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1 Introduction

Describing continuous signals as a superposition of waves is one of the most useful concepts in
physics, and features in many branches – acoustics, optics, quantum mechanics for example. The
most common and useful technique is the Fourier technique, which were invented by Joseph Fourier
in the early 19th century. In many cases of relevance in physics, the equations involved are linear:
this means that di↵erent waves satisfying the equation can be added to generate a new solution,
in which the waves evolve independently. This allows solutions to be found for many ordinary
di↵erential equations (ODEs) and partial di↵erential equations (PDEs). We will also explore some
other techniques for solving common equations in physics, such as Green’s functions, and separation
of variables, and investigate some aspects of digital sampling of signals.

As a reminder of notation, a single wave mode might have the form

 (x) = a cos(kx+ �). (1.1)

Here, a is the wave amplitude; � is the phase; and k is the wavenumber, where the wavelength is
� = 2⇡/k. Equally, we might have a function that varies in time: then we would deal with cos!t,
where ! is angular frequency and the period is T = 2⇡/!. In what follows, we will tend to assume
that the waves are functions of x, but this is an arbitrary choice: the mathematics will apply equally
well to functions of time.

2 Introduction to the Dirac delta function

But before we can get on with Fourier analysis, it is necessary to take a short detour, to introduce
a function that will be used a great deal later in this course – but which is required immediately
by some of the other physics courses. This is the Dirac delta function, which is opposite extreme
of an oscillating function such as cos kx: such a wave extends infinitely far with no reduction in
the strength of oscillation, but a delta-function represents an e↵ect that is entirely localised or
instantaneous – sometimes called an impulse. Informally, it is to be thought of as an infinitely
narrow (and infinitely tall) spike. Mathematicians think it’s not a proper function, since a function
is a machine, f(x), that takes any number x and replaces it with a well-defined number f(x). Dirac
didn’t care, and used it anyway. Eventually, the ‘theory of distributions’ was invented to say he
was right to follow his intuition.

2.1 Definition and basic properties

The Dirac delta function �(x� d) is defined by two expressions. First, it is zero everywhere except
at the point x = d where it is infinite:

�(x� d) =

(
0 for x 6= d ,

! 1 for x = d .
(2.2)

Secondly, it tends to infinity at x = d in such a way that the area under the Dirac delta function is
unity: Z 1

�1
dx �(x� d) = 1 . (2.3)
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2.1.1 The delta function as a limiting case

To see how a spike of zero width can have a well-defined area, it is helpful (although not strictly
necessary) to think of the delta function as the limit of a more familiar function. The exact shape
of this function doesn’t matter, except that it should look more and more like a (normalized)
spike as we make it narrower. The simplest possibility is the ‘top-hat’ function, which is zero if
|x| > a and has height h = 1/(2a) for smaller |x|, so that it is normalized with unit area. Let
⇧a(x) be a normalized top-hat of width 2a centred at x = 0 as in Eqn. (4.15) — we’ve made the
width parameter obvious by putting it as a subscript here. The Dirac delta function can then be
represented as

�(x) = lim
a!0

⇧a(x) . (2.4)

Similarly, �(x � c) is a spike centred at x = c (it has to be centred at whatever value of x makes
the argument of the function vanish); this can be represented as a top-hat centred at x = c.

2.2 Sifting property

The sifting property of the Dirac delta function is that, given some function f(x):

Z 1

�1
dx �(x� d) f(x) = f(d) (2.5)

i.e. the delta function picks out the value of the function at the position of the spike (so long as it
is within the integration range). This is just like the sifting property of the Kronecker delta inside
a discrete sum.

2.2.1 Compare with the Kronecker delta

The Kronecker delta

�mn =

⇢
1 m = n

0 m 6= n
(2.6)

plays a similar sifting role for discrete modes, as the Dirac delta does for continuous modes. For
example:

1X

n=1

An�mn = Am (2.7)

which is obvious when you look at it. Be prepared to do this whenever you see a sum with a
Kronecker delta in it.

