∈ [a,b] such
that |f ′(x0)| > 1 then we can show that f is not a contraction by taking two
points sufficiently close to x0.

Proof. By the Mean Value Theorem, for every x1, x2 ∈ [a,b] there exists
ξ ∈ (x1, x2) such that

|f(x2) − f(x1)| =
∣∣f ′(ξ)∣∣ · |x2 − x1| 6 L · |x2 − x1| .

To prove the Contraction Mapping Theorem, we will first prove that a
contraction is a continuous function.

Lemma 4.3.7. — Suppose f : (X,d)→ (X,d) is a contraction. Then f is continu-
ous.

Proof. For every ε > 0, if L = 0 in the above definition, this implies that f is
constant, hence continuous. If, on the other hand, we have 0 < L < 1, we
take δ = ε

L . Then

d(f(x), f(y)) 6 L · d(x,y) < L · ε
L
= ε

whenever d(x,y) < δ.

Note that the proof above never uses that 0 6 L < 1.

Proof of Theorem 4.3.4. Let (X,d) be a complete metric space, and suppose
f : X→ X is a contraction.

1. Uniqueness. Suppose that x,y are fixed by f. Then

d(x,y) = d(f(x), f(y)) 6 L · d(x,y)

where L ∈ [0, 1). This implies d(x,y) = 0 ⇐⇒ x = y.
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2. For every x ∈ X, we define a sequence

(xn) = (x, f(x), f(f(x)), . . . , fn(x), . . .)

whose first element is x, and whose next element is iteratively ob-
tained by applying f to the previous element.

Then (xn) is Cauchy. To show this, we start by computing the dis-
tance of two consecutive elements of the sequence:

d(xn+1, xn) = d(f(xn), f(xn−1)) 6 L · d(xn, xn−1)

6 Ln · d(x1, x0).

Now assume that n > m. Then

d(xn, xm) 6 d(xn, xn−1) + d(xn−1, xn−2) + . . . + d(xm+1, xm)

=

n−m−1∑
i=0

d(xm+i+1, xm+i)

6 d(x1, x0) ·
n−m−1∑
i=0

Lm+i

= d(x1, x0) · Lm ·
1 − Ln−m

1 − L
6 d(x1, x0) ·

Lm

1 − L

so for every ε > 0, we take an N such that

d(x1, x0)

1 − L
· LN < ε,

which we can do since 0 6 L < 1. By the previous calculation, we
have

d(xn, xm) < ε

for all n,m > N, which means that (xn) is Cauchy.

3. If p is the limit of the above sequence (xn) (whose existence is guaran-
teed because (X,d) is complete and (xn) is Cauchy), then p is a fixed
point of f. This follows because

p = lim
n→∞(xn) = lim

n→∞(xn+1) = lim
n→∞f(xn) = f

(
lim
n→∞xn

)
= f(p),

where the penultimate equality follows because f is continuous.
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Note that the proof of uniqueness doesn’t need the metric space to be
complete. In other words, if f is a contraction, we have proved that f has
at most one fixed point (it may have none when the metric space is not
complete).

Example 4.3.8. — 1. Let f : [0, 3/2] → [0, 3/2] be given by f(x) = x2+3
4 . f

is a contraction: f ′(x) = 1
2x, so |f ′(x)| 6 3/4. [0, 3/2] is complete with

the d1 distance. Therefore f has a unique fixed point.

In this example we can even calculate that fixed point explicitly, and
independently of the CMT: f(x) = x⇒ x2 − 4x+ 3 = 0 which has the
unique solution x = 1 in the interval [0, 3/2].

2. Let φ : (C[0, 1],dL∞)→ (C[0, 1],dL∞) be given by

φ(f)(x) = x+
1
5

(
f(x) + f

(
ex − 1
e− 1

))
.

We ask again the question of whether φ admits a unique fixed point.
In this case we will be able to answer the question by applying the
CMT, and I wouldn’t know how to find the fixed point explicitly as
in the previous example.

The metric space (C[0, 1],dL∞) is complete, so by the CMT, to show
that φ has a fixed point, it is enough to show that it is a contraction.
Note that the image of the function x 7→ ex−1

e−1 for x ∈ [0, 1] is indeed
[0, 1]. Then

dL∞(φ(f),φ(g)) = 1
5

max
∣∣∣∣f(x) + f(ex − 1

e− 1

)
− g(x) − g

(
ex − 1
e− 1

)∣∣∣∣
6

1
5

max |f(x) − g(x)|+
1
5

max
∣∣∣∣f(ex − 1

e− 1

)
− g

(
ex − 1
e− 1

)∣∣∣∣
=

1
5
dL∞(f,g) + 1

5
dL∞(f,g)

=
2
5
dL∞(f,g)

which shows that φ is indeed a contraction as claimed.

We conclude with one remark, where we observe that the fixed point of
Theorem 4.3.4 can be effectively approximated.

Remark 4.3.9. — In the proof of Theorem 4.3.4, we showed the inequality

d(xn, xm) 6 d(x1, x0) ·
Lm

1 − L
, (4.2)
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for n > m, where xk was defined by fk(x) for all k ∈ N and x was an
arbitrary point of X.

From (4.2) and taking the limit for n → ∞, we deduce the following
estimate

d(`, xm) 6 d(x1, x0) ·
Lm

1 − L
, (4.3)

(to take the limit, here we used the fact that for all y ∈ X, the function
dy : X→ R defined by dy(p) = d(y,p) is continuous from (X,d) to (R,d1)).

We may use (4.3) to approximate the fixed point ` of Theorem 4.3.4, in
the following sense.

For any ε > 0, we may construct a value y whose distance from the
fixed point ` of f is smaller than ε, by picking an arbitrary point x ∈ X, and
then takingm large enough so that

d(f(x), x) · L
m

1 − L
< ε.

(It is clear that this can be done, for we can make Lm arbitrarily small, since
0 6 L < 1). Then by (4.3), the value y = fm(x) has the property that the
distance d(y, `) is smaller than ε.

4.4. Compactness

In this section we introduce the notion of compactness for metric spaces.
This is a topological property for metric spaces, i.e. if two metric spaces are
homeomorphic, one is compact if and only if the other is. Compactness is
key in applications because of its min/max property: a continuous function
from a compact metric space to R always admits a maximum and a mini-
mum. (This generalises the Min/Max Theorem for functions f : [a,b] → R

from Year 1).
Note that the standard notion of compactness introduced in many text-

books looks different (and more abstract) than the one we introduced here,
and it makes use of open covers. The notion we introduced here makes
use of subsequences, and it is sometimes referred to as sequential compact-
ness. (However, one could prove that the two notions of compactness are
equivalent for metric spaces).

Definition 4.4.1. — Let (xn)n∈N be a sequence in X. Let (nk)k∈N be a
strictly increasing sequence of natural numbers. We say that (xnk)k∈N is a
subsequence of (xn)n∈N.
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For example, a subsequence of

(0, 1, 4, 9, 16, 25, . . .n2, . . .) (4.4)

is

(0, 4, 16, 36, . . . , (2k)2, . . .)

(where nk = 2k) and also

(4, 9, 16, 25, . . . , (k+ 2)2, . . .)

(where nk = k+ 2), but not

(1, 0, 9, 4, 25, 16, . . .).

Also, a subsequence must be a sequence, so the vector

(0, 1, 4, 9) ∈ R4

is also not a subsequence of the sequence defined in (4.4).
Note that if a sequence (xn) of a metric space (X,d) converges to some

limit `, then all of its subsequences also converge to the same `.

Definition 4.4.2. — We say that a metric space (X,d) is compact if for every
sequence of X there exists a subsequence that converges in (X,d).

Informally, we say that a metric space is compact if every sequence ad-
mits a convergent subsequence.

Remark 4.4.3. — In many textbooks this property is referred to as sequential
compactness, and it could be defined more generally for topological spaces.
In fact, for metric spaces, we have that (X,d) is sequentially compact ⇐⇒
it is compact (in a sense that uses open covers, which we won’t discuss here).
Since in this module we only discuss sequential compactness, we will sim-
ply call it compactness throughout.

Example 4.4.4. — Let (X,d) be a metric space and assume that X has finitely
many elements. Then X is compact. If this wasn’t the case, then each of the
elements of X would be visited only finitely many times by the sequence.
This would imply that the set of indices of the sequence is finite, but that
set of indices is the set of natural numbers, which isn’t finite!
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Proposition 4.4.5. — If X ⊆ (R,d1) is such that (X,d1) is compact, then X has
a maximum and a minimum.

Proof. We first prove that X is bounded. Assume it is not, then for every
R > 0 there exists x ∈ X such that |x| > R. Take R = 1. Then we can find
an element x1 ∈ X such that |x1| > 1 by the above. Then take R = |x1|+ 1,
and find x2 ∈ X such that |x2| > |x1|+ 1. Continuing this way, we construct
a sequence (xn) in X such that |xn+1| > |xn|+ 1.

The sequence (xn) has no subsequence that is Cauchy. Indeed, the dis-
tance between two consecutive elements of the sequence (xn) is by con-
struction always> 1. Because a convergent sequence is Cauchy, we deduce
that (xn) has no convergent subsequence, contradicting the hypothesis that
(X,d1) is compact.

Because X is bounded, the supremum sup(X) is not +∞. Then take a
sequence (xn) defined by the property that sup(X) − 1

n 6 xn 6 sup(X).
Then (xn) converges to sup(X) in (R,d1). Since (X,d1) is compact, some
subsequence of (xn) must converge to sup(X) in (X,d1). By the uniqueness
of the limit, we deduce that sup(X) ∈ X. (A similar argument works for the
infimum/minimum.)

We will deduce the two most important results on compactness from
the following Key Theorem.

Theorem 4.4.6 (Key Result). — If f : (X,dX) → (Y,dY) is a continuous func-
tion, if (X,dX) is compact, then so is (f(X),dY).

Proof. Take an arbitrary sequence (yn) of f(X), so that there is a sequence
(xn) of X such that f(xn) = (yn) for every n. Since X is compact, we can
find a subsequence (xnk) which converges to, say, `. Then, since f is contin-
uous, f(xnk)→ f(`) implies that ynk → f(`).

We have therefore found a convergent subsequence of (yn), which proves
that f(X) is compact.

Corollary 4.4.7. — (Compactness is a topological property) If (X,dX) is homeo-
morphic to (Y,dY), then

(X,dX) is compact ⇐⇒ (Y,dY) is compact.

The analogue statement where the word “compact” is replaced with the
word “complete” is false, as illustrated in Remark 4.1.7.
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Proof. Suppose f : X → Y is a homeomorphism. Then f is both continuous
and surjective. Since X is compact, so is f(X) = Y. Then use the same
argument for f−1.

By combining Proposition 4.4.5 with 4.4.6 we deduce the following im-
portant result.

Corollary 4.4.8. — Suppose (X,dX) is compact, and that f : X → R is continu-
ous (with the usual distance d1 on R). Then f has a minimum and a maximum.

Proof. The subset f(X) ⊆ R is compact, so by Proposition 4.4.5 it has a
minimum y and a maximum y. Since f is surjective onto f(X), we can pick
elements x and xwhich map to y and y respectively.

4.4.9. Compactness for subsets of RN — Here we discuss a characterisa-
tion of the compact subsets of RN. Let’s start by addressing the question of
what metric subspaces of (R,d1) are compact. This will follow from some
Year 1 material. We start with a preliminary (general) lemma.

Lemma 4.4.10. — Let (X,d) be a metric space. Suppose that C ⊆ X and (C,d)
is compact. Then C is a closed subset of (X,d).

Proof. IfCwere not closed, we could find a sequence (xn) that converges to
` ∈ X\C. Then, because of the uniqueness of the limit, we have disproved
that every subsequence of (xn) converges in C. This means that C is not
compact.

Theorem 4.4.11 (Bolzano-Weierstrass Theorem). — Let X ⊆ (R,d1). Then
the following are equivalent:

1. (X,d1) is compact.

2. X is closed and bounded.

Proof. In Year 1 (MATH101) you have seen a result with the same name,
which stated that every bounded real sequence admits a convergent subse-
quence (Corollary 3.21 of MATH101 notes).

Assume X is closed and bounded in (R,d1). Let (xn) be a sequence in
X. Then that sequence is bounded, so by the Year 1 Bolzano-Weierstrass
theorem, (xn) admits a convergent subsequence. Because X is closed, the
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limit of that subsequence must be an element of X. This proves that (X,d1)

is compact.
The other implication follows from Proposition 4.4.5 and Lemma 4.4.10.

Theorem 4.4.12 (Multidimensional Bolzano-Weierstrass). — The compact
subsets of (RN,dp) are the closed and bounded subsets.

We have already seen the case where N = 1, though we currently
have not yet defined what bounded means in the multidimensional con-
text. Here it comes:

Definition 4.4.13. — We say a subset X ⊆ RN is bounded if there exists an
R > 0 such that X ⊆ BR(0).

Proof of Theorem 4.4.12. Assume X ⊆ (RN,dp) is closed and bounded. Take
a sequence (xk)k∈N of X. We need to find a subsequence (xkm)m∈N that
converges in (RN,dp). Since X is closed, this sequence will then also con-
verge in X.

Begin by taking the bounded sequence (x1,k) in (R,d1) of the first co-
ordinates of the sequence (xk). Then by applying the Year 1 version of
Bolzano-Weierstrass (Corollary 3.21 of MATH101 notes) there is a conver-
gent subsequence (x1,km1

). Now do the same again, restricting to the first
two coordinates to get a sequence (x2,km1

). Again by Year 1 Bolzano-Weierstrass
this admits a convergent subsequence (x2,km2

). Repeating this procedureN
times produces a subsequence of (xn) whose coordinates all converge as se-
quences in (R,d1), and we conclude that this subsequence then converges
in (RN,dp) by applying Lemma 4.2.2.1. Furthermore, that subsequence
converges in (X,dp) because X is closed in (RN,dp).

If X is not closed we know by 4.4.10 that it cannot be compact. So as-
sume X is not bounded. The argument will be very similar to the one we
gave for the N = 1 case.

Because X 6⊆ B1(0) there exists x1 /∈ B1(0) such that x1 ∈ X.
Now take BR2(0) for R2 = dp(x1, 0) + 1. Then X 6⊆ BR2(0). Then we

find x2 /∈ BR2(0) so that x2 ∈ X. Take R3 = dp(x2, 0) + 1 and continue
this process. Doing this, we find a sequence (xn) whose distance of any
two consecutive elements is larger than 1. That sequence cannot admit any
Cauchy subsequence, hence it cannot admit any convergent subsequence.
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Here is an example of compact/noncompact spaces.

Example 4.4.14. — By the multidimensional Bolzano-Weierstrass theorem,
closed balls in (RN,dp) are compact, and open balls are not.

The above characterisation of compact subsets does not generalise to
other metric spaces, as we show in the following example.

Remark 4.4.15. — The closed ball B1((0, 0, . . . , )) ⊆ (`p,dp) of radius 1 cen-
tered at the origin is not compact. Take the sequence (xk)k∈N in `p defined
by

x1 =(xn,1)n∈N = (1, 0, 0, . . .)

x2 =(xn,2)n∈N = (0, 1, 0, . . .)
...

xk =(xn,k)n∈N = (0, . . . , 0, 1, 0, . . .)

· · · .
where we take the sequences to be zero everywhere except for a 1 in the
k-th entry. Then d∞(xk1 , xk2) = 1 whenever k1 6= k2, and

dp(xk1 , xk2) =
p√

2.

Therefore any subsequence (xkm)m∈N satisfies the property that for all
N > 0, there are n1 6= n2 such that the distance of two elements of the
subsequence equals p

√
2. We deduce that no subsequence is Cauchy, hence

no subsequence converges.

Note that we have never formally defined what it means for a subset
of a spaces of sequences `p for some p to be bounded. In analogy with the
definition of a bounded subset of Rn we could define a subset of `p to be
bounded when it is contained in some open ball centred at the zero func-
tion. The previous example shows that, with this definition of bounded-
ness, there are closed and bounded subsets of (`p,dp) that fail to be com-
pact. We will see in Chapter 5 that the same occurs for (C[0, 1],dL∞).

4.4.16. Compactness and completeness — We conclude the chapter by
briefly discussing the relation between compactness and completeness.

Lemma 4.4.17. — Let (X,d) be a metric space. Suppose (xn) is a Cauchy se-
quence and a subsequence (xnk) converges to `. Then (xn) converges to `.
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Proof. Since (xn) is Cauchy, for every ε > 0 we can find an N1 such that
d(xn, xm) < ε/2 for every m,n > N1. Also, since (xnk) converges to `, for
every ε > 0 we can find a K such that d(xnk , `) < ε/2 for every k > K. Take
a k1 > K such that nk1 > N1 (this can be done because, by definition of a
subsequence, the sequence nk is strictly increasing). Then take N = nk1 . It
follows that

d(xn, `) 6 d(xn, xnk1
) + d(xnk1

, `) < ε/2 + ε/2 = ε

for every n > N.

Here comes the relation between compact and complete.

Corollary 4.4.18. — A compact metric space is complete.

The converse implication is clearly false. For example, we have seen
that (R,d1) is complete, but we also know it isn’t compact (for example by
the Bolzano-Weierstrass theorem).

Proof. A Cauchy sequence in a compact metric space has a convergent sub-
sequence by definition of compactness. By Lemma 4.4.17, the original Cauchy
sequence must also converge.
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5.

Spaces of continuous functions

Important notions to learn from this section:

1. The notion of uniform and pointwise convergence.

2. The space of bounded real functions is complete with dL∞ .

3. The subspace of continuous real functions on a compact metric space
is complete.

4. Uniform convergence respects continuity and integrals/derivatives.

5. The radius of convergence of a power series and the fundamental
Theorem 5.2.3.

6. The Peano-Picard theorem on local existence/uniqueness for Cauchy
problems, and the strategy of its proof with the CMT.

In this Chapter we explore more details of the theory developed in the
previous chapters for the particular case when X is the space of contin-
uous functions endowed with its maximum (or equivalently supremum)
distance. The main example to keep in mind is that of X = C[0, 1].

The key notion here is that of uniform convergence, which we will make
sense of for sets B(Y) of bounded functions Y → R, for Y an arbitrary set.
We will prove that the metric space of bounded functions (with the metric
of the supremum) is complete. We then deduce that if (Y,d) is a compact
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metric space, then the space C(Y) of continuous functions Y → R with the
metric of the supremum is also complete. We prove this by showing that
C(Y) ⊆ B(Y) is a closed subset, namely by proving that the uniform limit
of continuous funcions must be continuous.

Uniform convergence has other benefits (as opposed to pointwise con-
vergence, a more rudimental notion that we also introduce for comparison):
namely it behaves well with respect to integration and derivation. (In order
to develop this theory more generally, one would have to have the notion of
a measure on the set Y. Therefore we will limit ourselves to Y = [a,b]. The
interested student will find more details on the general case in MATH365
- Measure Theory). We will use this theory to prove the esistence of the
(uniform) limit of power series.

After we have scratched the surface of the theory of spaces of continu-
ous functions, we discuss an application of the contraction mapping theo-
rem and of the fact that (C[a,b],dL∞) is complete, which is the local exis-
tence and uniqueness theorem for Cauchy problems. A Cauchy problem is
an ordinary differential equation in 1 (real) variable, paired with an initial
value (the initial value assignment is there to give the problem a chance of
having a finite number of solutions, and possibly exactly 1).

