2023 SUMMER SCHOOL ON DIFFERENTIAL GEOMETRY (RIEMANNIAN GEOMETRY)

Q1. (10 ${ }^{\prime}$) Let M^{n} be a differentiable n-manifold with differential structure $\mathcal{C}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$. Please construct a differential structure for

$$
T^{(1,1)} M:=\left\{(p, v, \omega): p \in M, v \in T_{p} M, \omega \in T_{p}^{*} M\right\}
$$

Q2. (30') Let

$$
\mathbb{S}^{n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}
$$

be the unit n-sphere in $\left(\mathbb{R}^{n+1}, g_{\mathbb{E}}\right)$ with the induced metric $g_{\mathbb{S}}$. Please
(1) compute the metric expression of $g_{\mathbb{S}}$ under stereographic projection

$$
\phi: \mathbb{R}^{n} \rightarrow \mathbb{S}^{n},\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto\left(\frac{2 y_{1}}{1+|y|^{2}}, \ldots, \frac{2 y_{n}}{1+|y|^{2}}, \frac{|y|^{2}-1}{|y|^{2}+1}\right),
$$

where $|y|^{2}=\sum_{i=1}^{n} y_{i}^{2}$.
(2) compute the sectional curvature of $g_{\mathbb{S}}$ with above metric expression.

Q3. (15') Consider the upper plane model $\left(\mathbb{R}_{+}^{n}, g_{\mathbb{H}}\right)$ of hyperbolic space, where

$$
\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\} \text { and } g_{\mathbb{H}}=\frac{1}{x_{n}^{2}} g_{\mathbb{E}} .
$$

Please verify that: every geodesic in $\left(\mathbb{R}_{+}^{n}, g_{\mathbb{H}}\right)$ is either a ray or a semi-circle perpendicular to the plane $\left\{x_{n}=0\right\}$.

Q4. (10') Let (M, g) be a complete Riemannian manifold and p be a point in M. Please verify that: $\left(d \exp _{p}\right)_{v}$ is not injective for $v \in T_{p} M$ if and only if $\gamma(1)$ is a conjugate point of $\gamma(0)$ along $\gamma(s)=\exp (s v):[0,1] \rightarrow(M, g)$.

Q5. (15^{\prime}) Let (M, g) be $\left(\mathbb{S}^{n}, g_{\mathbb{S}}\right)$ and p be some point in \mathbb{S}^{n}. Please verify that: the injective region $M_{i n j}(p)=\mathbb{S}^{n} \backslash\{-p\}$ and the cut locus $C(p)=-p$.
(Hint: use the fact that geodesics in $\left(\mathbb{S}^{n}, g_{\mathbb{S}}\right)$ are great circles)
Q6. (20') Let (M, g) be a closed Riemannian manifold with $\operatorname{Ric}(g) \geq 0$ and $\operatorname{diam}(M, g) \leq D_{0}$. By ϵ-separation we mean a subset S of (M, g) such that $d_{g}(x, y) \geq \epsilon$ for every pair of points $x, y \in S$.

Please prove: for every $\epsilon>0$ there is an integer $N=N(\epsilon)$ such that each ϵ-separation S satisfies $\# S \leq N$. (Hint: use volume comparison theorem)