2.2.2 Proving the sifting property

We can use the representation of the Dirac delta function at the limit of a top-hat to prove the
sifting property:

Z 1

�1
dx f(x) �(x) =

Z 1

�1
dx f(x) lim

a!0
⇧a(x) = lim

a!0

Z 1

�1
dx f(x) ⇧a(x) . (2.8)

We are free to pull the limit outside the integral because nothing else depends on a. Substituting
for ⇧a(x), the integral is only non-zero between �a and a. Similarly, we can pull the normalization
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factor out to the front: Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

Z a

�a

dx f(x) . (2.9)

What this is doing is averaging f over a narrow range of width 2a around x = 0. Provided the
function is continuous, this will converge to a well-defined value f(0) as a ! 0 (this is pretty well
the definition of continuity).

3 Fourier Series

Learning outcomes

In this section we will learn how Fourier series (real and complex) can be used to represent functions
and sum series. We will also see what happens when we use truncated Fourier series as an approx-
imation to the original function, including the Gibbs phenomenon for discontinuous functions.

3.1 Overview

Fourier series are a way of expressing a function as a sum, or linear superposition, of waves of
di↵erent frequencies:

f(x) =
X

i

ai cos(kix+ �i). (3.10)

This becomes more well specified if we consider the special case where the function is periodic with
a period 2L. This requirement means that we can only consider waves where a whole number of
wavelengths fit into 2L: 2L = n� ) k = n⇡/L. Unfortunately, this means we will spend a lot of
time writing n⇡/L, making the formulae look more complicated than they really are. Once you are
confident, it is clearer to write n⇡/L just as kn.

A further simplification is to realize that the phase of the waves need not be dealt with explicitly.
This is because of the trigonometric identity (which you should know)

cos(A+B) = cos(A) cos(B)� sin(A) sin(B). (3.11)

Thus a single wave mode of given phase can be considered to be the combination of a sin and a cos
mode, both of zero phase.

• Fourier Series deal with functions that are periodic over a finite interval. e.g. �1 < x < 1.
The function is assumed to repeat outside this interval.

• Fourier Series are useful if (a) the function really is periodic, or (b) we only care about the
function in a finite range (e.g. �⇡ < x < ⇡). We’ll discuss this more in Sec. 3.7.

• If the range is infinite, we can use a Fourier Transform (see section 4).

• We can decompose any function we like in this way (well, any that satisfy some very mild
mathematical restrictions).

• The sines and cosines are said to form a complete set. This means the same as the last bullet
point. We won’t prove this.

4



• One can decompose functions in other complete sets of functions (e.g. powers: the Taylor
series is an example of this), but the Fourier Series is perhaps the most common and useful.
Most of this course will be concerned with Fourier Series and Fourier Transforms (see later).

3.2 Periodic Functions

Periodic functions satisfy
f(t+ T ) = f(t) (3.12)

for all t. T is then the period. Similarly, a function can be periodic in space: f(x+X) = f(x).

Exercise: Show that if f(t) and g(t) are periodic with period T , then so are af(t) + bg(t) and
cf(t)g(t), where a, b, c are constants.

Note that a function which is periodic with a period X is also periodic with period 2X, and indeed
periodic with period nX, for any integer n. The smallest period is called the fundamental period.

Note also that the function does not have to be continuous.

Examples:

• sin x and cos x both have a fundamental period of 2⇡.

• sin
�
n⇡x
L

�
has a period of 2L/n, where n is an integer.

• So sin
�
n⇡x
L

�
and cos

�
n⇡x
L

�
all have periods 2L as well as 2L/n (for all integer n).

• Note that the boundary of the period can be anything convenient: 0  x  2L for example,
or a  x  a+ 2L for any a. Since it is periodic, it doesn’t matter.

3.3 The Fourier expansion

Within the interval �L  x  L, we can write a general (real-valued) function as a linear superpo-
sition of these Fourier modes:

f(x) =
1

2
a0 +

1X

n=1

an cos
⇣
n⇡x

L

⌘
+

1X

n=1

bn sin
⇣
n⇡x

L

⌘

=
1

2
a0 +

1X

n=1

h
an cos

⇣
n⇡x

L

⌘
+ bn sin

⇣
n⇡x

L

⌘i
(3.13)

where an and bn are (real-valued) expansion coe�cients, also known as Fourier components. The
reason for the unexpected factor 1/2 multiplying a0 will be explained below.