5.1. Uniform convergence

We start by defining the notions of uniform and pointwise convergence for
sequences of functions to the real numbers

Definition 5.1.1. — Let X be a set and let f : X → R be a real-valued func-
tion, and (fn : X→ R) be a sequence of real-valued functions.

1. We say that (fn)n∈N converges pointwise to f if limn→∞ fn(x) = f(x)

for every point x ∈ X. In other words, (fn) is pointwise convergent to
f if for every x ∈ X, for every ε > 0 there exists Nx ∈N such that

|fn(x) − f(x)| < ε

for every n > Nx. (With the notation, we are emphasising that the
number Nx may depend on x ∈ X!)

2. We say that (fn)n∈N converges uniformly to f if for every ε > 0 there
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5.1 Uniform convergence

exists N ∈N such that

sup
x∈X

|fn(x) − f(x)| < ε

for every n > N.

The difference between the two notions is that, in the former, we are
allowed to choose N depending on the point x, whereas in the latter the
number N is chosen independently (or uniformly) for all x.

Remark 5.1.2. — If a sequence (fn) converges uniformly to f, in particular
it converges pointwise to f. The converse is not true as we show in the
following example.

Example 5.1.3. — Let (X,dX) be the metric space ([0, 1],d1) and let us con-
sider the sequence of functions (fn) defined by

fn : [0, 1]→ R

x 7→ xn

Let f : [0, 1]→ R be given by

f(x) =

0 for all 0 6 x < 1

1 when x = 1.

Then, the sequence (fn) converges pointwise to f. Indeed, fix x ∈ [0, 1]. If
x ∈ [0, 1) we have that fn(x) = xn which converges to f(x) = 0. If x = 1
instead, fn(x) = 1 for every n, hence fn(x) converges to f(x) = 1.

However, for all n ∈N, we have

sup
x∈[0,1]

|fn(x) − f(x)| = 1

(exercise) so (fn) does not converge uniformly to f.
A quicker argument to reach the same conclusion is given in Remark 5.1.15.

Exercise 5.1.4. — Let (fn : X → R) be a sequence of real-valued functions
and f : X → R a real-valued function. Determine if (fn) converges uni-
formly or pointwise to f in the following cases.

1. Let X = [0, 1], let fn(x) = nx
n+1 and f(x) = x for every x ∈ X.
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2. Let X = [−1, 1], let fn(x) = x2n for every x ∈ X and let

f(x) =

1 for x = ±1

0 for |x| < 1

Exercise 5.1.5. — Let X = [0, 1] and fn(x) =
∑n
k=0 x

k, for every x ∈
X. Does the sequence (fn) converge pointwise/uniformly to some limit
functionf : X→ R?

One important theoretical difference between uniform and pointwise
convergence is that the former preserves continuity (as we shall soon see in
this section), whereas the latter in general does not.

In MATH241 we have learned that often, when the word “converge” is
used, there is often a metric space lurking behind the scenes, and that word
means that there is some sequence that converge in that metric space. The
notion of pointwise convergence does not resonate with this idea — we will
see in a Section B problem that pointwise convergence is a notion of con-
vergence for sequence of functions that does not come from convergence in
any metric space.

Uniform convergence is more in line with the general theory of metric
spaces. It can be rephrased as convergence in the following metric space.

Definition 5.1.6. — We define the set of bounded real-valued functions on a
set X

B(X) := bound(X, R) := {f : X→ R : f bounded}

(Where bounded for a function f : X→ R means that there exists R > 0 such
that |f(x)| < R for all x ∈ X.) For every two functions f,g ∈ B(X), we define

dL∞(f,g) = sup
x∈X

|f(x) − g(x).|

Arguing as in Chapter 1, it is not difficult to see that dL∞ defines a distance
on the set B(X).

It immediately follows from the definitions that a sequence (fn) in B(X)
converges uniformly to f ∈ B(X) if and only if fn converges in B(X) to f,
with respect to the distance dL∞ that we have just introduced. We really
need the functions to be bounded, for otherwise the supremum might be
infinity!

Page 98



5.1 Uniform convergence

Example 5.1.7. — Let X = [0, 1] and let f : X→ R be given by

x 7→

 1
x for all x ∈ (0, 1],

0 for x = 0

and g : X→ R be the constant function at 0. Then, we have

sup
x∈(0,1)

|f(x) − g(x)| =∞.

When X itself comes with some distance d, we can also define the fol-
lowing spaces of functions.

Definition 5.1.8. — Let (X,d) be a metric space. Define the set of continu-
ouus functions

C(X) := {f : X→ R : f continuous}

and the subset of bounded and continuous functions

BC(X) := {f : X→ R : f bounded and continuous}.

Remark 5.1.9. — For d a fixed distance on X, the space of functions BC(X)

is a subset of B(X), and we can endow it with the subspace distance dL∞ as
seen in Chapter 1.

In general, the function dL∞ does not define a distance on the set C(X)
because supx∈X |f(x)| might equal infinity. However, when (X,d) is com-
pact, we have seen that a continuous function f : X→ R from a compact set
always has maximum and minimum. We deduce that if (X,d) is compact
(for example, when X = [0, 1]), we have the equality C(X) = BC(X).

The central result of this section is that the metric space (B(X),dL∞) is
always complete. This follows, with some work, from the fact that (R,d1)

is complete.

Theorem 5.1.10. — The metric space of bounded functions on X:

(B(X),dL∞)
is complete.

Proof. Let (fn)n∈N be a Cauchy sequence in B(X): for every ε > 0 there
exists N ′ ∈N such that

dL∞(fn, fm) < ε
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for everym,n > N ′.
Fix a point x ∈ X and consider the sequence (fn(x))n∈N in (R,d1). Be-

cause the sequence (fn) is Cauchy, so is the sequence fn(x), and because
(R,d1) is complete we deduce that the sequence (fn(x)) converges. There-
fore, we can define a function f : X→ R by the formula

f(x) = lim
n→∞ fn(x).

To conclude the proof, we need to show that f is bounded, and that it is
the uniform limit of the sequence (fn).

The function f is bounded by the following argument. Because (fn) is
Cauchy, for ε = 1/2 we can findM such that

|fn(x) − fm(x)| <
1
2

for all x ∈ X and all n,m >M. In particular, we deduce by taking the limit
n→∞ that

|f(x) − fM(x)| 6
1
2

for all x. We deduce that, for all x ∈ X, we have

|f(x)| 6 |f(x) − fM(x)|+ |fM(x)| 6
1
2
+ dL∞(fM, 0)

(for 0 ∈ C[0, 1] the zero function), which implies that f is bounded.
Now we prove that f is actually the uniform limit of the sequence (fn).

Recall that, because the sequence (fn) is Cauchy, for all ε > 0 there exists
N ′ ∈N such that

|fn(x) − fm(x)| < ε

for all x ∈ X and for all n,m > N ′. Fix x and n and take the limit for
m→∞, then we get

lim
m→∞ |fn(x) − fm(x)| =

∣∣∣fn(x) − lim
m→∞ fm(x)

∣∣∣
= |fn(x) − f(x)|

Therefore, for every ε > 0 we can take N = N ′, and then deduce that

|fn(x) − f(x)| 6 ε

for every n > N and for every x ∈ X. This shows that (fn) converges
uniformly to f.
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When the set X is endowed with a distance d, we can make sense of
BC(X), the set of functions f : X → R that are bounded and continuous. It
turns out that the subset BC(X) is closed into B(X), as follows from the next
result.

Theorem 5.1.11. — Let (fn : (X,d) → R)n∈N be a sequence of continuous
functions and let f : X→ R. If (fn) converges uniformly to f, then f is continuous.

Proof. Let x0 ∈ X. For every ε > 0, since (fn) converges uniformly to f we
can find N ∈N such that

|fN(x) − f(x)| <
ε

3

for every x ∈ X. Moreover, since fN is continuous at x0, we can find δ > 0
such that

|fN(x) − fN(x0)| <
ε

3
for every xwith d(x, x0) < δ. For such a δ, we have:

|f(x) − f(x0)| 6 |f(x) − fN(x)|+ |fN(x) − fN(x0)|+ |fN(x0) − f(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

For every x such that d(x, x0) < δ. This proves that f is continuous at x0 ∈
X.

By applying the sequential characterisation of closed subsets, we imme-
diately deduce the following.

Corollary 5.1.12. — Let (X,d) be a metric space. Then BC(X) is a closed subset
of (B(X),dL∞).
Proof. Let (fn) be a sequence in BC(X) and assume that fn converges with
the distance dL∞ to f ∈ B(X). Then, fn converges uniformly to f and by
Theorem 5.1.11 we deduce that f ∈ BC(X).

Remember that from Chapter 4 we know that a subset of a complete
metric space is complete if and only if the corresponding subset is closed.
We deduce that:

Corollary 5.1.13. — The metric space (BC(X),dL∞) is complete.
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We conclude our reasoning by observing that if (X,d) is a compact metric
space, then by the Min/Max Theorem we deduce that BC(X) = C(X) and
therefore

Corollary 5.1.14. — If (X,d) is a compact metric space, then the metric space
(C(X),dL∞) is complete.

From this we in particular deduce that the metric space (C[a,b],dL∞) of
continuous functions f : [a,b] → R (introduced in Chapter 1 for a = 0 and
b = 1) is a complete metric space, as was claimed in Chapter 4.

Remark 5.1.15. — Let fn : [0, 1]→ R be the sequence defined as

fn(x) = x
n.

Then, there is no subsequence (fnk)k∈N of (fn) which is a Cauchy sequence
in (C[0, 1],dL∞), which implies that the unit (closed) ball BdL

∞
1 (0) centered

at the zero function 0 in C[0, 1] is not compact.
Indeed, if there existed a subsequence (fnk)k∈N which is Cauchy, then

since (C[0, 1],dL∞) is complete, there would be a function f ∈ C[0, 1] contin-
uous such that (fnk) converges uniformly to f. But (fn) converges point-
wise to the function with value 1 on x = 1 and 0 everywhere else, which is
not continuous and gives a contradiction.

Remark 5.1.16. — More generally, using the same reasoning of the previ-
ous remark, we can show that any sequence (fn)n∈N of continuous func-
tions on [0, 1] that converges pointwise to a discontinuous function, does
not have any convergent subsequence in dL∞ .

5.1.17. Results on uniform convergence — Here we go back to the the-
ory of continuous functions on closed and bounded intervals [a,b] of the
real line and explore other benefits of the notions of uniform convergence.
(What we need of [a,b] that is not available on an arbitrary set is the notion
of a measure, which allows us to discuss integrals of functions. The notion
of a measure and of integrals of functions will be generalised to an arbitrary
set X in MATH365).

We have seen that uniform convergence preserves continuity, and we
will see that it also preserves integrals and (with some care) also deriva-
tives.
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Theorem 5.1.18. — Let fn : [a,b] → R define a sequence (fn) of continuous
function and assume that (fn) converges uniformly to a function f : [a,b] → R.
Then, for all points x1, x2 ∈ [a,b] the following equality holds:

lim
n→∞

∫x2

x1

fn(x) dx =

∫x2

x1

f(x) dx

Here is an example to show that pointwise convergence would not al-
low us to obtain the same result.

Example 5.1.19. — Let [a,b] = [0, 1] and consider the sequence of functions:

fn(x) =

0 when x > 1
n or x = 0

n−n2x when 0 < x < 1
n

notice that fn is not continuous. Then, we have
∫1

0 fn(x) = 1
2 . However,

fn converges pointwise to the function f that is constantly equal to 0. In
particular, we have that the limit

lim
n→∞

∫ 1

0
fn(x) dx =

1
2
6= 0 =

∫ 1

0
0 dx.

This example shows that in the case of pointwise convergence we can
not swap integration and taking the limit, while in the case of uniform con-
vergence we can.

Proof of Theorem 5.1.18. By Lemma 2.2.7 all we need to prove is that for ev-
ery two points x1 and x2 in R the integral function

I : (C[x1, x2],dL∞)→ (R,d1)

is continuous.
Fix ε > 0 and take δ = ε

|x1−x2|
, then∫x2

x1

|f(x) − g(x)|dx 6
∫x2

x1

max |f(x) − g(x)|dx

< δ |x1 − x2| = ε

when dL∞(f,g) < δ. Then,

lim
n→∞ I(fn) = I

(
lim
n→∞ fn

)
= I(f).
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In order to obtain the result that uniform convergence preserves the
derivatives, we are going to need the following crucial result from Year 1.

Theorem 5.1.20 (Fundamental Theorem of Calculus — Theorem 6.9 and
discussion thereafter in the notes of MATH101.). — Let φ : [a,b] → R be a
continuous function.

1. Let us consider the function F : [a,b]→ R given by

F(x) =

∫x
a

φ(t) dt

Then F is differentible and F ′ = φ.

2. AssumeG : [a,b]→ R is a differentiable function, such thatG ′ = φ. Then,
the following equality holds∫b

a

φ(t) dt = G(b) −G(a).

Here comes the last result of this section.

Theorem 5.1.21. — Let fn : [a,b] → R define a sequence of differentiable func-
tions and assume that (fn) converges uniformly to a function f : [a,b] → R and
that (f ′n) is continuous and that it converges uniformly to a function g : [a,b] →
R (that a posteriori is also continuous). Then, f is differentiable and g = f ′.

Proof of Theorem 5.1.21. We have that

f(x) = lim
n→∞ fn(x)

= lim
n→∞

(
fn(a) +

∫x
a

f ′n(t) dt

)
= f(a) +

∫x
a

g(t) dt

Where the second equality follows from the second part of Theorem 5.1.20,
and the third follows from Theorem 5.1.18.

Moreover, applying the first part of Theorem 5.1.20 and thanks to the
continuity of g, we obtain that f ′(x) = g(x) for all x.

The following exercise is to observe that in the previous theorem, the
uniform convergence of the derivatives is not automatically guaranteed
from the uniform convergence of the original sequence of functions.
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Exercise 5.1.22. — Consider the sequence of functions fn : [a,b] → R de-
fined by

fn(x) =
sin(nx)√

n
.

Does (fn) converge uniformly? If so, what is the derivative of the uniform
limit? Does (f ′n) converge uniformly?

5.2. Power series

The goal of this section is to give a precise meaning to the infinite sum

∞∑
n=0

anx
n (5.1)

as a function for assigned coefficients

a0,a1, . . . ,an, . . . ∈ R,

and then to study its properties (continuity, its integral and its derivative).
(Formula (5.1) describes a power series centered at 0. We will only discuss
this case. The case when the power series is centered at an arbitrary x0 ∈ R

is obtained by replacing the monomial xn with (x− x0)
n).

In order to do so, we will apply the results of the previous section, on
uniform convergence, to the sequence SN : R→ R of functions defined by

SN(x) =

N∑
n=0

anx
n,

and called the partial (=up to N) sums of the initial power series. (Each of
them is a degree N polynomial function of 1 real variable).

Definition 5.2.1. — Let (an)n∈N be a sequence of real numbers. The radius
of convergence of the corresponding power series

∑∞
n=0 anx

n is the nonneg-
ative real number

R =
1

lim supn∈N
n
√

|an|

where by convention we set

R =

∞ if lim supn∈N
n
√

|an| = 0

0 if lim supn∈N
n
√

|an| =∞
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Definition 5.2.2. — Let (an)n∈ be a sequence of real numbers. For every
x ∈ R and for every N ∈ N we define the N-th partial sum of the power
series

∑∞
n=0 anx

n defined by (an) at x as the real number:

SN(x) =

N∑
n=0

anx
n

Varying x this gives a real-valued function SN : R→ R.

Theorem 5.2.3. — Assume that the radius of convergence R of the power series∑∞
n=0 anx

n is greater than 0. Then, for all 0 < δ < R, the sequence of functions
(SN)N∈N is a Cauchy sequence in the metric space (C[−δ, δ],dL∞).

From this we immediately deduce:

Corollary 5.2.4. — Let (an)n∈N be a sequence of real numbers and assume that
the radius of convergence R of of the corresponding power series

∑∞
n=0 anx

n is
larger than 0. Then the power series defines a continuous function

S : (−R,R)→ R.

Proof. The first part follows from (C[−δ, δ],dL∞) being complete and the
fact that the uniform limit of the continuous functions SN is continuous.

The fact that S is defined on (−R,R) follows because the latter is the
union of all the intervals [−δ, δ] for δ < R.

This allows us to make sense of the expression (5.1) as a function.

Definition 5.2.5. — Let (an)n∈N be a sequence of real numbers with ra-
dius of convergence R > 0. Then, we define the sum of the power series∑∞
n=0 anx

n, as the uniform limit S of the sequence (SN)N∈N. For every
point x ∈ (−R,R) we write

∞∑
n=0

anx
n =: S(x)

for the value of S at x.

The fact that a power series is defined as the uniform limit of the partial
sums, allows to differentiate and integrate them in a simple way.

Corollary 5.2.6. — Let
∑∞
n=0 anx

n be a power series with radius of convergence
R > 0 and let S : (−R,R) → R be the sum of the corresponding power series.
Then:
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1. The function S is differentiable and ((n+ 1)an+1) defines a power series
with radius of convergence R such that

S ′(x) =

∞∑
n=0

(n+ 1)an+1x
n

2. If F is a function F : (−R,R)→ R such that F ′(x) = S(x), then

F(x) =

∞∑
n=0

an

n+ 1
xn+1 + c

for some constant c ∈ R. (In particular, F is the sum of a power series with
radius of convergence R.)

Proof. 1. For every N ∈ N, let SN be the N-th partial sum of the power
series, which is a uniformly convergent function in C[−δ, δ] for every
δ < R. We have that the derivative S ′N is defined by

S ′N(x) =

N∑
n=1

nanx
n−1

and its radius of convergence is given by

1
lim sup n

√
n |an|

=
1

lim sup n
√

|an|

since the limit of n
√
n for n → ∞ equals 1. Therefore, the sequence

(S ′N)N∈N is also uniformly convergent on the interval [−δ, δ]. Apply-
ing Theorem 5.1.21 we conclude that

S ′ = lim
N→∞S ′N

in the distance dL∞ , which proves our result by the definition of the
sum of the power series

∑∞
n=0(n+ 1)an+1x

n.

2. This can be proven similarly, this time applying Theorem 5.1.18.

Example 5.2.7. — Let us compute the sum:

∞∑
n=1

nxn−1 =

∞∑
n=1

d

dx
(xn) =

d

dx

∞∑
n=1

xn =
d

dx

(
1

1 − x

)
=

1
(1 − x)2

which has radius of convergence equal to 1.

Page 107



Spaces of continuous functions

5.2.8. — In order to prove the main result Theorem 5.2.3, we first take a
brief detour to review some convergence criteria for series of nonnegative
real numbers from Year 1.

Proposition 5.2.9 (Ratio test). — Let (an)n∈N be a sequence of nonnegative
real numbers.

1. If limn→∞ an+1
an

< 1, then the series
∑∞
n=0 an converges.

2. If limn→∞ an+1
an

> 1, then the series
∑∞
n=0 an diverges

Proposition 5.2.10 (Root test). — Let (an)n∈N be a sequence of nonnegative
real numbers.

1. If limn→∞ n
√
an < 1, then the series

∑∞
n=0 an converges.

