2023 Summer School on Differential Geometry
 Introduction to second order linear elliptic PDEs

Exam ${ }^{[1]}$

Question 1. Let u be a non-negative harmonic function in $B_{R}(0)$. Prove the Harnack inequality: for any $x \in B_{R}(0)$,

$$
\left(\frac{R}{R+|x|}\right)^{n-2} \frac{R-|x|}{R+|x|} u(0) \leqslant u(x) \leqslant\left(\frac{R}{R-|x|}\right)^{n-2} \frac{R+|x|}{R-|x|} u(0) .
$$

Proof. By the Poisson integral formula, we have

$$
u(x)=\frac{R^{2}-|x|^{2}}{n \alpha(n) R} \int_{\partial B_{R}} \frac{u(y)}{|x-y|^{n}} \mathrm{~d} S
$$

where $\alpha(n)$ is the volume of unit sphere. Denote $r=|x|$, since $R-r \leq|x-y| \leq R+r$ with $|y|=R$, we have

$$
\begin{aligned}
\frac{1}{n \alpha(n) R} \cdot \frac{R-|x|}{R+|x|} & \left(\frac{1}{R+|x|}\right)^{n-2} \int_{\partial B_{R}} u(y) \mathrm{d} S \leq u(x) \\
& \leq \frac{1}{n \alpha(n) R} \cdot \frac{R+|x|}{R-|x|}\left(\frac{1}{R-|x|}\right)^{n-2} \int_{\partial B_{R}} u(y) \mathrm{d} S .
\end{aligned}
$$

Then the Mean Value Property gives us that

$$
u(0)=\frac{1}{n \alpha(n) R^{n-1}} \int_{\partial B_{R}} u(y) \mathrm{d} S
$$

which completes the proof.
Remark. As a corollary, we shall have a Liouville theorem for bounded harmonic functions in \mathbb{R}^{n}. Indeed, We may assume $u \geq 0$ in \mathbb{R}^{n}. Taking any point $x \in \mathbb{R}^{n}$ and applying the Harnack inequality to any ball $B_{R}(0)$ with $R>|x|$, we obtain

$$
\left(\frac{R}{R+|x|}\right)^{n-2} \frac{R-|x|}{R+|x|} u(0) \leq u(x) \leq\left(\frac{R}{R-|x|}\right)^{n-2} \frac{R+|x|}{R-|x|} u(0)
$$

which yields $u(x)=u(0)$ by letting $R \rightarrow+\infty$.
Question 2. Let Ω be a bounded domain in \mathbb{R}^{n} and L be a linear operator given by

$$
L=\sum_{i, j=1}^{n} a_{i j} \partial_{i j}+\sum_{i=1}^{n} b_{i} \partial_{i}+c
$$

[^0]where $a_{i j}, b_{i}, c \in L^{\infty}(\Omega) \cap C(\Omega)$ and $a_{i j}=a_{j i}$. Suppose that L is strictly elliptic and there exists a function $v \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ such that $v>0$ in $\bar{\Omega}$ and $L v \leqslant 0$ in Ω. Prove that if $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfies $L u \geqslant 0$ in Ω and $u \leqslant 0$ on $\partial \Omega$, then $u \leqslant 0$ in Ω.

Proof. Let $w=\frac{u}{v}$, we have

$$
\begin{aligned}
\partial_{i} w & =\frac{\partial_{i} u}{v}-\frac{\partial_{i} v u}{v^{2}} \\
\partial_{i j} w & =\frac{\partial_{i j} u}{v}-\frac{\partial_{j} v \partial_{i} u}{v^{2}}-\frac{\partial_{i} v \partial_{j} u}{v^{2}}-\frac{\partial_{i j} v u}{v^{2}}+2 \frac{\partial_{i} v \partial_{j} v u}{v^{3}} .
\end{aligned}
$$

Hence, there is

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i j} \partial_{i j} w+\sum_{i=1}^{n} b_{i} \partial_{i} w= & \frac{1}{v} L u-c w-\frac{u}{v^{2}} L v+c w \\
& -\frac{2}{v^{2}} \sum_{i, j=1}^{n} a_{i j} \partial_{i} u \partial_{j} v+\frac{2 u}{v^{3}} \sum_{i, j=1}^{n} a_{i j} \partial_{i} v \partial_{j} v \\
= & \frac{1}{v} L u-\frac{L v}{v} w-\frac{2}{v} \sum_{i, j=1}^{n} a_{i j} \partial_{j} v \partial_{i} w \\
\geq & -\frac{L v}{v} w-\frac{2}{v} \sum_{i, j=1}^{n} a_{i j} \partial_{j} v \partial_{i} w
\end{aligned}
$$

i.e.

$$
\sum_{i, j=1}^{n} a_{i j} \partial_{i j} w+\sum_{i=1}^{n}\left(b_{i}+\frac{2}{v} \sum_{j=1}^{n} a_{i j} \partial_{j} v\right) \partial_{i} w+\frac{L v}{v} w \geq 0
$$

Since $L v \leq 0$ and $v>0$, we know that $\frac{L v}{v} \leq 0$. Note that $w \leq 0$ on $\partial \Omega$, then the classical maximum principle of second order elliptic PDEs gives us that $w \leq 0$ in Ω. Hence we have $u=w v \leq 0$ in Ω.