3.3.1 What about n < 0?

We don’t need to include negative n because the Fourier modes have a well defined symmetry (even
or odd) under n ! �n: let’s imagine we included negative n and that the expansion coe�cients
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are An and Bn:

f(x) =
A0

2
+
X

±n

h
An cos

⇣
n⇡x

L

⌘
+Bn sin

⇣
n⇡x

L

⌘i
(3.14)

=
A0

2
+

1X

n=1


An cos

⇣
n⇡x

L

⌘
+ A�n cos

✓
�n⇡x

L

◆
+Bn sin

⇣
n⇡x

L

⌘
+B�n sin

✓
�n⇡x

L

◆�
.

(3.15)

Now, cos
�
�

n⇡x
L

�
= cos

�
n⇡x
L

�
and sin

�
�

n⇡x
L

�
= � sin

�
n⇡x
L

�
, so we can rewrite this as

f(x) =
A0

2
+

1X

n=1

h
(An + A�n) cos

⇣
n⇡x

L

⌘
+ (Bn � B�n) sin

⇣
n⇡x

L

⌘i
. (3.16)

At this point An and A�n are unknown constants. As they only appear summed together (rather
than separately) we may as well just rename them as a single, unknown constant a0 = A0, an ⌘

An + A�n, (n � 1). We do the same for bn ⌘ Bn � B�n. So, overall it is su�cient to consider just
positive values of n in the sum.
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FOURIER ANALYSIS: LECTURE 2

3.4 Orthogonality

Having written a function as a sum of Fourier modes, we would like to be able to calculate the
components. This is made easy because the Fourier mode functions are orthogonal i.e. for non-zero
integers m and n,

Z L

�L

dx cos
⇣
m⇡x

L

⌘
cos
⇣
n⇡x

L

⌘
=

⇢
0 m 6= n

L m = n
(3.17)

Z L

�L

dx sin
⇣
m⇡x

L

⌘
sin
⇣
n⇡x

L

⌘
=

⇢
0 m 6= n

L m = n
(3.18)

Z L

�L

dx cos
⇣
m⇡x

L

⌘
sin
⇣
n⇡x

L

⌘
= 0 . (3.19)

You can do the integrals using the trigonometry identities in Eqn. (3.23) below. Note that one of
the Fourier modes is a constant (the a0/2 term), so we will also need

Z L

�L

dx cos
⇣
n⇡x

L

⌘
=

⇢
0 n 6= 0
2L n = 0

(3.20)

Z L

�L

dx sin
⇣
n⇡x

L

⌘
= 0 (3.21)

Note the appearance of 2L here, rather than L in the n > 0 cases above.

The orthogonality is the fact that we get zero in each case if m 6= n. We refer to the collected
Fourier modes as an orthogonal set of functions.

Let us show one of these results. If m 6= n,
Z L

�L

dx cos
⇣
m⇡x

L

⌘
cos
⇣
n⇡x

L

⌘
=

1

2

Z L

�L

dx


cos

⇢
(m+ n)⇡x

L

�
+ cos

⇢
(m� n)⇡x

L

��

=
1

2

2

4
L sin

n
(m+n)⇡x

L

o

(m+ n)⇡
+

L sin
n

(m�n)⇡x
L

o

(m� n)⇡

3

5

L

�L

= 0 if m 6= n. (3.22)

If m = n, the second cosine term is cos 0 = 1, which integrates to L.

ASIDE: useful trigonometric relations To prove the orthogonality, the following formulæ are
useful:

2 cosA cosB = cos(A+B) + cos(A� B)

2 sinA cosB = sin(A+B) + sin(A� B)

2 sinA sinB = � cos(A+B) + cos(A� B)

2 cosA sinB = sin(A+B)� sin(A� B) (3.23)
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To derive these, we write ei(A±B) = e
iA
e
±iB, and rewrite each exponential using e

±i✓ = cos ✓± i sin ✓.
Add or subtract the two ± expressions and take real or imaginary parts as appropriate to get each
of the four results. Alternatively, the orthogonality can be proved using the complex representation
directly: cos(kx) = [exp(ikx) + exp(�ikx)]/2, so a product of cosines always generates oscillating
terms like exp(�ix�k); these always integrate to zero, unless �k = 0.