2. If limn→∞ n
√
an > 1, then the series

∑∞
n=0 an diverges.

Notice that the if the limit involved in the ratio test (respectively the
root test) is 1 or if it does not exist, then the test is inconclusive.

Example 5.2.11. — Let 0 < t < 1 be a fixed real number and consider the
series

1 + 2t+ t2 + 2t3 + t4 + 2t5 + . . .

Then the series converges to 1
1−t2 +

2x
1−t2 <∞ (as the sum of two geometric

series).
One can check that the ratio test is inconclusive (the ratio of two con-

secutive elements oscillates between t/2 and 2t), while the root test gives

lim
n→∞ n

√
2tn = lim

n→∞ n
√
tn = t < 1

which confirms that the series converges.

Here is a proposition that motivates our reasoning and shows that the
root test is more powerful than the ratio test. We won’t prove this proposi-
tion as we won’t need it, but the interested reader is encouraged to attempt
it as an exercise.

Proposition 5.2.12. — Let (an) be a sequence of nonnegative real numbers.
Then, the following inequalities hold

lim inf
an+1

an
6 lim inf n

√
an 6 lim sup n

√
an 6 lim sup

an+1

an
.
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Remark 5.2.13. — In particular, the proposition implies that the root test is
more effective than the ratio test. For instance, the inequalities of Proposi-
tion 5.2.12 applied to the example discussed in Example 5.2.11 become

x

2
6 x 6 x 6 2

The following result gives the only test that we will use to prove our
convergence result for power series. The result is an improvement of the
ratio and of the root test that we described above.

Proposition 5.2.14. — (Enhanced root test) Let (an)n∈N be a sequence of non-
negative real numbers.

1. If lim supn→∞ n
√
an < 1, then the series

∑∞
n=0 an converges.

2. If lim supn→∞ n
√
an > 1, then the series

∑∞
n=0 an diverges.

Example 5.2.15. — If we consider the series
∑∞
n=1

1
n , the series diverges

while the (enhanced) root test is inconclusive. On the other hand, the series∑∞
n=1

1
n2 converges while, again, the (enhanced) root test is inconclusive.

Proof of Proposition 5.2.14. Assume that lim sup n
√
an > 1 and take a subse-

quence (ank)k∈N such that nk
√
ank > 1 for every k ∈N. Then

∞∑
n=0

an >
∞∑
k=0

ank >
∞∑
k=0

1 =∞
On the other hand, assume that lim sup n

√
an < L for some L < 1. We

now show that the sequence (bm) defined by bm =
∑m
n=0 an is a Cauchy

sequence in (R,d1). Since (R,d1) is complete, this implies that bm con-
verges.

Because lim sup n
√
an < L, we can find M such that n

√
an 6 L for every

n > M. For every ε > 0 take N > M such that LN

1−L < ε. Assume that
m1 < m2, then we have

|bm2 − bm1 | =

∣∣∣∣∣∣
m2∑

n=m1+1

an

∣∣∣∣∣∣ 6
m2∑

n=m1+1

|an| 6
∞∑
n=N

Ln =
LN

1 − L
< ε

For all N < m1 < m2. This shows that the sequence (bm) is Cauchy, and
therefore it concludes our proof.

We are now ready to prove Theorem 5.2.3.

Page 109



Spaces of continuous functions

Proof of Theorem 5.2.3. We start by noting that, if we fix indicesm1,m2 such
thatm1 < m2, we have

|Sm2(x) − Sm1(x)| 6
m2∑

n=m1+1

|an| |x|
n

6
m2∑

n=m1+1

|an| δ
n

Following the proof of Proposition 5.2.14 (part 1), we fix L with δ < L < R.
Then, for every ε > 0, by the definition of lim sup there exists N such that

n
√

|an| 6
1
L

for all n > N, and such that (
δ
L

)N
1 − δ

L

< ε.

Then, for allm1,m2 such that N < m1 < m2 we have:

|Sm2(x) − Sm1(x)| 6
∞∑
n=N

|an| δ
n

6
∞∑
n=N

(
δ

L

)n

=

(
δ
L

)N
1 − δ

L

< ε

This concludes the proof that the sequence (SN) is Cauchy in C[−δ, δ].

Remark 5.2.16. — One may wonder if the radius of convergence R that
we defined above is optimal. Or, more precisely, if it is possible that the
sequence (SN(x)) converges for some x with |x| > R (notation as above).
This is not possible. Indeed, for such x, by the definition of Rwe have

lim sup
n→∞ n

√
|anxn| > 1

so the sequence anxn does not tend to zero, therefore the series
∞∑
n=0

anx
n

does not converge by the basic criterion of convergence for series.
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Exercise 5.2.17. — Determine the radius of convergence of the power series∑∞
n=0 n

2−nxn.

Exercise 5.2.18. — Let x 6= 0 and consider the series

S(x) =

∞∑
n=0

(
−n

x2 − 1
x

)n
.

Find an appropriate change of variable to write s as the sum of a power
series, and determine its radius of convergence. On what subset of R is the
limit function well-defined?

Exercise 5.2.19. — Determine the radius of convergence of the power series∑∞
n=0 anx

n, where

an :=

2n n even

3n n odd.

Then determine the full interval of convergence of the power series (i.e.
study if the power series converges at the points x = ±R).

5.3. Differential equations

The goal of this section is to show how to use the contraction mapping theo-
rem as a tool for finding existence and uniqueness results for local solutions
to some particular examples of differential equations.

We will show that a first order ordinary differential equation paired
with an initial value (which we will call a ”Cauchy problem”) is equivalent
to an integral equation (called Volterra integral equation). Then we will see
that the integral equation can be formulated as a fixed point problem for
some function between spaces of continuous functions.

We start by providing some examples of differential equations, and by
highlighting that typically a differential equation does not have a unique
solution.

Example 5.3.1. — Let us consider the following two differential equations

y ′(x) = x2

y ′(x) = y(x).

(5.2)

(5.3)

We can solve each equation in an elementary way. For the first one, we are
looking for a function whose derivative is f(x) = x2. For the second case,
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we are looking for functions with the property that their derivatives equals
the function itself.

A solution of (5.2) is given by

y(x) =
x3

3
+ c

for c ∈ R an arbitrary real number. A solution of (5.3) is given by

y(x) = cex,

for c an arbitrary real number.
Note that in neither example is the solution unique.

A Cauchy problem consists of an (ordinary) differential equation in 1
variable paired up with the constraint that the unknown function must
equal a certain value when calculated at a given point.

Example 5.3.2. — Let’s start from the second example above, and let’s pair
it up with the constraint that a solution ymust equal y0 at the point x0 (for
some choice of real numbers x0 and y0):{

y ′(x) = y(x)

y(x0) = y0,

then we have a unique solution given by

y(x) = y0e
x−x0 .

Consider then the following system of equations{
y ′(x) = f(x)

y(x0) = y0,

where the first line is Equation (5.2). This system has a unique solution
given by

y(x) = y0 +

∫x
x0

f(t) dt,

The examples above show that it is unreasonable to expect a differential
equation to have a unique solution, but one has better chances when the
differential equation is paired up with some additional constraint. This
idea is enshrined in the following notion.
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Definition 5.3.3. — A Cauchy Problem (CP) is the data of a point (x0,y0) ∈
R2, of a pair a,b ∈ R>0 ∪ {+∞}, and of a continuous function

f : [x0 − a, x0 + a]× [y0 − b,y0 + b]→ R. (5.4)

A local solution to that Cauchy problem is a differentiable function

y : [x0 −α, x0 +α]→ [y0 − b,y0 + b]

for some 0 < α 6 a such that{
y ′(x) = f(x,y(x)) ∀x ∈ [x0 −α, x0 +α]

y(x0) = y0.

A local solution y is said to be a (global) solution if one can take α = a.

Our aim in this section is to prove that, under certain hypotheses, a
Cauchy problem admits a unique local solution. This will be proven by ap-
plying the Contraction Mapping Theorem from the previous chapter. Here
is the result that we will prove.

Theorem 5.3.4 (Peano–Picard). — Let (x0,y0,a,b, f) be the defining data of
a Cauchy problem. If ∂f∂y exists and it is continuous on some open subset of R2

containing (x0,y0), then the Cauchy problemy ′(x) = f(x,y(x)),

y(x0) = y0

admits a unique local solution.

(This result follows immediately from a more precise and detailed ver-
sion below, called Theorem 5.3.7).
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The idea is to reformulate the Cauchy problem so that solutions corre-
spond to fixed points of a certain contraction from a space of continuous
functions to itself. This is achieved essentially by means of the Fundamen-
tal Theorem of Calculus, Theorem 5.1.20. The reformulation of a Cauchy
problem is in terms of an integral equation, known under the name of
Volterra Integral Equation (VIE), the integral equation

y(x) = y0 +

∫x
x0

f(t,y(t))dt

with unknown y. The data to define the VIE problem are exactly the same
used to define a CP, but the solutions are defined differently (although we
will eventually prove that the solutions for CP and VIE defined by the same
data coincide).

Definition 5.3.5. — Assume that (x0,y0,a,b, f) are the data that define a
Cauchy problem (see 5.3.3).

A local solution to the Volterra Integral Equation that they define is a
continuous function

y : [x0 −α, x0 +α]→ [y0 − b,y0 + b]

for some α ∈ (0,a], such that

y(x) = y0 +

∫x
x0

f(t,y(t)) dt (5.5)

for every x ∈ [x0 −α, x0 +α].
(And the local solution is said to be global if α can be chosen to equal a).

We now apply the fundamental theorem of calculus to prove that local
solutions to the CP correspond bijectively to local solutions to the VIE.

Lemma 5.3.6. — Let (x0,y0,a,b, f) be the defining data of a CP, and let

y : [x0 −α, x0 +α]→ [y0 − b,y0 + b]

be a function, for some α ∈ (0,a]. Then, y is a local solution to the CP if and only
if y is a local solution to the VIE defined by the same data.

Proof. Assume that y is a solution to the Cauchy problem. Then we have

y0 +

∫x
x0

f(t,y(t))dt = y0 +

∫x
x0

y ′(t)dt

= y0 + [y(t)]xx0

= y0 + y(x) − y(x0)

= y(x),
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where in the first and the last equality we used the fact that y is a local
solution for the Cauchy problem. In the second equality we applied the
second part of the Fundamental Theorem of Calculus 5.1.20.

Conversely, assume that y satisfies the Volterra Integral Equation, then
by the first part of the Fundamental Theorem of Calculus the function

y(x) = y0 +

∫x
x0

f(t,y(t))dt

is differentiable, and its derivative y ′(x) is given by f(x,y(x)). Because∫x0
x0

= 0, we deduce that y(x0) = y0.

Observe that a solution to the VIE (5.5) is naturally the fixed point of
the function that maps y to the function defined by

y0 +

∫x
x0

f(t,y(t)) dt.

Let us define carefully the metric space (of functions) and the function
that this is the fixed point of.

For a given Cauchy problem, define the set

X = {y : [x0 −α, x0 +α]→ [y0 −b,y0 +b],y is continuous} ⊆ C[x0 −α, x0 +α]

for some α ∈ (0,a]. Then, we define a function

F : X→ X

sending a y 7→ F(y), where the latter is the defined as

F(y)(x) = y0 +

∫x
x0

f(t,y(t)) dt.

Then, finding a local solution to the Volterra integral equation is the
same as finding a fixed point of F : X→ X.

Theorem 5.3.7. — Let (x0,y0,a,b, f) be the defining data of a Cauchy problem
and assume a,b < ∞. Then, if f : R → R is differentiable with respect to its
second variable and ∂f

dy is continuous on the rectangle

R := [x0 − a, x0 + a]× [y0 − b,y0 + b],

there exists a unique local solution to the Cauchy problem.
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More precisely, if we set:

M = max
(x,y)∈R

|f(x,y)|

L = max
(x,y)∈R

∣∣∣∣ ∂f∂y(x,y)
∣∣∣∣

then for any α with

α < min
(
a,
b

M
,

1
L

)
There exists a unique local solution

y : [x0 −α, x0 +α]→ [y0 − b,y0 + b]

to the Cauchy problem.

Proof. We prove that the space (X,dL∞) is complete, that the function

F : X→ X

is well defined and that F is a contraction. Then, by the Contraction Map-
ping Theorem we can conclude that a unique solution to the Volterra in-
tegral equation exists, which is equivalent to say that the Cauchy problem
has a unique solution.

We have that X equals the closed ball centered at the constant function
y0 and of radius b, hence X is closed in (C[x0 −α, x0 +α],dL∞) (for we have
seen that all closed balls in a metric space are closed subsets). We conclude
that X is complete with the metric dL∞ from the fact that the metric space
(C[x0 −α, x0 +α],dL∞) is itself complete.

In the remainder of this proof, we will need to consider inequalities
among integrals. It will be convenient to adopt the convention∫b

a

g(t) dt = −

∫a
b

g(t) dt.

Note that we will need to compute integrals from a to b where a > b, so
that (for example), the integral of a continuous positive function will be
negative.

To show that F : X → X is well-defined, we need to prove that F(y) is
continuous and that y0 −b 6 F(y)(x) 6 y0 +b for every x ∈ [x0 −α, x0 +α].

The fact that F(y) is continuous follows from the fact that it is differ-
entiable. Indeed, by definition, and assuming that y is continuous, F(y)
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is the integral from x0 to x of a continuous function, and therefore by the
fundamental theorem of calculus F(y) is differentiable with respect to the
variable x.

In order to show that

|F(y)(x) − y0| 6 b

for every x ∈ [x0 −α, x0 +α], it is enough to pick α 6 b
M as in the statement

of the theorem, and then consider the following inequalities

|F(y)(x) − y0| =

∣∣∣∣∫x
x0

f(t,y(t))dt
∣∣∣∣

6M |x− x0|

6Mα

6 b.

To conclude the proof, we show that F is a contraction. In particular, we
will use the hypothesis of continuity of the partial derivatives.

Fix t0 ∈ [x0 − α, x0 + α] and apply the Mean Value Theorem (from
Year 1) to the differentiable function of 1 variable

f(t0,−): [y0 − b,y0 + b]→ R.

Hence for given values b1,b2 ∈ [y0 −b,y0 +b] there exists ξ ∈ (b1,b2) such
that

f(t0,b2) − f(t0,b1)

b2 − b1
=
∂f

∂y
(t0, ξ).

So, in particular
|f(t,b2) − f(t,b1)| 6 L |b2 − b1| .

Now we get

dL∞(F(y1), F(y2)) = max
x0−α6x6x0+α

∣∣∣∣∫x
x0

f(t,y1(t)) − f(t,y2(t))dt

∣∣∣∣
6 L |x− x0| · dL∞(y1,y2)

6 α · L · dL∞(y1,y2),

which concludes the proof that F is a contraction, because by our assump-
tion α · L < 1.

Since the result uses the Contraction Mapping Theorem to prove the
existence and uniqueness of a local solution, the proof of the CMT also
provides an effective way of approximating that local solution:

Page 117



Spaces of continuous functions

Remark 5.3.8. — With the notation as above, if we take any u ∈ X and
apply F, we get a sequence

u, F(u), F(F(u)), . . . , Fn(u), . . .

which is a Cauchy sequence that converges to the solution to the Cauchy
problem in the metric dL∞ .

If we want to approximate the unique local solution y on the interval
[x0 −α, x0 +α], we can use that F is a contraction of constant α · L combined
with Remark 4.3.9 to conclude that, for all differentiable u : [x0 − α, x0 +

α]→ [y0 − b,y0 + b], the inequality

dL∞(y, Fm(u)) 6 dL∞(u, F(u)) · (α · L)
m

1 −α · L

holds. Because α · L is smaller than 1, the right hand side of the above
inequality can be made arbitrarily small by takingm sufficiently large,

We would like now to give some counterexamples when the hypothesis
of the theorem fails. Note that if we keep continuity of the main defining
datum of a Cauchy problem, then the following general result (which we
are not going to prove) guarantees the existence of local solutions.

Remark 5.3.9 (Peano’s existence Theorem). — If f is a continuous function
there exists a (non necessarily unique) local solution to the corresponding
Cauchy problem. This result will not be discussed in this course.

For a counterexample we will therefore focus on the failure of unique-
ness of local solutions.

The following counterexample to uniqueness makes use of a method
known as ”solving differential equation by separation of variables” that
we have not discussed/explained in this module. The example has been
written in a way that it should be understandable even if you have not been
exposed to that method. Learning how to apply the method of separation
of variables to solve differential equations goes beyond the scopes of this
module.

Example 5.3.10. — Let us consider the Cauchy problem{
y ′(x) = 3y

2
3 (x)

y(x0) = y0
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Here the defining function f is f(x,y) = 3y
2
3 . It is independent of x and it

is continuous on R2, and its partial derivative ∂f
∂y(x,y) = 2y−

1
3 is defined

everywhere except at y = 0.

Given a point (x0,y0) in R2, if y0 6= 0 we can find a rectangle R around
(x0,y0) such that the Cauchy problem satisfies the hypothesis of Theo-
rem 5.3.7, while if y0 = 0 this is not possible.

To find explicit solutions to the Cauchy problem we first divide the dif-
ferential equation by 3y

2
3 (x) and take the integral from x0 to x, thus obtain-

ing: ∫x
x0

y ′(t)

3y
2
3 (t)

dt =

∫x
x0

1 dt = x− x0.

(NOTE: in order for this to make sense, we need to assume that y(t) is dif-
ferent from zero for t in the interval [x0, x], for otherwise the denominator
vanishes. This is OK when y(x0) 6= 0 and for x sufficiently close to x0,
because of the continuity assumption for y).

To compute the first integral, we perform the change of variables:

y(t) = z, with y ′(t)dt = dz,

and apply the integration by substitution theorem, to obtain:

∫x
x0

y ′(t)

3y
2
3 (t)

dt =

∫y(x)
y(x0)

z−
2
3

3
dz

=
[
z

1
3

]y(x)
y0

= (y(x))
1
3 − y

1
3
0 .

Therefore, we get that solutions of the Cauchy problem have the form:

y(x) =

(
x− x0 + y

1
3
0

)3

This argument proves that this is the unique local solution of the given
Cauchy problem when y(x0) = y0 6= 0.

We now analyse the case when y0 = 0. One can check that the previous
solution is still valid (by verifying that it satisfies the CP), but now the con-
stant function y(x) = 0 is also a solution! We can blend these two families
of solutions together, and deduce that for every c,d > 0 with −c < x0 < d

Page 119



Spaces of continuous functions

the function

yc,d(x) :=


0 −c 6 x 6 d

(x+ c)3 x 6 −c

(x− d)3 x > d

is a solution to the original CP! (In fact, to check this assertion it is just
enough to verify that yc,d satisfies the differential equation and the ini-
tial value condition, there is no need to understand how the solution was
found).

Therefore yc,d gives a family (parametrised by positive real numbers
c and d) of solutions and in particular, for every ε > 0 there are infinitely
many solutions on the interval [x0 −ε, x0 +ε] for the given Cauchy problem
when y0 = 0.

We conclude this section by proposing some exercises to consolidate the
understanding of the theory that we have discussed.

Exercise 5.3.11. — Consider the Cauchy problem

{
y ′(x) = cos

(
y(x)2(x− 1)

)
y(0) = 1.