Question 3. Let Ω be a bounded domain in \mathbb{R}^{n} and L be a linear operator given by

$$
L=\sum_{i, j=1}^{n} a_{i j} \partial_{i j}+\sum_{i=1}^{n} b_{i} \partial_{i}+c
$$

where $a_{i j}, b_{i}, c \in L^{\infty}(\Omega) \cap C(\Omega), a_{i j}=a_{j i}$ and $c \leqslant 0$. Suppose that L is strictly elliptic and Ω satisfies the exterior sphere condition at $x_{0} \in \partial \Omega$ (i.e. there exists a ball $B_{R}\left(y_{0}\right)$ such that $\Omega \cap B_{R}\left(y_{0}\right)=\emptyset$ and $\left.\bar{\Omega} \cap \overline{B_{R}\left(y_{0}\right)}=\left\{x_{0}\right\}\right)$. Prove that there exists a function $w_{x_{0}} \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ such that $w_{x_{0}}\left(x_{0}\right)=0, w_{x_{0}}(x)>0$ for any $x \in \partial \Omega \backslash\left\{x_{0}\right\}$ and $L w_{x_{0}} \leqslant-1$ in Ω.

Proof. Since L is strictly elliptic and $a_{i j}, b_{i}, c \in L^{\infty}(\Omega) \cap C(\Omega)$, we know that there are positive constants λ and Λ such that

$$
\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \geq \lambda|x|^{2}, \forall x \in \mathbb{R}^{n}, \quad\left|a_{i j}\right|,\left|b_{i}\right|,|c| \leq \Lambda
$$

Define

$$
w_{x_{0}}(x)=e^{\alpha d}-e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|}, \quad \forall x \in \bar{\Omega},
$$

where $d=\operatorname{diam}(\Omega)$ and $\alpha>0$ is a constant to be determined later. It is clear that $w_{x_{0}} \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ and $w_{x_{0}}\left(x_{0}\right)=0, w_{x_{0}}(x)>0$ for any $x \in \partial \Omega \backslash\left\{x_{0}\right\}$. Next, we show $L w_{x_{0}} \leqslant-1$ in Ω. Indeed, a direct calculating yields

$$
\begin{aligned}
\partial_{i} w_{x_{0}}(x)= & \alpha \frac{x_{i}-y_{0, i}}{\left|x-y_{0}\right|} e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|}, \\
\partial_{i j} w_{x_{0}}(x)= & \left(\alpha \frac{\delta_{i j}}{\left|x-y_{0}\right|}-\alpha \frac{\left(x_{i}-y_{0, i}\right)\left(x_{j}-y_{0, j}\right)}{\left|x-y_{0}\right|^{3}}\right) e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} \\
& -\alpha^{2} \frac{\left(x_{i}-y_{0, i}\right)\left(x_{j}-y_{0, j}\right)}{\left|x-y_{0}\right|^{2}} e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} .
\end{aligned}
$$

Then there is

$$
\begin{aligned}
L w_{x_{0}}(x)= & {\left[\alpha \frac{a_{i i}}{\left|x-y_{0}\right|}-\alpha \frac{a_{i j}\left(x_{i}-y_{0, i}\right)\left(x_{j}-y_{0, j}\right)}{\left|x-y_{0}\right|^{3}}-\alpha^{2} \frac{a_{i j}\left(x_{i}-y_{0, i}\right)\left(x_{j}-y_{0, j}\right)}{\left|x-y_{0}\right|^{2}}\right.} \\
& \left.+\alpha \frac{b_{i}\left(x_{i}-y_{0, i}\right)}{\left|x-y_{0}\right|}-c\right] e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|}+c e^{\alpha d} \\
\leq & \left(\frac{n \Lambda}{\left|x-y_{0}\right|}-\frac{\lambda \alpha}{\left|x-y_{0}\right|}-\alpha^{2} \lambda+\Lambda \alpha+\Lambda\right) e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} \\
\leq & \left(-\alpha^{2} \lambda+((n \Lambda-\lambda) / R+\Lambda) \alpha+\Lambda\right) e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} .
\end{aligned}
$$

Since $\lim _{\alpha \rightarrow+\infty}\left(-\alpha^{2} \lambda+((n \Lambda-\lambda) / R+\Lambda) \alpha+\Lambda\right)=-\infty$, we may choose a sufficiently large constant $\alpha>0$ such that $-\alpha^{2} \lambda+((n \Lambda-\lambda) / R+\Lambda) \alpha+\Lambda \leq-1$. Then

$$
\begin{aligned}
L w_{x_{0}}(x) & \leq\left(-\alpha^{2} \lambda+((n \Lambda-\lambda) / R+\Lambda) \alpha+\Lambda\right) e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} \\
& \leq-e^{\alpha(d+R)-\alpha\left|x-y_{0}\right|} \\
& \leq-1
\end{aligned}
$$

Remark. Under the conditions of Question 3, we can use this barrier function $w_{x_{0}}$ to show that if $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution of $L u=f$ in Ω and $u=\varphi$ on $\partial \Omega$ for some $\varphi \in C^{2}(\partial \Omega)$, then u satisfies a Lipschitz conditions at x_{0}, i.e.

$$
\left|u(x)-u\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right|, \quad \forall x \in \Omega,
$$

where $C=C\left(\lambda, \Lambda, R, \Omega, \sup |f|,\|\varphi\|_{C^{2}(\partial \Omega)}\right)$. (The detail is leave to the reader.)

[^0]: ${ }^{1}$ Solutions are given by Ling Wang (lingwang@stu.pku.edu.cn)