3.5 Calculating the Fourier components

The Fourier basis functions are always the same. When we expand di↵erent functions as Fourier
series, the di↵erence lies in the values of the expansion coe�cients. To calculate these Fourier
components we exploit the orthogonality proved above. The approach will be the same as we follow
when we extract components of vectors, which are expressed as a sum of components times basis
functions: v =

P
i aiei. The basis vectors are orthonormal, so we extract the j

th component just
by taking the dot product with ej to project along that direction:

ej · v = ej ·
X

i

aiei = aj. (3.24)

This works because all the terms in the series give zero, except the one we want. The procedure
with Fourier series is exactly analogous:

1. Choose which constant we wish to calculate (i.e. am or bm for some fixed, chosen value of m)

2. Multiply both sides by the corresponding Fourier mode (e.g. cos
�
m⇡x
L

�
if we are interested in

am or sin
�
m⇡x
L

�
if we are trying to find bm)

3. Integrate over the full range (�L  x  L in this case)

4. Rearrange to get the answer.

So, to get am:

Z L

�L

dx cos
⇣
m⇡x

L

⌘
f(x) (3.25)

=
1

2
a0

Z L

�L

dx cos
⇣
m⇡x

L

⌘
(3.26)

+
1X

n=1


an

Z L

�L

dx cos
⇣
m⇡x

L

⌘
cos
⇣
n⇡x

L

⌘
+ bn

Z L

�L

dx cos
⇣
m⇡x

L

⌘
sin
⇣
n⇡x

L

⌘�
(3.27)

= a0.L �m0 +
1X

n=1

Lan �mn (3.28)

= Lam. (3.29)

(3.30)

�mn is the Kronecker delta function:

�mn =

⇢
1 m = n

0 m 6= n
(3.31)
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Rearranging:

am =
1

L

Z L

�L

dx cos
⇣
m⇡x

L

⌘
f(x) (3.32)

Similarly, bm =
1

L

Z L

�L

dx sin
⇣
m⇡x

L

⌘
f(x) . (3.33)

So this is why the constant term is defined as a0/2: it lets us use the above expression for am for
all values of m, including zero.

3.6 Even and odd expansions

What if the function we wish to expand is even:f(�x) = f(x), or odd: f(�x) = �f(x)? Because the
Fourier modes are also even (cos

�
n⇡x
L

�
) or odd (sin

�
n⇡x
L

�
), we can simplify the Fourier expansions.

3.6.1 Expanding an even function

Consider first the case that f(x) is even:

bm =
1

L

Z L

�L

dx sin
⇣
m⇡x

L

⌘
f(x) =

1

L

Z L

0

dx sin
⇣
m⇡x

L

⌘
f(x) +

1

L

Z 0

�L

dx sin
⇣
m⇡x

L

⌘
f(x) (3.34)

In the second integral, make a change of variables y = �x ) dy = �dx. The limits on y are L ! 0,
and use this minus sign to switch them round to 0 ! L. f(x) = f(�y) = +f(y) because it is an
even function, whereas sin

�
�

m⇡y
L

�
= � sin

�
m⇡y
L

�
as it is odd. Overall, then:

bm =
1

L

Z L

0

dx sin
⇣
m⇡x

L

⌘
f(x)�

1

L

Z L

0

dy sin
⇣
m⇡y

L

⌘
f(y) = 0 (3.35)

i.e. the Fourier decomposition of an even function contains only even Fourier modes. Similarly, we
can show that

am =
1

L

Z L

0

dx cos
⇣
m⇡x

L

⌘
f(x) +

1

L

Z L

0

dy cos
⇣
m⇡y

L

⌘
f(y) =

2

L

Z L

0

dx cos
⇣
m⇡x

L

⌘
f(x). (3.36)

3.6.2 Expanding an odd function

For an odd function we get a similar result: all the am vanish, so we only get odd Fourier modes,
and we can calculate the bm by doubling the result from integrating from 0 ! L:

am = 0 (3.37)

bm =
2

L

Z L

0

dx sin
⇣
m⇡x

L

⌘
f(x) (3.38)

We derive these results as before: split the integral into regions of positive and negative x; make
a transformation y = �x for the latter; exploit the symmetries of f(x) and the Fourier modes
cos
�
m⇡x
L

�
, sin

�
m⇡x
L

�
.

Example: f(x) = e
�|x| for �1 < x < 1. The fundamental period is 2.
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Figure 3.1: e�|x| in �1 < x < 1.