1. Does it satisfy the hypotheses of Theorem 5.3.7?

2. Describe the equivalent Volterra integral equation.

Exercise 5.3.12. — Consider the Volterra integral equation given by

y(x) = 1 +

∫x
1

(
t · y(t) +

√
y(t)

)
dt

1. Describe the equivalent Cauchy problem.

2. Does it satisfy the hypotheses of Theorem 5.3.7?

Exercise 5.3.13. — Let

X =

{
y ∈ C

[
−

1
12

,
1
12

]
: y(x) ∈ [0, 2], ∀x ∈

[
−

1
12

,
1

12

]}
1. Show that (X,dL∞) is a complete metric space.
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2. Show that the function

F : C

[
−

1
12

,
1
12

]
→ C

[
−

1
12

,
1
12

]
Sending y to the function F(y) defined by the formula

F(y)(x) = 1 +

∫x
0

(
y2(t) + y(t) + t

)
dt

is well-defined.

3. Prove that F(y)(x) ∈ [0, 2] for all y ∈ X and x ∈
[
− 1

12 , 1
12

]
.

4. Prove that F defines a contraction on X.

5. Explain why the above implies the existence of a solution for the as-
sociated Cauchy problem.

Page 121



Spaces of continuous functions

Page 122



6.

Introduction to multi-variable calculus

Important notions to learn from this section:

1. Linear functions Rn → Rm and how to represent them with matrices.

2. Partial and directional derivatives. The Jacobian matrix.

3. Differentiable functions and the notion of differential.

4. All partial derivatives exist and are continuous =⇒ differentiable
=⇒ continuous.

5. The operator norm and the Chain Rule.

6. The mean value theorem (MVT) for vector-valued functions of sev-
eral variables.

This chapter will be devoted to the study of the first basic elements of
multi-variable calculus. The main theme is to understand the behaviour
of non-linear functions between higher dimensional real vector spaces Rn

and Rm in terms of linear functions, which are very well understood and
for which we have all the results from linear algebra at our disposal. The
idea is that some of the behaviour of nonlinear functions, at least locally, is
captured by their linear approximation. The need to find a linear function
that best approximates a nonlinear one leads us to introduce the concept of
differential. The philosophy of linearisation will reach its apex in the next
chapter.
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From now on we abandon the generality of arbitrary metric spaces, and
work with the usual Euclidean spaces Rn with the distance d2. (One needs
the structure of a vector space to make sense of a linear function, and we
won’t deal with infinite dimensional vector spaces, so we may as well work
fix coordinate and work directly with Rn. A similar theory could be de-
veloped from a more general standpoint in the infinite dimensional case,
by considering normed spaces that are complete, also known as Banach
spaces).

For v ∈ Rn, it will be convenient to denote by ‖v‖ := d2(v, 0) (called:
the norm of the vector v), the distance of the vector v from the origin of Rn.

6.1. A quick recap of linear algebra

We first present a recollection of basic results from linear algebra.

Definition 6.1.1. — Let f : Rn → Rm be a function, we say that f is linear if
the following properties hold:

1. For every pair of vectors (v,w) in Rn:

f(v+w) = f(v) + f(w).

2. For every vector v ∈ Rn and every constant λ ∈ R

f(λv) = λf(v).

Remark 6.1.2. — There is a natural bijection between linear functions

f : Rn → Rm

andm×nmatrices with coefficients in R. Given anm×nmatrix

A =


a11 · · · a1n

...
. . .

...
am1 · · · amn


we define a linear function LA : Rn → Rm via the rule:

LA(x1, . . . , xn) =


a11 · · · a1n

...
. . .

...
am1 · · · amn

 ·

x1

x2

. . .
xn
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where the multiplication is matrix multiplication, and all vectors are writ-
ten as column vectors.

Conversely, if f : Rn → Rm is a linear function, there exists a unique
matrix A such that LA = f. Let ej = (0, . . . , 1, . . . , 0) be the vector in Rn

with 1 in the j-th coordinate and 0 everywhere else, then the coefficient aij
of A is given by the i-th coordinate of the vector f(ej) in Rm.

Example 6.1.3. — Let f : R3 → R2 be the linear function given by the as-
signment

f(x1, x2, x3) = (2x1 − x2, x3)

Then, applying f to ej for j = 1, 2, 3 we get:

f(1, 0, 0) = (2, 0) f(0, 1, 0) = (−1, 0) f(0, 0, 1) = (0, 1).

Therefore, if we define A to be the matrix

A =

(
2 −1 0
0 0 1

)
Then, we see that LA = f.

6.1.4. — Let f : Rn → Rm an g : Rm → Rl be linear functions and let A
and B be the matrices such that f = LA and g = LB. Then, the composition
g ◦ f is a linear function as well and we have that

g ◦ f = LB·A

where · denotes the matrix multiplication. Notice thatA is anm×nmatrix
and B is an l×mmatrix, so that B ·A is an l×nmatrix.

6.1.5. — Recall that, given a linear function f : Rn → Rm associated to a
matrix A, the function f is a bijection if and only if A is invertible and the
matrix A is invertible if and only if m = n and the determinant of A is
non-zero (and this can only happen whenm = n).

We now recall the definition of the determinant of a matrix and how to
compute it. We denote by Mn,m(R) the set of n×m matrices with coeffi-
cients in R and simply by Mn(R) the set of n×nmatrices.

Definition 6.1.6. — For every n, we define the determinant function

det : Mn(R)→ R
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recursively, as follows. If n = 1 and a is a real number, we define det(a) =
a. Let n > 1 and let A be an n×nmatrix, and let us fix i ∈ {1, . . . ,n}. Then
the determinant of A is the real number:

det(A) =
n∑
j=1

(−1)i+jaij det(Aij)

Where Aij is the (n − 1) × (n − 1) matrix obtained by removing the i-th
row and the j-th column from A. One can prove that this definition does
not depend on the choice of i.

Example 6.1.7. — Let A be the four by four matrix with coefficients in R

given by:

A =


1 0 0 2
0 0 0 1
1 0 2 7
1 2 0 1


Then, choosing the second row for the first step and the first row for the
second step, we compute the determinant of A as:

det(A) =(−1)(2+4) det

1 0 0
1 0 2
1 2 0


= (−1)1+1 det

(
0 2
2 0

)
= −4

6.1.8. — We now list some properties of the determinant of a matrix. Let
n be a positive integer and let us consider the set Mn(R) of n×n matrices
with coefficients in R. First, we fix some notation, we denote by Id the
identity matrix, the diagonal matrix given by:

Id =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Moreover, if v1, . . . , vn are column vectors in Rn, we denote by (v1, . . . , vn)
the n×nmatrix with i-th column given by the entries of vi
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1. The determinant det(Id) of the identity matrix is equal to 1.

2. The determinant is a multi-linear function. Let v1, . . . , vn and w be
column vectors in Rn and let λ ∈ R, then

det(v1, . . . , vi +w, . . . , vn) = det(v1, . . . , vi, . . . , vn) + det(v1, . . . ,w, . . . , vn)

det(v1, . . . , λvi, . . . , vn) = λdet(v1, . . . , vn)

for all i ∈ {1, . . . ,n}.

3. The determinant is an alternating function. In other words, if we con-
sider a set v1, . . . , vn of vectors in Rn, the equality:

det(v1, . . . , vj, . . . , vi, . . . , vn) = −det(v1, . . . , vi, . . . , vj, . . . , vn)

holds, for every j < i. Where the second matrix is obtained by switch-
ing the i-th and the j-th column.

In fact, the three properties above are defining properties of the determi-
nant. In other words, the determinant is the unique function

Mn(R)→ R

that satisfies properties 1,2 and 3 above.

6.1.9. — We now give a geometric interpretation of the determinant. For
simplicity, we fix n = 3 and we denote by ei the column vector with 1 in
the i-th place and 0 everywhere else, for i = 1, 2, 3.

The parallelepiped in R3 spanned by the three vectors e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1) is a cube (see figure, image courtesy of Wikipedia)
with edges of length 1, hence whose volume equals 1.
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Notice that the matrix (e1, e2, e3) is the identity matrix and det(Id) = 1.
More generally, if A is an invertible matrix in M3(R) and we put

vi = Aei for i = 1, 2, 3,

then, by the multilinear property of the determinant, the absolute value
|det(A)| of the determinant ofA is equal to the volume of the parallelepiped
spanned by v1, v2 and v3 in R3, see figure (image courtesy of Wikipedia).

Moreover, the sign of the determinant is positive when A “preserves
the orientation” and negative when A “changes the orientation”, by the
alternating property of the determinant.

In particular we have that A is not invertible, hence det(A) = 0, if and
only if the columns of A are linearly dependent, which can be interpreted
geometrically by saying that the parallelepiped spanned by v1, v2 and v3 is
degenerate. In other words, the determinant of A is zero if and only if the
volume of the corresponding solid figure is 0.

What we have written here for the case n = 3 remains valid for the case
of arbitrary n, where the 3-dimensional parallelepiped is replaced by an
arbitrary n-dimensional parallelotope.

Remark 6.1.10. — We point out that, although the determinant is a mul-
tilinear function, it is not linear. In other words, if A and B are n by n
matrices and λ is a real number, we have in general that

det(λA) 6= λdet(A)

det(A+B) 6= det(A) + det(B).

Even more, the following relation occurs:

det(λA) = λn det(A)

which implies that the determinant is a linear function if and only if n = 1.
However, one can show that the determinant respects products in the

following sense:
det(A ·B) = det(A)det(B).

where · denotes the product of matrices.
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Example 6.1.11. — Let Id be the identity matrix in Mn(R) for n > 1. Then,

det(Id+ Id) = det(2 · Id) = 2n det(Id) = 2n.

On the other hand
det(Id) + det(Id) = 2.

We conclude with something that is not strictly speaking linear alge-
bra, but that still fits in this section as it describes the behaviour of linear
functions

Lemma 6.1.12. — Let L : Rn → Rm be a linear function. Then L is continuous.

Here the source and target are endowed with the standard Euclidean
distance d2.

Proof. Since the distance d∞ is equivalent to the Euclidean distance d2, we
can use the distance d∞ to prove the continuity of L.

Let A be the matrix corresponding to L, then the i-th component of
L(x1, . . . , xn) is given by

∑
j aijxj. Let us define

M := max
16i6m

∣∣∣∣∣∣
∑
j

aij

∣∣∣∣∣∣ .
We aim to prove that L is continuous at every point x in Rn. For every

ε > 0, we let δ = ε
M . Then for all y ∈ Rn satisfying the inequality

max
16j6n

∣∣yj − xj∣∣ < δ,
we have

max
16i6m

∣∣∣∣∣∣
∑
j

aij
(
yj − xj

)∣∣∣∣∣∣ 6M max
16j6n

∣∣yj − xj∣∣
6Mδ = ε

This proves continuity at x, and concludes our proof.

6.2. Differentials

We now come back to the study of more general, possibly non-linear, func-
tions f : Rn → Rm. From now on, unless otherwise stated, we will consider
all spaces Rk equipped with the Euclidean metric d2.
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The generalisation of the theory of derivatives from m = 1 to arbitrary
m > 1 is pretty straightforward. Not so the case of generalising n = 1 to
arbitrary n > 1. We will see that a function from a source of dimension
> 1 may admit all directional derivatives, yet be discontinuous! We will
then introduce a better notion to linearly approximate a function, called
the differential (or total derivative).

A function f : Rn → Rm is uniquely determined by its components

f1, . . . , fm : Rn → R

so that, for every vector x = (x1, . . . , xn) in Rn, the value of f at x is given
by the vector (f1(x), . . . , fm(x)) in Rm.

Example 6.2.1. — Let f : R3 → R3 be given by

f(x1, x2, x3) = (x2
1, sin(x2x3), ex1),

then the components of f are:

f1(x1, x2, x3) = x
2
1

f2(x1, x2, x3) = sin(x2x3)

f3(x1, x2, x3) = e
x1 .

Here is a first result that indicates that ”separating the variables in the
target space” is harmless.

Proposition 6.2.2. — Let U ⊂ Rn be a subset and f = (f1, . . . , fm) : U → Rm

be a function and let x ∈ U. Then, f is continuous at x if and only if each fi is
continuous at x, for i = 1, . . . ,m.

An ε− δ proof would be possible, but unnecessarily long at this stage.
We can give a quicker proof by relying on the characterisation of continuity
by means of sequences (Lemma 2.2.7) and on the fact that we have already
shown in Chapter 4 that a sequence converges in Rm if and only if all of its
coordinates converge.

Proof. By Lemma 2.2.7 the function f is continuous at x if and only if for
all sequences (yk)k∈N such that yk → x, we have f(yk) → f(x). By
Lemma 4.2.2.1 the sequence (f(yk))k∈N converges to f(x) if and only if for
all 1 6 i 6 n the sequence (fi(yk))k∈N converges to fi(x). By applying
again Lemma 2.2.7, the last condition is equivalent to the fact that each
function fi is continuous at x.
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While the previous example shows that continuity can be checked coordinate-
wise on the target, an analogue statement fails if one tries to separate the co-
ordinates of a function on the source, as the following example illustrates.

Example 6.2.3. — Let f : R2 → R be defined as

f(x1, x2) =


x1x2
x2

1+x
2
2

(x1, x2) 6= (0, 0)

0 (x1, x2) = (0, 0)

If we restrict f to the {x2 = 0}-axis we obtain the function of 1 real variable

f(·, 0) : R→ R

t 7→ f(t, 0)

which is constantly zero. Similarly, f restricted to the {x1 = 0}-axis is the
constant function with value 0, hence the restriction of f to both axis is
continuous at (0, 0). However, f is not continuous at (0, 0).

Indeed, take the sequence yn =
( 1
n , 1
n

)
which converges to the point

(0, 0) in R2. Then, f(yn) = 1
2 for every n. Hence:

lim
n→∞ f(yn) = 1

2
.

On the other hand,
f
(

lim
n→∞yn

)
= f(0, 0) = 0.

which proves that f is not continuous at (0, 0).

The point of the previous example is that the origin can be approached
from several directions, not only moving along the fundamental axis.

Let us now review the notion of differentiability, starting from the case
of functions of 1 real variable.

Definition 6.2.4. — Let Let I ⊂ R be an open interval and x ∈ I. We say
that a function f : I→ R is differentiable at x if the limit:

lim
h→0

f(x+ h) − f(x)

h

exists. If f is differentiable at xwe call the above limit the derivative of f at x
and, we denote it by f ′(x).

Here we review some observations that you should already be familiar
with from Year 1.
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Exercise 6.2.5. — You should be familiar from Year 1 with the fact that
functions may be continuous and not differentiable, and with the fact that
the derivative of a differentiable function may be discontinuous.

1. Show that the function x→ |x| is not differentiable at x = 0.

2. Show that the function

x 7→

x2 sin(1/x) when x 6= 0

0 when x = 0

is differentiable, but its derivative is discontinuous at x = 0.

(See later in this Chapter for a solution).

Directional derivatives — Here is a possible generalisation of the notion
of the derivative for functions Rn → Rm. We will allow for a more general
set-up, where the function is defined on some open subset U of Rn.

Definition 6.2.6. — Let x = (x1, . . . , xn) ∈ U ⊆ Rn with U an open subset,
and let f : U → Rm be a function. We define the first order partial derivative
of f at xwith respect to xj as the limit

∂f

∂xj
(x) = lim

t→0

f(x1, . . . , xj + t, . . . , xn) − f(x)
t

(when that limit exists).

The notion of partial derivatives should already be familar from Calcu-
lus II.

Example 6.2.7. — Let f : R2 → R3 be defined by

f(x1, x2) = (x2
1, x1e

x2 , x1x2)

then we have
∂f

∂x1
(x1, x2) = (2x1, ex2 , x2)

∂f

∂x2
(x1, x2) = (0, x1e

x2 , x1).
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Example 6.2.8. — Let f : R2 → R be the function defined by

f(x1, x2) = x
2
1 − 3ex1x2

then we have
∂f

∂x1
(x1, x2) = 2x1 − 3x2e

x1x2

∂f

∂x2
(x1, x2) = −3x1e

x1x2 .

Example 6.2.9. — Let f : R2 → R3 be the function defined by

f(x1, x2) =
(
x2

1, x3
1, cos(x1 − x2)

)
then we have

∂f

∂x1
(x1, x2) =

(
2x1, 3x2

1,− sin(x1 − x2)
)

∂f

∂x2
(x1, x2) = (0, 0, sin(x1 − x2)) .

The partial derivatives of a function can be conveniently collected in a
matrix, called the Jacobian matrix.

Definition 6.2.10. — With the same notation as in Definition 6.2.6, assume
that the first order partial derivative of f at x with respect to xj exists, for
every j ∈ {1, . . . ,n}.

Then, we define the Jacobian matrix of f at x as the m× n matrix given
by:

Jf(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 .

Note that, as discussed in Chapter 6.1, the Jacobian matrix defines a linear
function LJf(x) : Rn → Rm by matrix multiplication: v 7→ Jf(x) · v.

Example 6.2.11. — Let us consider the function f : R2 → R3 defined in
Example 6.2.7. We have shown that for every vector x ∈ R2, the first order
partial derivatives of f at x exist. Moreover, the Jacobian matrix of f at x is
given by

Jf(x) =

2x1 0
ex2 x1e

x2

x2 x1

 .
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In the following, we will need the notion and notation for ”the length”
or ”the norm” of a vector.

Remark 6.2.12. — Recall that the Euclidean metric d2 gives a way to mea-
sure lengths of vectors v ∈ Rn. The length of v is denoted by ‖v‖, which
we read as ”the norm of v” defined by

‖v‖ = d2(v, 0) =
√
v2

1 + . . . + v2
n.

For later use, we note that the function

‖·‖ : Rn → R

(calculating the norm of vectors) is continuous, which we leave as an easy
exercise to the reader. (It also follows from the more general (and difficult)
result that an arbitrary distance d : X → X → R>0 is continuous – see the
Enrichment problem of the third homework sheet).

The partial derivatives encode the information of the ”rate of growth”
of a function along the fundamental directions. That notion can be gener-
alised to describe the rate of growth along any direction:

Definition 6.2.13. — Let x ∈ U ⊆ Rn with U open in Rn, and f : U → Rm

be a function. Let v ∈ Rn be a vector of length 1 (i.e. such that ‖v‖ = 1).
We define the directional derivative of f at xwith direction v as the limit:

Dvf(x) = lim
t→0

f(x+ tv) − f(x)

t

when that limit exists.

Remark 6.2.14. — Assume the same hypotheses of Definition 6.2.13. Let
1 6 i 6 n and the fundamental i-th direction, corresponding to the vector
ei (consisting of all zeroes except for a 1 in position i). Calculating the
directional derivative of f along the direction ei, we obtain

Deif(x) = lim
t→0

f(x+ tei) − f(x)

t
=
∂f

∂xi
(x).

In other words, the directional derivative along the fundamental direction
ei is the same thing as the partial derivative with respect to the i-th variable.

In the following, we show an example of a function that is not continu-
ous at the origin, yet it admits all the directional derivatives at that point.

Page 134



6.2 Differentials

Example 6.2.15. — The idea to construct this example is to produce a func-
tion whose discontinuity at a point x cannot be detected by varying x along
a straight line, i.e. by some perturbation of type x+ tv for some vector v
and arbitrary small t ∈ R.

Let f : R2 → R be the function defined as

f(x1, x2) =

1 x1, x2 > 0 and x2 < x
2
1

0 otherwise.

