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Introduction to second order linear elliptic PDEs

Examl]

Question 1. Let u be a non-negative harmonic function in Br(0). Prove the Harnack
inequality: for any x € Bg(0),
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Proof. By the Poisson integral formula, we have
2 .2
u(z) = & || / uy) g
na(n)R Jop, |z —y|*

where «(n) is the volume of unit sphere. Denote r = |z|, since R—r < |zt —y| < R+r
with |y| = R, we have
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Then the Mean Value Property gives us that
1
N= —— ds
u(0) o R /aBR u(y) ds,

which completes the proof. 0

Remark. As a corollary, we shall have a Liouville theorem for bounded harmonic func-
tions in R™. Indeed, We may assume u > 0 in R™. Taking any point x € R™ and
applying the Harnack inequality to any ball Bg(0) with R > |z|, we obtain
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which yields u(z) = u(0) by letting R — +oc.

Question 2. Let Q) be a bounded domain in R™ and L be a linear operator given by
L = Z aij&j -+ Zbﬁz +c
ij=1 i=1

1Solutions are given by Ling Wang (lingwang@stu.pku.edu.cn)
1


mailto:lingwang@stu.pku.edu.cn

where a;j,b;,c € L>(Q) N C(Q) and a;; = aj;. Suppose that L is strictly elliptic and
there exists a function v € C(Q) N C*(Q) such that v >0 in Q and Lv < 0 in Q. Prove
that if u € C(2) N C?(Q) satisfies Lu > 0 in Q and u < 0 on 99, then u < 0 in Q.

Proof. Let w = %, we have
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Hence, there is
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Since Lv < 0 and v > 0, we know that % < 0. Note that w < 0 on 0f2, then the
classical maximum principle of second order elliptic PDEs gives us that w < 0 in €.
Hence we have u = wv < 0 in Q. L]

Question 3. Let Q be a bounded domain in R™ and L be a linear operator given by

L= Zamﬁm—i—Zbﬁ +c

i,7=1

where a;j,b;,c € L>®(Q) N C(Q),a;; = aji and ¢ < 0. Suppose that L is strictly elliptic
and Q) satisfies the exterior sphere condition at xo € OS2 (i.e. there exists a ball Bg (yo)
such that QN Bg (yo) = 0 and QN Bg (y) = {x0}>. Prove that there exists a function
Wy, € C(Q) N CHQ) such that wy, (10) = 0,wy,(z) > 0 for any x € N\ {x¢} and

Lw,, < —11in Q.
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Proof. Since L is strictly elliptic and a;;, b;, ¢ € L>(Q2) N C(2), we know that there are
positive constants A and A such that

> aymiry; > Mz?, Vo € R, agl, [bil, |e] < A
ij=1
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Wy, () = e — edHR=ale=wl vy c Q)
where d = diam(f2) and « > 0 is a constant to be determined later. It is clear that
Wy, € C(Q) NC2(Q) and wy, (z0) = 0, Wy, (z) > 0 for any x € 9N\ {z}. Next, we show
Lw,, < —11in ). Indeed, a direct calculating yields
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Since llrJqu (—oz2/\+ ((RA = X)/R+A)a+A) = —oo, we may choose a sufficiently
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large constant a > 0 such that —a?A + ((nA — A)/R+ A)a+ A < —1. Then
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Remark. Under the conditions of Question[3, we can use this barrier function wy, to
show that if u € C*(Q) N C(Q) is a solution of Lu = f in Q and u = ¢ on N for some
© € C?(00), then u satisfies a Lipschitz conditions at xy, i.e.

lu(z) — u(zo)| < Clx — x|, Vazeq,
where C' = C(A\, A, R, Q,sup |f], |¢llc2a0))- (The detail is leave to the reader.)
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