The function is symmetric, so we seek a cosine series, with L = 1:

am =
2

L

Z L

0

dx cos
⇣
m⇡x

L

⌘
f(x)

= 2

Z 1

0

dx cos(m⇡x)e�x

= 2

Z 1

0

dx
1

2

�
e
im⇡x + e

�im⇡x
�
e
�x

=

Z 1

0

dx
�
e
im⇡x�x + e

�im⇡x�x
�

=


e
(im⇡�1)x

im⇡ � 1
+

e
�(im⇡+1)x

�(im⇡ + 1)

�1

0

(3.39)

(3.40)

Now e
im⇡ = (ei⇡)m = (�1)m, and similarly e

�im⇡ = (�1)m, so (noting that there is a contribution
from x = 0)

am =
(�1)me�1

� 1

im⇡ � 1
�

(�1)me�1
� 1

im⇡ + 1

= [(�1)me�1
� 1]


1

im⇡ � 1
�

1

im⇡ + 1

�

= [(�1)me�1
� 1]

2

(im⇡ � 1)(im⇡ + 1)

=
2[(�1)me�1

� 1]

�m2⇡2 � 1

=
2[1� (�1)me�1]

1 +m2⇡2
. (3.41)
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Figure 3.2: Fourier Series for e�|x| in �1 < x < 1 summed up to m = 1 and to m = 5.

FOURIER ANALYSIS: LECTURE 3

3.7 Periodic extension, or what happens outside the range?

To discuss this, we need to be careful to distinguish between the original function that we expanded
f(x) (which is defined for all x) and the Fourier series expansion fFS(x) that we calculated (which
is valid only for �L  x  L.

Inside the expansion range fFS(x) is guaranteed to agree exactly with f(x). Outside this range, the
Fourier expansion fFS(x) will not, in general, agree with f(x).

As an example, let’s expand the function f(x) = x
2 between �L and L (L is some number, which we

might decide to set equal to ⇡). This is an even function so we know bn = 0. The other coe�cients
are:

a0 =
1

L

Z L

�L

dx x
2 =

2

L

Z L

0

dx x
2 =

2

L

L
3

3
=

2L2

3

am =
1

L

Z L

�L

dx x
2 cos

⇣
m⇡x

L

⌘
=

2

L

Z L

0

dx x
2 cos

⇣
m⇡x

L

⌘
=

2L2

m3⇡3

⇥
y
2 sin y + 2y cos y � 2 sin y

⇤m⇡

0

=
2L2

m3⇡3
⇥ 2m⇡(�1)m =

4L2(�1)m

m2⇡2
(3.42)

For details, see below.

So, overall our Fourier series is

fFS(x) =
L
2

3
+

4L2

⇡2

1X

n=1

(�1)n

n2
cos
⇣
n⇡x

L

⌘
. (3.43)

Inside the expansion range fFS(x) agrees exactly with the original function f(x). Outside, however,
it does not: f(x) keeps rising quadratically, whereas fFS(x) repeats with period 2L. We say the
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x

f(x)=x 2

π 3π−π−3π

Figure 3.3: f(x) = x
2 as a periodic function.

Fourier series has periodically extended the function f(x) outside the expansion range. This is shown
in Fig. 3.3.

There are some special cases where fFS(x) does agree with f(x) outside the range. If f(x) is itself
periodic with period 2L/p, i.e. the size of the range divided by some integer p s.t. f(x + 2L/p) =
f(x), then fFS(x) will agree with f(x) for all x.

Another special case is where f(x) is only defined in the finite range of expansion e.g. because we
are only considering a string extending from 0 to L. Physically, then it does not matter if fFS(x)
deviates from f(x) outside the range.

A plot of the coe�cients, {cn} versus n, is known as the spectrum of the function: it tells us how
much of each frequency is present in the function. The process of obtaining the coe�cients is often
known as spectral analysis. We show the spectrum for f(x) = x

2 in Fig. 3.4.

Choice of periodic extension There is no unique way of casting f(x) as a periodic function,
and there may be good and bad ways of doing this. For example, suppose we were interested in
representing f(x) = x

2 for 0 < x < L: we have already solved this by considering the even function
x
2 over �L < x < L, so the periodicity can be over a range that is larger than the range of interest.