We claim that, for every direction v, the directional derivative along v of
the function f at the origin (0, 0) is equal to 0. Indeed, becauseD−v(f)(x) =

−Dv(f)(x), we may assume without loss of generality that v1 > 0. Then
if v2 6 0, then f(tv) = 0 for all t. If v2 > 0, we have f(tv) = 0 for all t
when v1 = 0 and for all t 6 v2

v2
1

when v1 > 0. Therefore, for every direction

v = (v1, v2) ∈ R2, we have

lim
t→0

f(tv) − f(0, 0)
t

= lim
t→0

f(tv)

t
= lim
t→0

0
t
= 0,

and this proves our claim.
However, f is not continuous at (0, 0). Indeed let us consider the se-

quence

yn =

(
1
n

,
1
n3

)
,

then f(yn) = 1 for every n, so that:

lim
n→∞ f(yn) = 1.

However, yn converges to the origin, (0, 0). Therefore

f
(

lim
n→∞yn

)
= 0.

6.2.16. Differentiability. — The notion of directional derivatives at a point
is enough to provide information on the rate of growth of along the lines
passing through that point. Yet, as we have seen in the previous section, it
does not quite capture the whole infinitesimal behaviour of that function.
For example, a function might have all directional derivatives at a point
and yet fail to be continuous at that point.

We will start again from the notion of differentiability for functions of
1 real variable, and we will then generalise that notion into a notion that
better captures the infinitesimal behaviour of the function.
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Let f : I → R be a function on some open interval I ⊂ R. Then f is
differentiable at a point x0 ∈ R according to Definition 6.2.4 if and only if
there exists a real number ` ∈ R such that

lim
h→0

f(x0 + h) − f(x0) − ` · h
h

= 0

In this equivalent formulation, the number ` is the derivative f ′(x0) of f at
x0.

The linear function
L` : R→ R

h 7→ ` · h
(multiplication by `) is what we are going to call the differential of f at x0.

This interpretation can naturally be generalised to higher dimensions
in the following manner.

Definition 6.2.17. — Let U ⊆ Rn be an open subset, let x0 ∈ U and let
f : U→ Rm be a function. We say that f is differentiable at x0 if there exists a
linear function L : Rn → Rm such that

lim
h→0

‖f(x0 + h) − f(x0) − L(h)‖
‖h‖

= 0.

The linear function L is called the differential of f at x0 and it is denoted by
Dfx0 or by Df(x0).

Thr above definition requires the existence of some linear function ap-
proximating the function f at the point x0. The first order of business is to
observe that if such a function L : Rn → Rm exists, then it is unique.

Remark 6.2.18. — Let L1 and L2 be two linear functions Rn → Rm as in
Definition 6.2.17. Then L1 = L2.

Indeed, by the triangle inequality we have

‖L1(h) − L2(h)‖ 6 ‖f(x0 + h) − f(x0) − L1(h)‖+‖f(x0 + h) − f(x0) − L2(h)‖ .

Combining this with the fact that both L1 and L2 satisfy the definition of
”being a differential for f at x0”, we deduce

lim
h→0

‖(L1 − L2)(h)‖
‖h‖

= 0.

For all v ∈ Rn and t ∈ R, we then deduce

0 = lim
t→0

‖(L1 − L2)(tv)‖
‖tv‖

= lim
t→0

‖(L1 − L2)(v)‖
‖v‖
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(by linearity of L1 − L2 and because ‖tw‖ = t ‖w‖). The right hand side
of the last equality is independent of t, so we deduce ‖(L1 − L2)(v)‖ = 0,
hence that (L1 − L2)(v) = 0.

Since this is valid for all v, we deduce that the linear function L1 − L2

equals zero, hence that L1 = L2.

The differential admits the following geometric interpretation, which
we are only mentioning in passing, and without proof.

Remark 6.2.19. — Let f : Rn → Rm be a function, differentiable at a point
x0 ∈ Rn, then the set of points given by

{(x, f(x0) +Dfx0(x− x0)) : x ∈ Rn}

can be interpreted geometrically as the hyperplane tangent to the graph of
f at the point (x0, f(x0)) ∈ Rn ×Rm.

Most importantly for our discussion, is the fact that the differential con-
tains the information of all directional derivatives:

Proposition 6.2.20. — Let f : U → Rm be a function defined on an open subset
U ⊆ Rn, differentiable at x0, and let v ∈ Rn be a vector with ‖v‖ = 1 and x0 ∈
U. Then, the differential of f at x0 calculated at v coincides with the directional
derivative of f at x0 along v. In other words

Dfx0(v) = Dvf(x0).

Proof. We have that

lim
h→0

‖f(x0 + h) − f(x0) −Dfx0(h)‖
‖h‖

= 0

with h ∈ Rn. In particular, we may write h = tv for v ∈ Rn with ‖v‖ = 1
and t ∈ R and deduce

lim
t→0

‖f(x0 + tv) − f(x0) −Dfx0(tv)‖
‖tv‖

= 0

By continuity of the function ‖·‖ (see Remark 6.2.12), the left hand side is
equal to ∥∥∥∥lim

t→0

(f(x0 + tv) − f(x0) −Dfx0(tv))

|t|

∥∥∥∥
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which implies that

lim
t→0

(f(x0 + tv) − f(x0) −Dfx0(tv))

|t|
= 0.

because the only vector of norm 0 is the origin. The latter is equivalent to

lim
t→0

f(x0 + tv) − f(x0)

t
= lim
t→0

Dfx0(tv)

t
.

The left hand side is equal toDvf(x0) by definition of directional derivative,
while the right hand side is equal toDfx0(v) by linearity of the differential.

We have defined the differential as a linear function, and linear func-
tions are described by matrices (see Remark 6.1.2). We are now ready to
reveal (and then prove) that the matrix that represents the differential is
the Jacobian matrix!

Corollary 6.2.21. — Let x0,U, f be as above. Then, for every h in Rn we have
that

Dfx0(h) = Jf(x0) · h.

(In other words, the Jacobian matrix represents the differential in the standard basis
of Rn and Rm).

Proof. If we evaluateDfx0 along the fundamental direction ei = (0, . . . , 1, . . . , 0)
(the 1 is in i-th position) we obtain the i-th column of the matrix corre-
sponding to Dfx0 . Now, since ei is a vector of length 1, we have that

Dfx0(ei) = Deif(x0) =


∂f1
∂xi

(x0)

. . .
∂fm
∂xi

(x0)


which is the i-th column of the Jacobian matrix, which precisely means that
the Jacobian matrix represents the differential according to Remark 6.1.2.

We are now ready to prove that differentiability implies continuity.

Proposition 6.2.22. — Let x0,U, f be as above. Because f is differentiable at x0,
then f is continuous at x0.
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Proof. To show that f is continuous at x0, it is enough to prove that

lim
h→0
‖f(x0 + h) − f(x0)‖ = 0

We have that

‖f(x0 + h) − f(x0)‖ = ‖f(x0 + h) − f(x0) −Dfx0(h) +Dfx0(h)‖

6 ‖f(x0 + h) − f(x0) −Dfx0(h)‖+ ‖Dfx0(h)‖

where the last step is the triangle inequality. Now, since f is differentiable
at x0, the limit

lim
h→0

‖f(x0 + h) − f(x0) −Dfx0(h)‖
‖h‖

vanishes, which implies that

lim
h→0
‖f(x0 + h) − f(x0) −Dfx0(h)‖ = 0

On the other hand, Dfx0 is continuous by Lemma 6.1.12. Therefore, if we
fix ε > 0, we can find a δ > 0 such that

‖f(x0 + h) − f(x0) −Dfx0(h)‖+ ‖Dfx0(h)‖ <
ε

2
+
ε

2
= ε

for all 0 < ‖h‖ < δ, which concludes our proof.

We know already from Year 1 that the converse implication does not
hold in general: a function might be continuous and fail to be differentiable.

Example 6.2.23. — The function f defined by f(x) = |x| is continuous but
not differentiable at 0.

Example 6.2.24. — The function f : R2 → R of Example 6.2.15 has all direc-
tional derivatives, but it is not even continuous at (0, 0). In particular, f is
not differentiable.

The fact that a function admits all directional derivatives and is continu-
ous, is not enough to guarantee that it is differentiable. Here is an example
to illustrate this.

Example 6.2.25. — Here is an example of a continuous function, which has
all directional derivatives, but is not differentiable at the origin.

Let f : R2 → R be defined as

f(x1, x2) =


x1x

2
2

x2
1+x

2
2

(x1, x2) 6= (0, 0)

0 (x1, x2) = (0, 0)
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Then, f is continuous at (0, 0). Indeed, first of all we observe that the fol-
lowing inequality holds ∣∣∣∣ x1x

2
2

x2
1 + x

2
2

∣∣∣∣ 6√x2
1 + x

2
2

since the absolute values of x1 and x2 are bounded above by
√
x2

1 + x
2
2. In

particular, for every ε > 0, choosing δ = ε and x1, x2 such that
√
x2

1 + x
2
2 <

δ, we get that

|f(x1, x2)| 6
√
x2

1 + x
2
2 < δ = ε

by the above argument.

For the directional derivative at (0, 0), fix a vector v = (v1, v2) of length
1 in R2, then we have

lim
t→0

f (t(v1, v2)) − f(0, 0)
t

= lim
t→0

t3v1v
2
2

t3 = v1v
2
2

On the other hand, to show that f is not differentiable at (0, 0) we first
compute the Jacobian matrix of f at (0, 0)

Jf(0, 0) =
(
∂f

∂x1
,
∂f

∂x2

)
= (0, 0)

Then, if f was differentiable at (0, 0) we would have that Df(0,0)(h) = 0 for
any h. This would imply:

lim
h→0

∣∣f(h) − f(0, 0) −Df(0,0)(h)
∣∣

‖h‖
= lim
h→0

|f(h)|

‖h‖
= 0

However, if we take the sequence
( 1
n , 1
n

)
and substitute it into the limit, we

see that

lim
n→∞ |f(1/n, 1/n)|

‖(1/n, 1/n)‖
= lim
n→∞

1
n3( 2
n2

) 3
2
=

1√
8

is non-zero, hence f is not differentiable at (0, 0).

In line with the fact that the generalisation from M = 1 to arbitrary
M > 1 isn’t hard, let’s now try to ”separate the variables in the target”. We
start by reviewing the notation of the Jacobian in the case when the target
is the real line.
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Remark 6.2.26. — If M = 1 and f is differentiable at x0 ∈ Rn, then the
Jacobian matrix of f at x0 reduces to a row vector

Jf(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xn
(x0)

)
which is usually called the gradient of f at x0 and denoted by∇f(x0). More-
over, the normalized vector

∇f(x0)

‖∇f(x0)‖
can be interpreted as the ”direction of maximal growth of f” (we will not
prove/discuss this fact here because we won’t need it. You should be fa-
miliar with this result from Year 1, specifically from Calculus II).

We are now ready to discuss the fact that a function is differentiable if
and only if so are all its components.

Proposition 6.2.27. — Let f : U → Rm be a function defined on an open subset
U ⊆ Rn, and let x0 ∈ U. The function f is differentiable at x0 if and only if
its components f1, . . . , fm are all differentiable at x0. Furthermore, the differential
satisfies

Dfx0 = (Df1 x0 , . . . ,Dfm x0)

(Or, in matrix terms, the Jacobian matrix Jfx0 has first row ∇f1(x0), second row
∇f2(x0), . . . , m-th row∇fm(x0)).

Proof. (Sketch)
We need to prove that

lim
h→0

‖f(x0 + h) − f(x0) −Dfx0(h)‖
‖h‖

= 0

if and only if

lim
h→0

∣∣fj(x0 + h) − f(x0) −Dfj x0(h)
∣∣

‖h‖
= 0

for all j = 1, . . . ,m.
By now we know a strategy to simplify this problem: change the metric

from d2 to (for example) d∞. The details are then left to the reader as an
exercise.

We conclude by giving a convenient criterion to establish if a function
is differentiable.
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Theorem 6.2.28. — Let f : U → Rm be a function defined on an open subset
U ⊆ Rn and let x0 ∈ U. If f has all partial derivatives on U, and they are all
continuous at x0, then f is differentiable at x0.

For brevity, we will say that a function that satisfies the hypothesis of
the theorem above is continuously differentiable at x0:

Definition 6.2.29. — Let f : U → Rm be a function defined on an open
subset U ⊆ Rn and let x0 ∈ U. We say that f is continuously differentiable at
x0 if there exists an open subset V ⊂ U containing x0 such that f admits all
partial derivatives on V , and all partial derivatives are continuous at x0.

We will motivate this definition in Section 6.3.1 (see in particular Theo-
rem 6.3.1.2).

Proof. (Sketch.)
By the previous proposition, and because being continuous and admit-

ting partial derivatives can equivalently be checked on all components (in
the target space Rm), we may reduce the problem to the casem = 1.

The case n = 1 is trivial (the partial derivative equals the derivative
which then gives the differential). We will give the proof in the case n = 2,
the case of larger n is not substantially harder, it only makes the notation
more complicated. Also, to simplify the notation we may assume (after
possibly translating the function in the source and in the target space) that
the point where we prove differentiability is x0 = (0, 0) and that f(0, 0) = 0.
Furthermore, the property of differentiability of f will not change if we
subtract from f a linear function. By subtracting the linear function defined
by the Jacobian matrix of f at the origin, we may also assume that both
partial derivatives of f at (0, 0) are zero.

After all this preparation, in order to prove that f is differentiable at
(0, 0) and with differential equal to zero, we need to prove that

lim
h→0

|f(h)|

‖h‖
= 0

or equivalently that for all ε > 0 there exists δ > 0 such that

|f(h)| 6 ε
√
h2

1 + h
2
2

for all (h1,h2) such that 0 <
√
h2

1 + h
2
2 < δ.
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The strategy is that we are going to separate the increments of h1 from
the increments of h2, and use the triangle inequality:

|f(h)| 6 |f(h) − f(h1, 0)|+ |f(h1, 0) − f(0, 0)| . (6.1)

Now we apply the Mean Value Theorem from Year 1 to deduce

f(h1,h2) − f(h1, 0) =
∂f

∂x2
(h1, c2) · h2, f(h1, 0) − f(0, 0) =

∂f

∂x1
(c1, 0) · h1.

for some |c1| 6 |h1| and |c2| 6 |h2|.
By applying the continuity of the partial derivatives, we find δ > 0 such

that ∣∣∣∣ ∂f∂x1
(v1, v2)

∣∣∣∣ 6 ε/2,
∣∣∣∣ ∂f∂x2

(v1, v2)

∣∣∣∣ 6 ε/2

for all
√
v2

1 + v
2
2 < δ (remember that we have assumed that the partial

derivatives are both zero at the origin!)
Applying all these considerations to Equation (6.1) we obtain

|f(h)| 6 |h2| · ε/2 + |h1| · ε/2 6 ε
√
h2

1 + h
2
2

for all (h1,h2) such that 0 <
√
h2

1 + h
2
2 < δ, because

√
h2

1 + c
2
2 6

√
h2

1 + h
2
2,

and because
√

02 + c2
1 6

√
h2

1 + h
2
2.

The converse implication of the above result does not hold: a function
might be differentiable, yet have discontinuous partial derivatives. This is
already true for functions of 1 real variable, and it is an example that should
already be familiar from Year 1.

Example 6.2.30. — Let f : R→ R be the function defined as

f(x) =

x2 sin
( 1
x

)
x 6= 0

0 x = 0

Then, f is differentiable at 0 and Df0(h) = 0 for every h ∈ R. Indeed

lim
h→0

|f(h) − f(0) − 0 · h|
|h|

= lim
h→0

∣∣∣∣∣h2 sin
( 1
h

)
h

∣∣∣∣∣
= lim
h→0

∣∣∣∣h sin
(

1
h

)∣∣∣∣
= 0.
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Where the last equality follows since sin is a bounded function. However,
if we compute the derivative of f(x) for x 6= 0, we obtain

f ′(x) = 2x sin
(

1
x

)
− cos

(
1
x

)
which does not have a limit for x → 0. Therefore, the derivative f ′ is not
continuous at 0.

6.3. Properties of differentials and of differentiable func-
tions

In this section we discuss some fundamental properties of differentiable
functions.

In the first subsection we discuss the notion of operator norm, and the
continuity of the differential.

In the second subsection is the main result, the Chain Rule, which al-
lows to calculate the differential of the composite of two differentiable func-
tions in terms of the differentials of the two functions.

In the last subsection we generalise the Year 1 Mean Value Thoerem to
the case of functions of several variables.

6.3.1. The operator norm and continuity of the differential — Why did
we call “continuously differentiable” a function with continuous partial
derivatives? Shouldn’t “continuously differentiable” refer to a function
whose differential is continuous when we vary the point where the differ-
ential is calculated? It turns out that there these two notions are equivalent,
as we shall prove in this section.

First we need to make some sense of the second definition. We start by
thinking again about the differential of a function f : Rn → Rm. For fixed
P ∈ Rn, we defined DfP as a linear function Rn → Rm, and we observed
that this function is represented by the Jacobian matrix JfP. This produces
a function

Jf : Rn →Mat(m,n)

that maps every point P to the Jacobian matrix Jf(P). On the source space
we have a natural Euclidean distance, and on the target space we have the
“operator distance” defined as follows.

Page 144



6.3 Properties of differentials and of differentiable functions

Definition 6.3.1.1 (Operator norm). — Let A be a matrix in Mm,n(R) (ma-
trices with real entries andm rows and n columns). The operator norm of A
is defined as

‖A‖op = max
w 6=0

‖Aw‖
‖w‖

= max
‖v‖=1

‖Av‖ .

(The second equality is obtained because multiplication times A is linear.
The fact that the maximum exists follows from the fact that the function
v 7→ ‖v‖ is continuous, and from the fact that the set of points having dis-
tance 1 from the origin in Rn is compact).

This definition gives a distance on the set Mm,n(R) of m× n matrices
by setting

dop(A,B) = ‖A−B‖op

(We leave it to the reader to check that this satisfies the axioms of a distance
on the set Mm,n(R)).

With the operator distance on the set of matrices, it now makes sense to
ask whether the function Jf is continuous.

Theorem 6.3.1.2. — Let U ⊆ Rn be open, let x0 ∈ U and let f : U → Rm be
a function that has all partial derivatives ∂f

∂xj
on U for j = 1, . . .n.

Then f is continuously differentiable at x0 (Definition 6.2.29) if and only
if Jf : U → Mat(m,n) is continuous at x0. (Here U is given the standard
Euclidean distance, and Mat(m,n) is given the operator distance defined
above).

As a warm-up, and to fix notation, let’s verify that the above result is
valid in the case of linear functions.

Example 6.3.1.3. — (Linear functions are continuously differentiable). Let
f : Rn → Rm be linear. Then:

1. the partial derivatives of f are constant functions, hence they are con-
tinuous;

2. the function P 7→ JfP is constant, hence continuous.