Therefore, we could equally well make an odd periodic function by adopting +x
2 for 0 < x < L and

�x
2 for �L < x < 0. This is then suitable for a sin series. The coe�cients for this are

bm =
1

L

Z L

0

dx x
2 sin

⇣
m⇡x

L

⌘
+

1

L

Z 0

�L

dx (�x
2) sin

⇣
m⇡x

L

⌘

=
2

L

Z L

0

dx x
2 sin

⇣
m⇡x

L

⌘
=

2L2

m3⇡3

⇥
�y

2 cos y + 2y sin y + 2 cos y
⇤m⇡

0

=
2L2

m3⇡3
⇥ [(�1)m+1

m
2
⇡
2 + 2(�1)m � 2] (3.44)

So now we have two alternative expansions, both of which represent f(x) = x
2 over 0 < x < L. To

lowest order, these are

cos : f(x) =
L
2

3
�

4L2

⇡2
cos
⇣
⇡x

L

⌘
+ · · · (3.45)

sin : f(x) =
2L2

⇡
sin
⇣
⇡x

L

⌘
+ · · · . (3.46)
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Figure 3.4: The Fourier spectrum an (with y-axis in units of L2) for function f(x) = x
2.

It should be clear that the first of these works better, since the function does behave quadratically
near x = 0, whereas the single sin term is nothing like the target function. In order to get comparable
accuracy, we need many more terms for the sin series than the cos series: the coe�cients for the
former decline as 1/m2, as against only 1/m for the latter at largem, showing very poor convergence.

Doing the integrals for the x
2 expansion We need to do the integral

am =
2

L

Z L

0

dx x
2 cos

⇣
m⇡x

L

⌘
(3.47)

The first stage is to make a substitution that simplifies the argument of the cosine function:

y =
m⇡x

L
) dy =

m⇡

L
dx (3.48)

which also changes the upper integration limit to m⇡. So

am =
2

L

Z m⇡

0

L

n⇡
dy

L
2
y
2

m2⇡2
cos y =

2L2

m3⇡3

Z m⇡

0

dy y
2 cos y . (3.49)

We now solve this simplified integral by integrating by parts. An easy way of remembering integra-
tion by parts is Z

u
dv

dx
dx = [uv]�

Z
v
du

dx
dx (3.50)

and in this case we will make u = y
2 and dv/dy = cos y. Why? Because we want to di↵erentiate y2

to make it a simpler function:
Z

dy y
2 cos y = y

2 sin y �

Z
dy 2y sin y . (3.51)
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We now repeat the process for the integral on the RHS, setting u = 2y for the same reason:

Z
dy y

2 cos y = y
2 sin y �


�2y cos y +

Z
dy 2 cos y

�
= y

2 sin y + 2y cos y � 2 sin y . (3.52)

So, using sinm⇡ = 0 and cosm⇡ = (�1)m:

am =
2L2

m3⇡3

⇥
y
2 sin y + 2y cos y � 2 sin y

⇤m⇡

0
=

2L2

m3⇡3
⇥ 2m⇡(�1)m =

4L2(�1)m

m2⇡2
. (3.53)

3.8 Complex Fourier Series

Sines and cosines are one Fourier basis i.e. they provide one way to expand a function in the interval
[�L,L]. Another, very similar basis is that of complex exponentials.

f(x) =
1X

n=�1
cn�n(x) where �n(x) = e

+iknx = e
in⇡x/L

, (3.54)

where kn = n⇡/L is the wavenumber. This is a complex Fourier series, because the expansion
coe�cients, cn, are in general complex numbers even for a real-valued function f(x). Note that the
sum over n runs from �1 in this case. (The plus sign in phase of the exponentials is a convention
chosen to match the convention used for Fourier Transforms in Sec. 4.)

Again, these basis functions are orthogonal. But the orthogonality property only works if we define
it to include complex conjugation of �m(x):

Z L

�L

dx �m(x)�
⇤
n(x) =

Z L

�L

dx e
i(km�kn)x =

8
<

:
[x]L�L = 2L (if n = m)h

exp(i(km�kn)x)
i(km�kn)

iL
�L

= 0 (if n 6= m)

9
=

; = 2L �mn.