The remainder of this section is devoted to the proof of this theorem,
and it can be regarded as extra material (which can safely be skipped on a
first reading).
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We will first prove that the operator distance on Mat(m,n) is equivalent
to other distances on the same set. We can regard the elements of that set as
vectors in Rn×m and endow the latter with any of the distances dp (which
we already know are equivalent distances). It turns out that the operator
distance is equivalent to these distances:

Lemma 6.3.1.4. — The following inequalities hold:

max
i,j

∣∣ai,j∣∣ 6 ‖A‖op 6 √m ·nmax
i,j

∣∣ai,j∣∣ .
Proof. The first inequality is easiest to prove. Let p,q be such that

|ap,q| := max
i,j

∣∣ai,j∣∣ .
By multiplying A times the element eq = (0, 0, . . . , 1, . . . , 0) of the canonical
basis, we obtain:

‖A · eq‖ =

√√√√ m∑
i=1

a2
i,q > |ap,q|

for all q = 1, . . . ,n. Applying the definition of operator norm (and the fact
that ‖eq‖ = 1), we deduce

‖A‖op > ‖A · eq‖ > |ap,q| = max
i,j

∣∣ai,j∣∣ .
The second inequality is more complicated to prove. We rely on the

following inequality (left as an exercise.):

k∑
i=1

|xi| 6
√
k

√√√√ k∑
i=1

x2
i. (6.2)

(Hint: expand the inequality∑
16i<j6k

(|xi|− |xj|)
2 > 0.)

Now take a unit vector v such that ‖A‖op = ‖A · v‖, and let for convenience
L := maxi,j

∣∣ai,j∣∣. We have then:

‖A · v‖ =

∥∥∥∥∥∥
 n∑
j=1

a1,jvj, . . . ,
n∑
j=1

am,jvj

∥∥∥∥∥∥ 6 L ·

∥∥∥∥∥∥
 n∑
j=1

∣∣vj∣∣ , . . . ,
n∑
j=1

∣∣vj∣∣
∥∥∥∥∥∥ =
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= L ·
√
m ·

n∑
j=1

∣∣vj∣∣ 6 √m ·n · L · ‖v‖ = √m ·n · L =
√
m ·nmax

i,j

∣∣ai,j∣∣ ,
where we used Equation (6.2) for the last inequality. This concludes the
proof.

Using the inequalities that we proved in the previous Lemma, the proof
of Theorem 6.3.1.2 is now straightforward.

Proof. (Sketch). First of all, by using that the distances d2 and d∞ are equiv-
alent on Rm, we may change to that distance. We then apply the two in-
equalities of the lemma.

From the inequality

‖Jf(x) − Jf(x0)‖op 6
√
m ·nmax

i,j

∥∥∥∥∂fi∂xj (x) − ∂fi
∂xj

(x0)

∥∥∥∥
we deduce that if f is continuously differentiable at x0, then the function Jf
is continuous.

The converse is obtained from the inequalities∣∣∣∣∂fi∂xj (x) − ∂fi
∂xj

(x0)

∣∣∣∣ 6 max
i,j

∥∥∥∥∂fi∂xj (x) − ∂fi
∂xj

(x0)

∥∥∥∥ 6 ‖Jf(x) − Jf(x0)‖op .

6.3.2. The Chain Rule — The Chain Rule allows to express the differen-
tial of the composite of two functions in terms of the differentials of each
of the functions. Its proof relies on the notion of operator norm that we
introduced in the previous subsection.

Theorem 6.3.2.1 (The Chain Rule). — Let U ⊆ Rn and V ⊆ Rm be open
subsets and let x0 be a point in U. Let f : U → V and g : V → Rk be func-
tions. Then, if f is differentiable at x0 and g is differentiable at f(x0), the
composite function g ◦ f is differentiable at x0 and

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0).

Before proving the theorem, we state some useful corollaries.

Corollary 6.3.2.2. — Let f : U→ Rm and g : V → Rk be as in the hypothesis
of Theorem 6.3.2.1, then the following equality of matrices holds

J(g ◦ f)(x0) = Jg(f(x0)) · Jf(x0)
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(the right hand side is the product of the two matrices).
In other words, the following equalities holds

∂(g ◦ f)i
∂xj

(x0) =

m∑
l=1

∂gi
∂xl

(f(x0)) ·
∂fl
∂xj

(x0)

for all 1 6 i 6 m and 1 6 j 6 m.

From the last equation, we deduce the following corollary.

Corollary 6.3.2.3. — Under the hypothesis of Theorem 6.3.2.1, if f has con-
tinuous partial derivatives at x0 and g has continuous partial derivatives at
f(x0), the composite function g ◦ f has continuous partial derivatives at x0.

The proof of the Chain Rule is quite involved (and it can safely be
skipped on a first reading).

Proof of Theorem 6.3.2.1. Let L = Jf(x0) and M = Jg(f(x0)). We want to
show that, for every ε > 0, there exists δ > 0 such that, for every h with
0 < ‖h‖ < δ, the following inequality holds

‖g(f(x0 + h)) − g(f(x0)) −M · L · h‖ 6 ε ‖h‖ . (6.3)

By hypothesis, we know that

lim
h→0

‖f(x0 + h) − f(x0) − L · h‖
‖h‖

= 0, (6.4)

lim
k→0

‖g(f(x0) + k) − g(f(x0) −M · k‖
‖k‖

= 0. (6.5)

Let us fix some notation and denote by q and r the functions:

q(h) = f(x0 + h) − f(x0) − L · h

r(k) = g(f(x0) + k) − g(f(x0) −M · k.

Using the triangular inequality, the Left Hand Side of (6.3) is less than or
equal to the sum:

‖r (f(x0 + h) − f(x0))‖+ ‖M · q(h)‖ .

Now, given ε ′ > 0, by (6.4) there exists a δ ′ > 0 such that, taking

k := f(x0 + h) − f(x0)
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such that ‖k‖ < δ ′, the following inequality holds

‖r (f(x0 + h) − f(x0))‖ 6 ε ′ ‖k‖ .

By applying (6.5) with ε = δ ′, we find δ ′′ > 0 such that the inequality
‖k‖ 6 δ ′ holds indeed for all ‖h‖ < δ ′′. By applying again the triangle
inequality and the definition of operator norm, we obtain

‖r (f(x0 + h) − f(x0))‖ 6 ε ′ ‖f(x0 + h) − f(x0)‖

6 ε ′ ‖f(x0 + h) − f(x0) − L · h‖+ ‖L · h‖

6 ε ′ ‖h‖ (1 + ‖L‖op)

for all h such that ‖h‖ < δ ′′.
Similarly, for a small enough δ ′′′ > 0 and every h with 0 < ‖h‖ 6 δ ′′′,

the following inequality holds

‖M · q(h)‖ 6 ‖M‖op · ‖f(x0 + h) − f(x0) − L · h‖

6 ε ′ ‖h‖ · ‖M‖op .

Putting everything together, we have that

Left Hand Side of (6.3) 6 ε ′ ‖h‖ (1 + ‖L‖op + ‖M‖op).

For small enough values of ‖h‖. Therefore, given ε > 0, if we take ε ′ to be

ε ′ =
ε

1 + ‖L‖op + ‖M‖op
.

Taking δ to be the minimum of δ ′′ and δ ′′′, we deduce that

‖g(f(x0 + h)) − g(f(x0)) −M · L · h‖ < ε ‖h‖

for all 0 < ‖h‖ < δ, which concludes our proof.

From the Chain Rule, we immediately deduce some other elementary
properties of the differential.

Corollary 6.3.2.4. — Let f : Rn → R be a differentiable function at x0 ∈ Rn

and assume that f(x0) 6= 0. Then, the function

1
f
: U→ R

is differentiable at x0, where U is the open subset of Rn where f does not
vanish. Moreover, the following equality holds

D

(
1
f

)
(x0) = −

Df(x0)

f2(x0)
.
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Proof. (Sketch). Apply the Chain Rule to g ◦ f, where the function g is de-
fined by g(y) = 1

y .

The proofs of the next properties are left as exercises.

Exercise 6.3.2.5. — Let f,g : U → Rm be functions differentiable at x0 ∈ U
and let λ,µ ∈ R, then the linear combination

λf+ µg

of f and g is differentiable at x0. Moreover, one has

D(λf+ µg)(x0) = λDf(x0) + µDg(x0)

(Hint: compose with the function (y, z) 7→ λy + µz and apply the Chain
Rule.)

Exercise 6.3.2.6. — (Leibniz rule or product rule).
Let f,g : U→ R be functions differentiable at x0 and let

f · g : Rn → R

x 7→ f(x)g(x)

be the function given by the point-wise product of f and g in R. Then, f · g
is differentiable at x0 and

D(f · g)(x0) = g(x0)Df(x0) + f(x0)Dg(x0)

Hint: Apply the chain rule to the composite of

x 7→ (f(x),g(x))

and
(y, z) 7→ y · z.

We conclude with a few examples of how the Chain Rule and the above
properties can be used to calculate differentials.

Example 6.3.2.7. — Let h : U→ R2 be given by

h(x1, x2) =
(
ex1 sin(x2), log(x1x2)

)
for U := {(x1, x2) : x1 · x2 > 0} ⊆ R2.
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We compute the differential of h using the Chain Rule. Indeed, h can
be written as the composition of g and f, where

f : U→ R2

(x1, x2) 7→ (x1 sin(x2), x1x2)

g : V → R2

(y1,y2) 7→ (ey1 , log(y2))

for V = {(y1,y2) : y2 > 0} ⊆ R2.
Then we compute the Jacobian matrices of f and g

Jf(x1, x2) =

(
sin x2 x1 cos x2

x2 x1

)

Jg(y1,y2) =

(
ey1 0
0 1

y2

)
.

Then we can compute the Jacobian of h as

Jh(x1, x2) = Jg(f(x1, x2)) · Jf(x1, x2)

=

(
ex1 sin(x2) sin(x2) ex1 sin(x2)x1 cos(x2)

1
x1

1
x2

.

)
The linear function associated to this matrix gives the differential of the
function h at each point (x1, x2).

Example 6.3.2.8. — Let us consider the function:

f : R2 → R2

(x1, x2) 7→ (x1x2, x1 + x
3
2)

and compute the differential of f at the point P = (1,−1) applied to the
vector h = (2, 3). We first compute the Jacobian matrix:

Jf(x1, x2) =

(
∂fi
∂xj

(x1, x2)

)
=

(
x2 x1

1 3x2
2

)
which, calculated at the point P, gives the matrix:

Jf(P) =

(
−1 1
1 3

)
.

Therefore, we obtain

f(P) · h =

(
1
11

)
.
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Exercise 6.3.2.9. — Let us consider the function:

f : R2 → R

(x1, x2) 7→ x2

∫x2
1

1
e−t

2
dt

and compute the differential of f at the point P = (1, e) applied to the vector
(1, 2).

Notice that, given a function of the form

g : R→ R

x 7→
∫x
c

h(t)dt,

the derivative of g is given by dg
dx = h(x) by the fundamental theorem of

calculus.
Therefore, we have that

∂f

∂x1
(x1, x2) = 2x1x2e

−(x2
1)

2
,

∂f

∂x2
(x1, x2) =

∫x2
1

1
e−t

2
dt.

Hence, the Jacobian matrix of f at P is given by

Jf(P) =

(
2e · e−1,

∫ 1

1
e−t

2
dt

)
= (2, 0).

In particular, the value of the differential of f at P applied to h is

Jf(P) · h = (2, 0) ·

(
1
2

)
= 2.

Exercise 6.3.2.10. — Let f : R2 → R be defined by

f(x1, x2) =

x1x2 sin
(

1
x1x2

)
x1, x2 6= 0,

0 otherwise.

Determine all points of R2

1. where f is continuous,

2. where f is differentiable,

3. where both partial derivatives of f exist and are continuous.

Page 152



6.3 Properties of differentials and of differentiable functions

6.3.3. The Mean Value Theorem — In this subsection we recall the Mean
Value Theorem for functions f : R → R and then generalise it to the case
of functions of several variables. Contrarily to what we have seen so far,
increasing the dimension of the source space does not make a big differ-
ence, and the biggest difficulties arise when trying instead to increase the
dimension of the target.

The Mean Value Theorem is the result that is used to prove that a dif-
ferentiable function with zero derivative on an interval is constant, and we
will see the analogue of that result for multivariable functions in Corol-
lary 6.3.3.8.

Theorem 6.3.3.1 (Year 1 Mean Value Theorem). — Let f : [a,b] → R be
a continuous function that is differentiable on (a,b). Then, there exists a
constant c ∈ (a,b) such that

f(b) − f(a) = f ′(c)(b− a).

We aim to generalise this result to higher dimensions.

Definition 6.3.3.2. — Let u and v be points in Rn. We define the closed
segment from u to v as the set of points:

[u, v] = {(1 − t)u+ tv : t ∈ [0, 1]}.

Similarly, we define the open segment from u to v as:

(u, v) = {(1 − t)u+ tv : t ∈ (0, 1)}.

The following is the generalisation of Theorem 6.3.3.1 to a function of
multiple variables.

Corollary 6.3.3.3. — Let U ⊆ Rn be an open subset and let f : U → R be
a differentiable function. Let u, v ∈ U be such that the segment [u, v] is
contained in U. Then, there exists a constant c ∈ (u, v) such that

f(u) − f(v) = Jf(c) · (u− v).

Proof. We define a function:

φ : [0, 1]→ R

t 7→ f ((1 − t)u+ tv) .
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Then, φ is differentiable on [0, 1]. Moreover, by Theorem 6.3.3.1 there exists
t0 ∈ (0, 1) such that:

f(v) − f(u) = φ(1) −φ(0) = φ ′(t0) = Jf ((1 − t0)u+ t0v) · (v− u),

where the last equality follows from the Chain Rule. Taking c equal to
(1 − t0)u+ t0v completes the proof.

The analogue of the above result does not hold when we replace the
target space to Rm withm > 1, as we illustrate in the next Example.

Example 6.3.3.4. — Consider the function

f : [0, 2π]→ R2

x 7→

(
cos(x)
sin(x)

)
Then, we have that

Jf(x) =

(
− sin(x)
cos(x)

)
.

Since there is no value c such that sin(c) = cos(c) = 0, the Jacobian matrix
is never zero. In particular

f(2π) − f(0) =

(
0
0

)
6= Jf(c) · 2π

for every c ∈ [0, 2π].

The previous Example shows the most obvious generalisation of the
Mean Value Theorem does not hold for functions f : Rn → Rm withm > 1.
However, we have the following replacement:

Lemma 6.3.3.5. — Let U ⊆ Rn be an open subset and let f : U → Rm be a
differentiable function. Given u, v ∈ U such that [u, v] is contained inU, the
following inequality holds

‖f(v) − f(u)‖ 6 sup
c∈(u,v)

‖Jf(c)‖op · ‖v− u‖ .

Here the supremum supc∈(u,v) ‖Jf(c)‖op may equal +∞. As a conse-
quence of Theorem 6.3.1.2, we have seen that if f is additionally contin-
uously differentiable on U, then ‖Jf‖ is a continuous function on U, so the
supremum supc∈[u,v] ‖Jf(c)‖op over the closed segment [u, v] is in fact a
maximum, because [u, v] is compact (it is closed and bounded in Rn).
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Proof. By possibly translating the function f in the source, we may assume
that u = 0 is the origin in Rn. By translating the function in the target, we
may assume that f(u) is the origin in Rm.

Defining φ(t) := ‖f(tv)‖, we have that φ is continuous on [0, 1] and dif-
ferentiable on (0, 1) (note that the norm is continuous but not differentiable
at the origin). By writing out

φ(t) =
√
f1(tv)2 + . . . + fm(tv)2

and then taking the derivative and applying to it the Chain Rule and the
Cauchy-Schwarz inequality, we deduce

|φ ′(t)| =
|
∑m
i=1 fi(tv) · (Jfi(tv) · v)|

‖f(tv)‖
6
‖Jf(tv) · v‖ · ‖f(tv)‖

‖f(tv)‖
= ‖Jf(tv) · v‖

for all t ∈ (0, 1).
By combining the former inequality with the Year 1 Mean Value Theo-

rem and the definition of operator norm, we deduce

‖f(v) − f(u)‖ = ‖f(v)‖ = |φ(1) −φ(0)| 6 sup
c∈(u,v)

‖Jf(c)‖op · ‖v‖ ,

which concludes our proof.

We are now in a position to prove an important consequence of the
Mean Value Theorem. This states that if the open set U “consists of only
one piece”, if the differential of f vanishes then f is constant on U. Without
the extra hypothesis that U consists only of one piece, the function f might
not be constant for it equals one constant on one piece of U and a different
constant on another piece ofU. Think ofU = (0, 1)∪ (2, 3) and f defined by

f(x) =

0 for x ∈ (0, 1)

1 for x ∈ (2, 3).

This function is not constant, but its derivative is constantly equal to zero.
We start by defining this notion of “consisting of only one piece”.

Definition 6.3.3.6. — Let U ⊆ Rn be a subset. We say that U is path-
connected if for every two points P and Q in U there exists a finite sequence

P = x0, x1, . . . , xk = Q

of points of U such that the segment [xi, xi+1] is contained in U for i =

0, . . . ,k− 1.
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Remark 6.3.3.7. — There are more general notions of path-connected and
of connecteed that are valid for arbitrary metric (or topological) spaces (as
opposed to just Rn).

IfU ⊆ Rn is path-connected according to our definition above, then one
can prove that the only subsets that are simultaneously open and closed in
U (with the Euclidean distance d2) are the empty set andU itself – the latter
is the usual notion of a ”connected” metric or topological space.

Moreover, one could also show the converse implication if U ⊂ Rn is
open, namely if such U is connected, then it is also path-connected.

Corollary 6.3.3.8. — Let U ⊆ Rn be open and path-connected. Let f : U →
Rm be a differentiable function and assume that Df(x) = 0 for every point
x ∈ U. Then, f is a constant function.

Proof. It suffices to prove that for every two points P and Q in U the norm
‖f(P) − f(Q)‖ is 0. Since U is path-connected we can find points

P = x0, . . . , xk = Q

such that [xi, xi+1] ⊂ U for all i = 0, . . . ,k− 1. Then we have

‖f(P) − f(Q)‖ 6 ‖f(x0) − f(x1)‖+ . . . + ‖f(xk−1 − f(xk)‖

6 0 · ‖x0 − x1‖+ . . . + 0 · ‖xk−1 − xk‖

where the first inequality is the triangle inequality, and the second inequal-
ity follows from Lemma 6.3.3.5 and the fact that the Jacobian of f is 0 ev-
erywhere.
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7.

The inverse function theorem and the

implicit function theorem

Important notions to learn from this section:

1. The inverse function theorem (INFT).

2. What it means that an equation f(x,y) = 0 implicitly defines y as a
function of x locally at a point (x0,y0).

3. The implicit function theorem (IMFT).

4. (EXTRA) How the IMFT can be used to find maxima/minima of func-
tions subject to some constraints (also known as the method of La-
grange multipliers).

This chapter will be devoted to the inverse and the implicit function the-
orems. In line with the spirit of the previous chapter, these two results are
linearisation results. They say that, under suitable hypotheses, certain re-
sults that we are familiar with and that are valid for linear functions remain
valid locally for nonlinear functions that can be approximated by means of
linear ones.

Both results are quite delicate to prove, although it is not so hard to see
that one Theorem holds if and only if the other does. The proof of the exis-
tence of the inverse (or of the implicit) function is obtained by applying the
Contraction Mapping Theorem to a certain complete space of continuous
functions. The proof uses the results that we have discussed in the previous
Chapter: the operator norm, the Chain Rule, and the Mean Value Theorem.
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An important application of the implicit function theorem is the La-
grange’s multipliers method to find the (local) extremal points of a scalar
function that is subject to some constraint. This will be discussed as extra
material in the final section of this Chapter.

7.1. The inverse function theorem

Let f : U → Rn be a continuous function, where U is an open subset of
Rn. The idea is that, if f can be approximated around a point x0 ∈ U by
an invertible linear function, then f itself is locally invertible near x0. Before
stating the main theorem of the section, we recall the following definition
from the previous Chapter.

Definition 7.1.1. — Let U ⊆ Rn be an open subset, f : U → Rm be a func-
tion and x0 ∈ U. We say that f is continuously differentiable at x0 if f has all
first order partial derivatives on U and they are continuous at x0.

In the previous chapter we proved that if f is continuously differen-
tiable, then it is differentiable.

We now state one of the two main results of this chapter.

Theorem 7.1.2 (INverse Function Theorem=INFT). — Let U ⊆ Rn be an
open subset and let f : U → Rn be continuously differentiable. Let x0 ∈ U and
assume Df(x0) : Rn → Rn is invertible. Then, there exist open subsets V ⊂ U
with x0 ∈ V andW ⊂ Rn with f(x0) ∈W such that the restriction f|V : V →W

is invertible and its inverse is a continuously differentiable function onW.

Observe that it would not make a difference to modify the statement
of the theorem by replacing the target space Rn with Rm for arbitrary m
(so m is possibly different from n). Indeed, there are no invertibile linear
functions Rn → Rm unless n equalsm.

The proof of the INFT will be given later.

Remark 7.1.3. — Under the hypothesis of the INFT, call g : W → V the
inverse of the restriction f|V : V →W = f(V).

We claim that the differential of g at f(x0) equals the inverse of the dif-
ferential of f at x0. (This statement is sometimes also included as a part of
the INFT). This follows immediately from the Chain Rule.
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Indeed, by differentiating both sides of the equality

g ◦ f|V = IdV : V → V

we obtain
D(g ◦ f)x0 = D(Id)x0 = Id : Rn → Rn

and applying the Chain Rule we deduce:

D(g ◦ f)x0 = Dgf(x0) ◦Dfx0 = Id : Rn → Rn,

which implies that Dgf(x0) = Df
−1
x0

.

In light of Theorem 7.1.2, it is convenient to introduce the following
definition.

Definition 7.1.4. — Let U ⊆ Rn be an open subset, f : U → Rm be a func-
tion and x0 ∈ U. A local inverse of f near x0 is a triple (V ,W,g) where
V ⊆ U and W ⊆ Rm are open subsets such that x0 ∈ V and f(x0) ∈ W and
g : W → V is a function such that g ◦ f|V = idV and f|V ◦ g = idW .

The chain Rule can be used to deduce what exactly goes wrong when
the differential fails to be invertible.

Corollary 7.1.5. — Let U ⊆ Rn be an open set and f : U → Rm be a function
and x0 ∈ U. If f is differentiable at x0 and Dfx0 is not invertible, then if a local
inverse of f exists, that local inverse is not differentiable at f(x0).

Note that this result follows directly from the Chain Rule, similarly to
Remark 7.1.3, we are not using the INFT in the proof!

Proof. Assuming a local inverse g of f exists, we have

g ◦ f|V = IdV , f|V ◦ g = IdW

for open sets V and W containing x0 and f(x0) respectively. Taking differ-
entials in the previous equality, we deduce:

D(g ◦ f)x0 = D(Id)x0 = Id, D(f ◦ g)f(x0) = D(Id)f(x0) = Id

On the other hand, if the local inverse g was also differentiable, then we
could apply the Chain Rule and deduce:

D(g ◦ f)x0 = Dgf(x0) ◦Dfx0 , D(f ◦ g)f(x0) = Dfx0 ◦Dgf(x0).

In particularDgf(x0) andDfx0 are inverses to each others, thereforeDfx0 is
invertible, contradicting the hypothesis.
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Remark 7.1.6. — Another way to express the result of Corollary 7.1.5 is to
say that if f : V →W is a differentiable bijection with differentiable inverse
between open subsets V ⊆ Rn and W ⊆ Rm, then the differential must be
invertible. In particular, because there is no linear bijection Rn → Rm if
n 6= m, this result implies that differentiable bijections with differentiable
inverse between open subsets of finite dimensional Euclidean vector spaces
only exist when the dimension of the two vector spaces is the same!

Recall that a continuous bijection with continuous inverse is called a
homeomorphism. One basic result of algebraic topology says that the same is
true of homeomorphisms, i.e. a continuous bijection V → W with contin-
uous inverse may only exist when n = m. This result is known under the
name of “Theorem of invariance of the domain”.

We give now two examples of what may happen when the Jacobian
matrix fails to be invertible.

Example 7.1.7. — Let f : R→ R be defined as x 7→ x2 and let x0 = 1. Then,
the local inverse of f at x0 is the function y 7→ √y. On the other hand, of
x0 = −1, a local inverse to f is given by the function y 7→ −

√
y.

Finally, at the point x0 = 0 the function f has no local inverse, because
the restriction of f to every open interval containing 0 fails to be injective.

Example 7.1.8. — Let f : R → R be defined as x 7→ x3. Then, f has a
global inverse given by the function g : R → R mapping y to 3

√
y. One can

immediately check that this function fails to be differentiable at f(0) = 0.
(And indeed, we have f ′(0) = 0).

Let’s now work an example where we combine the results obtained in
Theorem 7.1.2 and in Corollary 7.1.5 to solve a standard exercise.

Example 7.1.9. — Consider the function f : R2 → R2 defined by

f(x1, x2) = (x2
1 + x

2
2, 3x2).

Does f admit a local differentiable inverse at P = (0, 0)? Does it admit a
local differentiable inverse at Q = (1, 1)?

The Jacobian matrix of f is (
2x1 2x2

0 3

)
.
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This matrix is not invertible when calculated at P = (0.0), so by Corol-
lary 7.1.5 (a straightforward consequence of the Chain Rule), the function f
does not admit a local differentiable inverse at P. This matrix is invertible at
Q = (1, 1), so by Theorem 7.1.2 the function f admits a local differentiable
inverse at Q.

Once this is established, one may want to address the more difficult
question of whether f is or it is not invertible near P. This is a question
that the theory we have developed does not help to answer, and we have
to resort to brute force. In this particular example, this is still doable and
easy. For given (y1,y2) ∈ R2 we want to solvey2 = 3x2

y1 = x2
1 + x

2
2

in the unknown (x1, x2) ∈ R2. From the first equation we deduce x2 = y2/3.
The second equation becomes

x2
1 = y1 −

y2
2

9
.

This situation is similar to that of Example 7.1.7. For any given k 6= 0 there
is no open set containing (0, 0) such that the equation x2

1 = k has exactly 1
solution. This proves that the function f is not locally invertible near P.

Example 7.1.10. — (A function that is differentiable but not continuously
differentiable, and that has invertible derivative at a given point, but that is
not locally invertible at that point).

Let f : R→ R be defined by

f(x) =

x2 sin(1/x) + x/2 for all x 6= 0

0 when x = 0.

This function is a perturbation (by adding the linear function x 7→ x/2) of
the prototypical example (seen in the previous chapter) of a function that
is differentiable at the origin, but whose derivative is not continuous at the
origin.

This function is differentiable at 0, and its derivative equals 1/2, so the
differential at the origin is h 7→ h/2 and therefore it is an invertible function.

To show that the function f is not invertible on any open set containing
zero, we compute its derivative for all x 6= 0:

f ′(x) = 2x sin(1/x) − cos(1/x) + 1/2.
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The derivative is continuous at all points, except at x = 0. Consider the
sequences (xn) and (yn) defined by

xn =
1

(2n+ 1)π
yn =

1
2nπ

.

Then we have both xn and yn → 0 for n→∞, and the derivatives

f ′(xn) = 3/2, f ′(yn) = −1/2.

Because f ′ is continuous for x 6= 0, for all n the function f ′ is positive on
small open intervals containing xn and it is negative on small open inter-
vals containing yn. On the former intervals the function f is increasing,
and on the latter intervals the function f is decreasing, thus not giving f
any chance of being invertible on any open set that contains the origin.

From the theoretical standpoint, the inverse function theorem helps us
establish that a given function is a homeomorphism, as we will now ex-
plain.

Definition 7.1.11. — Let f : (X,dX)→ (Y,dY) be a function of metric spaces.
We say that f is a local homeomorphism if, for every x0 ∈ X there exist U ⊆ X
and V ⊆ Y open subsets such that x0 ∈ U and the restriction f|U : U→ V is
a homeomorphism.

Exercise 7.1.12. — Let f : (X,dX) → (Y,dY) be a function. Show that f
is a homeomorphism if and only if f is a local homeomorphism and f is
bijective.

We conclude this section with two more corollaries of Theorem 7.1.2.

Corollary 7.1.13. — Let f : U→ Rn be continuously differentiable at every point
of U ⊆ Rn open, and assume thatDfx0 is invertible for every x0 ∈ U. Then f is a
local homeomorphism. (And in particular f(U) is open in Rn).

Proof. The statement follows immediately from the Inverse Function Theo-
rem 7.1.2.

The following result, which is an immediate consequence of the pre-
vious result, gives an easy criterion to establish that certain functions are
homeomorphisms.
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Corollary 7.1.14. — Let f : U→ Rn be injective and continuously differentiable
at every point of U ⊆ Rn open, and assume that Df(x) is invertible for every
x ∈ U. Then f(U) is open in Rn and f : U→ f(U) is a homeomorphism.

Remark 7.1.15. — For U,V ⊆ Rn one could define f : U → V to be a local
diffeomorphism if: for every x0 ∈ U there exist open subsets U ′ ⊆ U and
V ′ ⊆ V such that f restricts to a function f|U ′ : U ′ → V ′ which is bijective,
continuously differentiable and such that the inverse of f|U ′ is continuously
differentiable. A diffeomorphism is a bijective local diffeomorphism.

Clearly, every diffeomorphism is in particular a homeomorphism, and
every local diffeomorphism is a local homeomorphism.

The above corollary could be made stronger by saying that, under the
same hypotheses, we can conclude that f is a local diffeomorphism.

We conclude this section with some exercises on the INFT.

Exercise 7.1.16. — In each of the following cases you are given a function
f : Rn → Rm and a point P ∈ Rn. Decide if f admits a local differentiable
inverse at P.

1. f(x1, x2) = (x2
1 − 2x2, 2x3

1), P = (0, 2).

2. f as above and P = (1, 1).

3. f(x1, x2) =
(
x1x2, x2

1e
x2 , x2e

x1
)
, P = (0, 2).

When the answer to the previous question is negative, can you decide
whether f admits a non-differentiable local inverse near the point P?

Exercise 7.1.17. — Compute the differential of the local inverse of f : R2 →
R2 at f(P), where f(x1, x2) = (x2

1 − 2x2, 2x3
1) and P = (1, 1).

Exercise 7.1.18. — Can you think of an example of a function f : R → R

that is not even continuous at some point x0, but that is invertible? (Hint:
it’s easy!)

Exercise 7.1.19. — Prove the INFT when the dimension n of the source and
target equals 1. Hint: prove that the function is either increasing or decreas-
ing on some open interval containing x0. Then use the intermediate value
theorem to prove that the image of an open interval is an open interval.

Page 163



The inverse function theorem and the implicit function theorem

7.2. The implicit function theorem

The main idea of the implicit function theorem is to give a local, parametric
description of a subset of Rn+m that is described by m ”locally indepen-
dent” equations. The crucial point is to understand what we mean by ”local
indepencence” for a system of equations.

We first review the analogue theory in the linear case. There are two
equivalent ways of defining a linear subspace L of Rn: a parametric defini-
tion and an equational definition. We illustrate these two different ways in
the following examples.

Example 7.2.1. — Let

L = {(x,y, z) ∈ R3 : x+ y+ z = 0} ⊂ R3,

then this definition of L is given in the form of “points satisfying a certain
equation”. However, we could equivalently define L by:

L = {(x,y,−x− y) : (x,y) ∈ R2} ⊂ R3.

We call such description parametric, with parameters (x,y) ∈ R2.

Example 7.2.2. — Similarly, the linear space defined in ”equational form”
by:

L = {(x,y, z) : x+ y+ z = 0, x+ y+ 2z = 0} ⊂ R3

can be written in parametric form as

L = {(x,−x, 0) : x ∈ R} ⊂ R3.

In this case the parameter is x ∈ R.

Let us give a precise definition of what is meant by ”parametric descrip-
tion” in the case of a linear subspace.

Definition 7.2.3. — Let f : Rn ×Rm → Rm be a linear function and con-
sider the linear space:

L = {(x,y) ∈ Rn ×Rm : f(x,y) = 0} ⊆ Rn+m.

We say that the equation f(x,y) = 0 implicitly defines y as a function of x if
there exists a function φ : Rn → Rm such that:

L = {(x,φ(x)) : x ∈ Rn} ⊂ Rn+m.
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We say that φ is the function that implicitly defines y in terms of x for the
equation f(x,y) = 0.

(We say that the first presentation of L is in equational form, and that the
second one is in parametric form).

Note that the implicit function φ of the above definition is always a
linear function.

For a system of linear equations we know how to precisely define the
notion of ”independence” from linear algebra. The following linear algebra
result how to give a parametric description of a linear subspace, in the case
when the linear equations are independent.

Proposition 7.2.4. — Let f : Rn ×Rm → Rm be a linear function, let A be the
corresponding matrixm× (n+m) and let us write A as

A = (Ax,Ay)

where Ax is am×n matrix and Ay is a squarem×m matrix.
If Ay is invertible, then the equation f(x,y) = 0 implicitly defines y as a

function of x. (And moreover the implicit function is linear).

(If f is linear, the notion of ”independence” for the system of equations
f(x,y) = 0, mentioned in the opening of this chapter, is encoded in the
hypothesis that them×mmatrix Ay is invertible).

Proof. We have that f(x,y) = 0 ∈ Rm if and only if Ax · x +Ay · y = 0.
Since Ay is invertible this can be written equivalently as:

y = −A−1
y ·Ax · x. (7.1)

Defining φ(x) := −A−1
y ·Ax · x we have that φ is linear (the composite of

linear functions), and we have the equality

{(x,y) ∈ Rn ×Rm : f(x,y) = 0} = {(x,φ(x)) : x ∈ Rn}.

The latter is saying that φ is the implicit function defining y as a function
of x as defined in Definition 7.2.3.

The main scope of this section is to locally generalise the result of Propo-
sition 7.2.4 to the case of non-linear functions that are continuously differ-
entiable. We start by precisely defining the notion of a ”local parametrisa-
tion”, in analogy with Definition 7.2.3.
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Definition 7.2.5. — Let U ⊆ Rn ×Rm be open and let (x0,y0) ∈ U. Let
f : U → Rm be a function such that f(x0,y0) = 0. Then, we say that the
equation f(x,y) = 0 implicitly defines y as a function of x, locally at (x0,y0), if
there exist open sets V ⊂ Rn and W ⊂ Rm such that x0 ∈ V and y0 ∈ W,
with V ×W ⊆ U and a function φ : V →W, such that:

{(x,y) ∈ V ×W : f(x,y) = 0} = {(x,φ(x)) : x ∈ V}.

If this is the case, φ : V → W is called the local implicit function (expressing
y as a function of x) at (x0,y0).

The following result is the second main theorem of this chapter, and it
gives sufficient conditions for a function f so that the corresponding equa-
tion f(x,y) = 0 implicitly defines y as a function x locally at a given point.

Theorem 7.2.6 (IMplicit Function Theorem = IMFT). — Let U ⊆ Rn ×Rm

be an open subset and let (x0,y0) ∈ U. Let f : U → Rm be a function such that
f(x0,y0) = 0. Assume that f is continuously differentiable onU and that, writing
the Jacobian matrix as

Jf(x0,y0) = (Jxf(x0,y0), Jyf(x0,y0)) ,

them×m matrix Jyf(x0,y0) is invertible.
Then, the equation f(x,y) = 0 implicitly defines y as a function of x locally at

(x0,y0) (as in Definition 7.2.5). Moreover, the local implicit function is continu-
ously differentiable.

(The notion of ”local independence” for the system of equations f(x,y) =
0, mentioned in the opening of this chapter, is encoded in the hypothesis
that them×mmatrix Jyf(x0,y0) is invertible).

The following is the standard textbook example to illustrate the implicit
function theorem.

Example 7.2.7. — Let f : R×R→ R be the function defined by

f(x,y) = x2 + y2 − 1.

Then, the equation f(x,y) = 0 describes a unit circle in the plane, and it
implicitly defines y as a function of x locally at P+ := (0, 1) and P− :=

(0,−1). On the one hand, we have that ∂f∂y(x0,y0) = 2y0 which is non-zero
at the points P±. Therefore, we can apply the implicit function theorem.
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On the other hand, in this explicit simple situation we can give a formula
for the implicit function, which is given by φ±(x) = ±

√
1 − x2 at P±.

Moreover, we claim that the equation f(x,y) = 0 does not implicitly
define y as a function of x locally at the point Q = (1, 0) (and at Q ′ =
(−1, 0)). Indeed, for all x > 0 we have that the equation x2 + y2 = 1 has 2
solutions in y if x < 1 and it has 0 solutions in y for x > 1 (in order to define
a function of y in x, it should have precisely 1 solution in y).

Here is another way to argue that f(x,y) = 0 does not implicitly define
y as a differentiable function of x near Q. Suppose that one such function
existed, and call it Φ. Then we have f(x,φ(x)) = 0. Taking the derivative
with respect to xwith the Chain Rule, we obtain

∂f

∂x
(Q) +

∂f

∂y
(Q) ·φ ′(x) = 0. (7.2)

We can explicitly calculate ∂f
∂x(Q) = 2 6= 0, and also ∂f

∂y(Q) = 0, and
these two together are in contradiction with (7.2). This kind of reasoning
will prove itself useful soon (in 7.2.9 and 7.2.10).

A first point that we would like to address is that the implicit function
theorem is only a method to deduce the existence of an implicit function:
it is possible that such function exists even when the hypotheses of the
theorem are not satisfied.

Example 7.2.8. — The hypotheses of the implicit function theorem are not
strictly necessary to deduce that the equation f(x,y) = 0 implicitly defines
y as a function of x.

If g : R → R is any function (possibly discontinuous, etc.), then f : R×
R → R defined by f(x,y) = y− g(x) will satisfy the fact that the equation
f(x,y) = 0 defines y as a function of x: the function g itself!

Next, we are going to address the following two questions: (a) how can
we compute the differential of the implicit function? and (b) assuming that
the Jacobian Jyf(x0,y0) is not invertible (but with the other hypothesis of
the IMFT holding), what can we say about the non existence of a differen-
tiable implicit function for the equation f(x,y) = 0 locally at (x0,y0)? We
start by addressing the first question.

Remark 7.2.9. — Let U ⊂ Rn ×Rm be an open subset containing (x0,y0)

and assume that f : U → Rm is differentiable, that f(x0,y0) = 0, and that
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the equation f(x,y) = 0 implicitly defines y as a function of x locally at
(x0,y0). Assume furthermore that the implicit function φ is differentiable
at x0. Then, we claim that the Jacobian matrix of φ at x0 equals:

Jφ(x0) = −Jyf(x0,y0)
−1 · Jxf(x0,y0) (7.3)

(compare this with the linear case, Equation (7.1)).