(3.55)
For the case n 6= m, we note that m� n is a non-zero integer (call it p) and

exp[i(km � kn)L]� exp[i(km � kn)(�L)] = exp[ip⇡]� exp[�ip⇡] (3.56)

= (exp[i⇡])p � (exp[�i⇡])p = (�1)p � (�1)p = 0 .

For p = m�n = 0 the denominator is also zero, hence the di↵erent result. This proves what should
be considered an intuitively obvious result: exp(i�kx) = cos(�kx) + i sin(�kx), so both real and
imaginary parts oscillate a whole number of times between x = �L and x = +L. Thus the whole
expression averages to zero unless �k = 0.

The orthogonality relation lets us find the coe�cients cm. We multiply both sides by the complex
conjugate of �m(x) and integrate over the full range:

Z L

�L

dx �
⇤
m(x)f(x) =

1X

n=�1
cn

Z L

�L

dx �
⇤
m(x)�n(x) =

1X

n=�1
cn 2L�mn = cm 2L (3.57)

) cm =
1

2L

Z L

�L

dx �
⇤
m(x)f(x) =

1

2L

Z L

�L

dx e
�ikmx

f(x) (3.58)

As before, we noted that the integral of a sum is the same as a sum of integrals.
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FOURIER ANALYSIS: LECTURE 4

3.8.1 Example

To show the complex Fourier approach in action, we revisit our example of expanding f(x) = x
2

for x 2 [�L,L]. The general expression for the Fourier coe�cients, cm, takes one of the following
forms, depending on whether or not m is zero:

cm=0 =
1

2L

Z L

�L

dx x
2 =

L
2

3
(3.59)

cm 6=0 =
1

2L

Z L

�L

dx x
2
e
�im⇡x/L =

2L2(�1)m

m2⇡2
(3.60)

See below for details of how to do the second integral. We notice that in this case all the cm are
real, but this is not the case in general.

ASIDE: doing the integral We want to calculate

cm ⌘
1

2L

Z L

�L

dx x
2
e
�im⇡x/L (3.61)

To make life easy, we should change variables to make the exponent more simple (whilst keeping y

real) i.e. set y = m⇡x/L, for which dy = (m⇡/L) dx. The integration limits become ±m⇡:

cm =
1

2L

Z m⇡

�m⇡

dy
L

m⇡
⇥

L
2
y
2

m2⇡2
e
�iy =

L
2

2m3⇡3

Z m⇡

�m⇡

dy y
2
e
�iy

. (3.62)

Now we want to integrate by parts. We want the RHS integral to be simpler than the first, so we
set u = y

2
) du = 2y dy and dv/dy = e

�iy
) v = e

�iy
/(�i) = ie

�iy (multiplying top and
bottom by i and recognising �i⇥ i = 1). So

cm =
L
2

2m3⇡3

⇢⇥
iy

2
e
�iy
⇤m⇡

�m⇡
�

Z m⇡

�m⇡

dy 2y.ie�iy

�
=

L
2

2m3⇡3

⇢⇥
iy

2
e
�iy
⇤m⇡

�m⇡
� 2i

Z m⇡

�m⇡

dy ye
�iy

�

(3.63)
The integral is now simpler, so we play the same game again, this time with u = y ) du/dy = 1
to get:

cm =
L
2

2m3⇡3

⇢⇥
iy

2
e
�iy
⇤m⇡

�m⇡
� 2i

✓⇥
iye

�iy
⇤m⇡

�m⇡
�

Z m⇡

�m⇡

dy ie
�iy

◆�
(3.64)

=
L
2

2m3⇡3

n⇥
iy

2
e
�iy
⇤m⇡

�m⇡
� 2i

⇣⇥
iye

�iy
⇤m⇡

�m⇡
� i
⇥
ie

�iy
⇤m⇡

�m⇡

⌘o
(3.65)

=
L
2

2m3⇡3

⇥
iy

2
e
�iy

� 2i i ye�iy + 2i i i e�iy
⇤m⇡

�m⇡
(3.66)

=
L
2

2m3⇡3

⇥
e
�iy
�
iy

2 + 2y � 2i
�⇤m⇡

�m⇡
(3.67)
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We can now just substitute the limits in, using e
im⇡ = e