Indeed, for every point x ∈ V , we have f(x,φ(x)) = 0 and we can ap-
ply the Chain Rule to the composite function G(x) = f(F(x)) with F(x) =

(x,φ(x)), obtaining:

0 = JG(x0) = (Jxf(x0,y0), Jyf(x0,y0)) ·

(
Id

Jφ(x0)

)
= Jxf(x0,y0) + Jyf(x0,y0) · Jφ(x0).

From this equation, we deduce (7.3).

These considerations allow us to derive a result that says, in some cases,
what happens when the main hypothesis of the implicit function theorem
(the invertibility of the Jacobian matrix Jyf(x0,y0)) fails. Recall from linear
algebra that, given a matrix A together with its associated linear operator
LA : Rn → Rm, we define the rank of A as the non-negative integer:

rank(A) = dim(Im(LA)).

Corollary 7.2.10. — Let U ⊆ Rn ×Rm be open and (x0,y0) ∈ U. Assume
that f : U → Rm is a function differentiable at (x0,y0), and that the equation
f(x,y) = 0 defines y as a differentiable function of x, locally at (x0,y0). Then, if

rank (Jxf(x0,y0)) = m,

the matrix Jyf(x0,y0) is invertible.

Comment on this last result: the matrix Jxf(x0,y0) is an m × n ma-
trix, and as such its rank is smaller than or equal to the minimum of m
and n. The previous result can be interpreted as saying that if the rank
of Jxf(x0,y0) equals m, and if the matrix Jyf(x0,y0) is not invertible, then
the equation f(x,y) = 0 does not define y as a differentiable function of x
locally near (x0,y0).
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Example 7.2.11. — (Of a function such that Jyf(x0,y0) is not invertible, yet
the equation f(x,y) = 0 defines y as a differentiable function of x).

Consider f : R×R → R defined by f(x,y) = y2. Then f(0, 0) = 0 and
the partial derivative of f with respect to y is zero at (0, 0). However, the
equation f(x,y) = 0 defines y as a function of x: the constant zero function.

(Note that this does not contradict Corollary 7.2.10, for the derivative of
fwith respect to x vanishes at (0, 0), so the rank of Jxf(0, 0) equals 0 6= 1).

We conclude this section with a list of exercises on the IMFT.

Exercise 7.2.12. — Let f : R×R→ R be given by

f(x,y) = x3y2 + xy+ 3x− 5.

Find the slope of the tangent line of the curve {(x,y) : f(x,y) = 0} at the
point (1, 1). (Hint: parametrise the curve using the IMFT).

Exercise 7.2.13. — Let f : R×R→ R be defined as f(x,y) = (y− 3)2. Does
the equation f(x,y) = 0 define y as a function of x locally at the point (0, 3)?

Exercise 7.2.14. — Let g : R → R be a function. Define a function f : R×
R→ R by f(x,y) = y− 2g(x) + 1.

1. Does the equation f(x,y) = 0 necessarily satisfy the hypotheses of
Theorem 7.2.6?

2. Does the equation f(x,y) = 0 implicilty define y as a function of x?

Exercise 7.2.15. — Let f(x,y, z) = x4 + 4y2 + 2xz2 − 3yez − 1. Does the
equation f(x,y, z) = 0 implicitly define z as a function of (x,y) locally at
P = (0, 1, 0) or at Q = (1, 0, 0)? If so, is the implicit function differentiable?

Exercise 7.2.16. — Let f = (f1, f2) : R3 → R2 be defined by

f1(x,y, z) = x2 − y2 − z2 − 2y, f2(x,y, z) = (x+ y+ z)2.

Does the equation f(x,y, z) = 0 implicitly define the variables y, z as func-
tions of x locally at the points P1 = (−1, 0, 1), P2 = (0, 0, 0) and P3 =

(1,−2, 1)? Hint: Applying directly Theorem 7.2.6 won’t help!
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7.3. Proof of the IMFT and of the INFT

This section is entirely devoted to proving the inverse function theorem
and the implicit function theorem.

We start by showing that the INFT and the IMFT are equivalent, so it
suffices proving one of them. Then we prove the IMFT.

7.3.1. IMFT and INFT are equivalent — Here we show how to prove the
INFT assuming the IMFT and, conversely, how to prove the IMFT assum-
ing the INFT. (To complete our proof, only the former is needed, so feel free
to skip the second point below).

• We begin by IMFT =⇒ INFT. Let F : U → Rn be a continuosly dif-
ferentiable function, with U ⊆ Rn open, and assume that JF(x0) is
invertible. Define the function f : U×Rn → Rn by

f(x,y) = F(x) − y.

Note that the equation f(x,y) = 0 locally defines x as a function of y
at the point (x0, F(x0)) if and only if F is locally invertible at the point
x0.

Since F is continuously differentiable on U, the function f is also con-
tinuously differentiable on U×Rn. Moreover, the matrix

Jxf(x0, F(x0)) = JF(x0)

is invertible. Therefore, if we apply Theorem 7.2.6 to the equation
f(x,y) = 0 we find a local implicit function G : V → W such that the
following equality holds:

{(x, F(x)) : x ∈W} = {(x,y) ∈W×V : f(x,y) = 0} = {(G(y),y) : y ∈ V}.

Therefore, in W × V we have that F(G(y)) = y and that G(F(x)) = x.
In other words the restriction of F to W is invertible, with inverse
given byG. Moreover, by Theorem 7.2.6 the inverseG is continuously
differentiable.

• Conversely, for INFT =⇒ IMFT, we are given an open subset U ⊆
Rn×Rm, a point (x0,y0) ∈ U and a continuously differentiable func-
tion f : U→ Rm such that f(x0,y0) = 0 and we are assuming Jyf(x0,y0)
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is invertible. We define the function:
F : U→ Rn ×Rm

(x,y) 7→ (x, f(x,y)) .

In particular, F(x0,y0) = (x0, 0) and the Jacobian matrix of F at (x,y)
is given by

JF(x,y) =

(
Id 0

Jxf(x,y) Jyf(x,y)

)
.

This implies that the matrix JF(x0,y0) is invertible. Therefore, we
may apply Theorem 7.1.2 to the function F, to obtain a local inverse
G : V →W of F at the point (x0,y0). The function G consists of n+m

coordinates:

G(x,y) = (G1(x,y), . . . ,Gn(x,y),Gn+1(x,y), . . . ,Gn+m(x,y)) .

For convenience, we setG ′1(x,y) to be the function defined by the first
n components of G and G ′2(x,y) to be the function defined by the last
m components of G.

Let φ(x) = G ′2(x, 0) and set

V ′ :=W ∩ (Rn × {0}) ⊆ Rn × {0} = Rn,

W ′ := V ∩ ({x0}×Rm) ⊆ {x0}×Rm = Rm.

We claim that φ : V ′ → W ′ is the local implicit function for the equa-
tion f(x,y) = 0. In order to prove this, we need to show the following
equality of sets:

{(x,y) ∈ V ′ ×W ′ : f(x,y) = 0} = {(x,φ(x)) : x ∈ V ′}.

Let (x,y) be a point of the Left Hand Side, then y = G ′2(x, f(x,y))
because G ◦ F is the identity on V . Moreover, since f(x,y) = 0 we
have that:

y = G ′2(x, 0) = φ(x).

Conversely let (x,φ(x)) be a point of the Right Hand side. From the
fact that F(G(x, 0)) = (x, 0) we deduce the equalities G ′1(x, 0) = x and
f(G ′1(x, 0),G ′2(x, 0)) = 0 for all x. Using the definition of φ, we obtain

f(x,φ(x)) = f(x,G ′2(x, 0)) = 0.

To conclude, notice that φ is continuously differentiable, since G ′2 is
continuously differentiable by Theorem 7.1.2.
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7.3.2. Proof of the IMFT, or Theorem 7.2.6 — This section is entirely de-
voted to the proof of the Implicit Function Theorem. The proof is an ap-
plication of the Contraction Mapping Theorem, and it uses the Mean Value
Theorem and the continuity of the differential, which we discussed in pre-
vious sections.

The details of the proof are quite involved, but the idea is similar to the
proof of the existence-uniqueness theorem for Cauchy problems.

Assuming the hypotheses of Theorem 7.2.6, for all positive real num-
bers α and β we define the sets:

Vα := {x ∈ Rn : |xi − (x0)i| 6 α, ∀i = 1, . . . ,n} ⊆ Rn,

Wβ := {y ∈ Rm : |yi − (y0)i| 6 β, ∀i = 1, . . . ,m} ⊆ Rm

(respectively the balls of radius α and β centered at x0 and at y0 in Rn ad
Rm with the distance d∞). Moreover, we define the set of functions

cont(Vα,Wβ) =
{
g : Vα →Wβ : g is continuous

}
.

For every two functions g and h in cont(Vα,Wβ), we define:

dL∞(f,g) := max
x∈Vα

‖f(x) − g(x)‖ .

(The maximum exists because x 7→ ‖f(x) − g(x)‖ is continuous and Vα is
compact).

Notice that dL∞ defines a metric on cont(Vα,Wβ) and that the metric
space

(
cont(Vα,Wβ),dL∞) is complete (Exercise 7.3.4).

Recall that Jyf(x0,y0) is invertible by hypothesis. We define a map

Ω : cont(Vα,Wβ)→ cont(Vα,Wβ)

mapping ψ : Vα →Wβ to the function:

Ω(ψ) : Vα →Wβ

x 7→ ψ(x) − Jyf(x0,y0)
−1 · f(x,ψ(x)).

The key to the proof of the existence of a continuous implicit function
is the observation that a function φ is a fixed point of Ω if and only if
φ : Vα →Wβ is a local implicit function for the equation f(x,y) = 0.

Our task is therefore to find α and β such that the function Ω satisfies
the following properties:

1. The functionΩ is well-defined.
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2. The functionΩ is a contraction.

Then, applying the Contraction Mapping Theorem, we will find open
sets

V := {x ∈ Rn : |xi − (x0)i| < α, ∀i = 1, . . . ,n} ⊂ Rn,

W := {y ∈ Rm : |yi − (y0)i| < β, ∀i = 1, . . . ,m} ⊂ Rm,

and a unique fixed point φ : V → W that is continuous and that is a local
implicit function (of y as a function of x) for the equation f(x,y) = 0 at
(x0,y0). (The fact that φ is continuously differentiable is left as an exercise).

We now prove that we can find α > 0 and β > 0 in such a way that Ω
satisfies Properties 1 and 2 above.

From now on, to simplify the notation, we will make the extra assump-
tion that the Jacobian matrix

Jyf(x0,y0) = Id

equals the identity matrix. (This can be achieved by modifying the original
function

(x,y) 7→ f(x,y)

by
(x,y) 7→ Jyf(x0,y0)

−1 · f(x,y).)

In particular, we have that

‖Jyf(x0,y0)‖op =
∥∥Jyf(x0,y0)

−1∥∥
op

= 1

and that
Ω(ψ) : Vα →Wβ

x 7→ ψ(x) − f(x,ψ(x)).

Because f is continuously differentiable, we have in particular that Jyf
is defined and continuous onU. By continuity at (x0,y0), we may find δ > 0
and β > 0 such that:

‖Jyf(x0,y0) − Jyf(x,y)‖op 6
1

2
√
m

(7.4)

for all (x,y) ∈ Vδ ×Wβ.
Then, since f(x0,y0) = 0 and because the function (x,y) 7→ ‖f(x,y)‖ is

continuous at (x0,y0), we can find 0 < α 6 δ such that:

‖f(x,y0)‖ 6
β

2
. (7.5)
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for all x ∈ Vα. We claim that these α and β work for proving Properties 1.
and 2. above.

1. For every continuous function ψ : Vα → Wβ, the function Ω(ψ) is
continuous because it is the composite of continuous functions. More-
over, we will prove the inequality

‖Ω(ψ)(x) − y0‖ 6 β (7.6)

for all x ∈ Vα, which implies that Ω(ψ)(x) ∈ Wβ because d∞ 6 d2.
Therefore if we can prove (7.6), we deduce that Ω : cont(Vα,Wβ) →
cont(Vα,Wβ) is well-defined.

In order to prove (7.6), we observe that

‖Ω(ψ)(x0) − y0‖ = ‖ψ(x) − f(x,ψ(x)) − y0‖ , (7.7)

which is then equal to

‖ψ(x) − f(x,ψ(x)) − (y0 − f(x,y0)) − f(x,y0)‖ . (7.8)

Fix x and define Gx : Wβ → Rm by Gx(y) = y − f(x,y). Then the
Jacobian matrix of Gx equals

JGx(y) = Id− Jyf(x,y).

Therefore JGx0(y0) = Id− Id = 0 and we have

‖JGx(y)‖op = ‖Id− Jyf(x,y)‖op

6
1

2
√
m

, (7.9)

for all (x,y) ∈ Vα ×Wβ because of (7.4).

We conclude the proof of (7.6) by the following argument:

(7.8) 6 ‖ψ(x) − f(x,ψ(x)) − (y0 − f(x,y0))‖+ ‖f(x,y0)‖

= ‖Gx(ψ(x)) −Gx(y0)‖+ ‖f(x,y0)‖

6
1

2
√
m
‖ψ(x) − y0‖+ ‖f(x,y0)‖

6
β

2
+
β

2
= β
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for all (x,y) ∈ Vα×Wβ. For the first summand of the second inequal-
ity we used the Mean Value Theorem combined with Inequality (7.9).
For the last inequality we used the inequality d2 6

√
m · d∞ (exer-

cise!) for distances in Rm (for the first summand) and Inequality (7.5)
(for the second summand). This concludes the proof of Part 1. (the
fact thatΩ is well defined).

2. Now we show Part 2, namely that Ω is a contraction. By the Mean
Value Theorem combined with Inequality (7.9), for every ψ1 and ψ2

in cont(Vα,Wβ) we have:

‖Ω(ψ1)(x) −Ω(ψ2)(x)‖ 6
1

2
√
m
‖ψ1(x) −ψ2(x)‖ .

Since 1
2
√
m
< 1, we conclude thatΩ is a contraction.

This concludes the proof of the existence of a continuous local implicit func-
tion. The fact that the function is also continuously differentiable is left as
an exercise.

Exercise 7.3.3. — Prove that φ is also continuously differentiable.

Exercise 7.3.4. — Let Vα andWβ be as in 7.3.2. Prove that

(
cont(Vα,Wβ),dL∞)

is a metric space, and then that it is complete.

Hint: Follow what we have done in the first part of Chapter 5. To show
that the metric space is complete, prove that cont(Vα, Rn) is complete and
then that cont(Vα,Wβ) is a closed subset of cont(Vα, Rn).

7.4. Lagrange multipliers (EXTRA)

An important application of the implicit function theorem is a result that
goes under the name of Lagrange’s multipliers method.

The problem addressed by that method is the following. We are given
an open subsetU ⊆ Rn+m, a number of constraint functions g1, . . . ,gm : U→
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R, and a cost function f : U→ R that we seek to minimise (or maximise) sub-
ject to the constraints 

g1(x1, . . . , xn+m) = 0,

g2(x1, . . . , xn+m) = 0,

. . .

gm(x1, . . . , xn+m) = 0.

(7.10)

In other words, we want to find the minimum of f on the subset X ofU that
is defined by the system of equations (7.10).

An example of this that was discussed extensively in Year 1 is the case
when m = 0 (i.e. when there are no constraints). When looking for local
minima (and maxima) of a differentiable function f defined on some open
subset U of Rn, we can just consider the points of U where the differential
of f (or equivalently its gradient, since f is scalar-valued) vanishes. This
works because, if P is a local extremal point (a local minimum or maxi-
mum), then the differential DfP is zero (it is the zero function). Let’s start
by reviewing this last assertion.

Remark 7.4.1. — If a function f : U → R is differentiable and x0 ∈ U is a
local extremal point of f, then Dfx0 = 0. (This is also known as Fermat’s
theorem).

Indeed, if x0 is (for example) a local minimum of f, then f(x) > f(x0) for
all x ∈ V for some V open containing x0. Taking the limits

lim
t→0+

f(x0 + tv) − f(x0)

t
> 0 lim

t→0−

f(x0 + tv) − f(x0)

t
6 0

we deduce that Dfv(x0) = 0 for all directions v, hence the differential
Df(x0) must equal zero (= the zero linear function).

The result of Lagrange’s multipliers is obtained by combining the above
idea with the Implicit Function Theorem.

Theorem 7.4.2. — (Lagrange’s multipliers) In the above setup, assume further-
more that the function g = (g1, . . .gm) : U→ Rm is continuously differentiable,
that f : U→ Rm is differentiable, and that the matrix Jyg(x0,y0) is invertible for
all (x0,y0) ∈ U, and let

X = {(x,y) ∈ U : g(x,y) = 0} ⊆ U ⊆ Rn+m.
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If the restriction f|X of f to X has a local extremal point at some P ∈ X, then
there exists (λ1, . . . , λm) ∈ Rm such that

Jf(P) +

m∑
k=1

λk · Jgk(P) = 0. (7.11)

(This is an equality of row vectors in Rn+m).

It is perhaps worth noting that if a point is a local maximum (or mini-
mum) for f on U, then it is also a local maximum (or minimum) for f on X,
but the converse is not true (can you think of a simple example?).

Note that the Jacobian matrices Jf = ∇f and Jgk = ∇gk are 1 ×m
matrices, hence row vectors (because the functions f,g1, . . . ,gm are scalar-
valued). One could prove that the vectors ∇g1, . . . ,∇gm span the normal
directions to X in Rn+m (to prove this assertion we should also define the
notion of ”normal directions”).

In the proof we use our usual convention that x ∈ Rn and y ∈ Rm.

Proof. (Sketch). Apply the IMFT and find a local implicit function φ that
parameterises X near P, so there are V and W open subsets of Rn and Rm

such that P ∈ V ×W ⊆ U, and an implicit function φ : V →W such that

X∩ (V ×W) = {(x,φ(x)) : x ∈ U}.

Now if f has a local extremal point at P = (x0,y0) ∈ X, then so does
(f ◦φ) : U→ R. The latter is a function from an open subset of Rn (without
constraints), and we can apply the usual criterion on the vanishing of the
differential.

The Chain Rule, combined with the formula for the differential of the
implicit function, gives:

0 = J(f◦ (Id,φ))(x0) = Jf(P) ·

(
Id

Jφ(x0)

)
= Jxf(P)+ Jyf(P) ·

(
−Jyg(P)

−1 · Jxg(P)
)

.

By defining
(λ1, . . . , λm) := Jyf(P) · Jyg(P)−1

we obtain

Jxf(P) +

m∑
k=1

λk · Jxgk(P) = 0,

which is Equation (7.11), but only for the first n components of the vectors.
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For the remainingm components, we have

Jyf(P) = Jyf(P) · (Jyg(P)−1 · Jyg(P)) = (λ1, . . . , λm) · Jyg(p),

where the last equality follows from the definition of (λ1, . . . , λm). This last
equality completes the proof of (7.11) for the remainingm components.

Remark 7.4.3. — The Lagrange multipliers method helps finding local ex-
tremal points (i.e. local minima and maxima). A further analysis is required
to determine whether those local extremal points are actually global min-
ima or maxima (just as in the case of the same question for the case of a
differentiable function f : U→ R on an open subset U ⊆ Rn).
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