�im⇡ = (�1)m (so e
�iy has the same value

at both limits). Alternatively, we can note that the first and third terms in the round brackets
are even under y ! �y and therefore we will get zero when we evaluate between symmetric limits
y = ±m⇡ (N.B. this argument only works for symmetric limits). Only the second term, which is
odd, contributes:

cm =
L
2

2m3⇡3

⇥
2ye�iy

⇤m⇡

�m⇡
=

L
2

2m3⇡3

⇥
2m⇡e�im⇡

� (�2m⇡)eim⇡
⇤

=
L
2

2m3⇡3
⇥ 4m⇡(�1)m =

2L2(�1)m

m2⇡2
. (3.68)

3.8.2 Comparing real and complex Fourier expansions

The complex approach may seem an unnecessary complication. Obviously it is needed if we have
to represent a complex function, but for real functions we need to go to some trouble in order to
make sure that the result is real:

f(x) =
1X

n=�1
cne

in⇡x/L
) f(x) = f

⇤(x) =
1X

n=�1
c
⇤
ne

�in⇡x/L (3.69)

Equating the coe�cients of the e
im⇡x/L mode, we see that the Fourier coe�cients have to be Her-

mitian:
c
⇤
�m = cm. (3.70)

This shows why it was necessary to consider both positive and negative wavenumbers, unlike in the
sin and cos case.

The advantage of the complex approach is that it is often much easier to deal with integrals involving
exponentials. We have already seen this when discussing how to prove the orthogonality relations for
sin and cos. Also, doing things this way saves having to do twice the work in obtaining coe�cients
for sin and cos series separately, since both the an and bn coe�cients are given by a single integral:

cn =
1

2L

Z
f(x) exp(�iknx) dx =

1

2L

Z
f(x) [cos knx� i sin knx] dx =

1

2
(an � ibn). (3.71)

This extra factor of 1/2 arises from the orthogonality relations, reflecting the fact that the mean
value of | exp(ikx)|2 is 1, whereas the mean of cos2 kx or sin2

kx is 1/2. Taking the complex conjugate
of this relation gives

c
⇤
n =

1

2
(an + ibn). (3.72)

Thus the coe�cients for a real series are already known if we know the complex series:

an = cn + c
⇤
n; bn = i(cn � c

⇤
n). (3.73)

An alternative (but longer) way of obtaining the same relations is to start by writing cosine and
sine as the sum and di↵erence of two complex exponentials:

�n(x) = cos
⇣
n⇡x

L

⌘
+ i sin

⇣
n⇡x

L

⌘
)

8
>>><

>>>:

cos
�
n⇡x
L

�
=

1

2
[�n(x) + ��n(x)]

sin
�
n⇡x
L

�
=

1

2i
[�n(x)� ��n(x)]

. (3.74)
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The last relation is better written as

sin
⇣
n⇡x

L

⌘
=

i

2
[�⇤

n(x)� �
⇤
�n(x)], (3.75)

since �⇤ is involved in the integral for cn. Note the various pieces of complex manipulation: sin
is real, so nothing changes if we take its conjugate; conjugates multiply, so (�/i)⇤ = �

⇤(1/i)⇤ =
�
⇤(�i)⇤ = i�

⇤. If we now write the integrals for an and bn, we get

an = cn + c�n; bn = i(cn � c�n), (3.76)

which is as before if we recall the Hermitian property of the cm.

We can check that this works correctly with our example of f(x) = x
2. The two sets of coe�cients

in Eqns. (3.42) and (3.68) were (an, bn) = (4L2(�1)n/n2
⇡
2
, 0) and cn = 2L2(�1)n/n2

⇡
2, so here the

reality of cn forces bn = 0 and an = 2cn, as required.

3.9 Di↵erentiating and integrating Fourier series

Once we have a function expressed as a Fourier series, this can be a useful alternative way of
carrying out calculus-related operations. This is because di↵erentiation and integration are linear
operations that are distributive over addition: this means that we can carry out di↵erentiation or
integration term-by-term in the series:

f(x) =
1X

n=�1
Cne

iknx (3.77)

)
df

dx
=

1X

n=�1
Cn (ikn) e

iknx (3.78)

)

Z
f dx =

1X

n=�1
Cn (ikn)

�1
e
iknx + const . (3.79)

The only complication arises in the case of integration, if C0 6= 0: then the constant term integrates
to be / x, and this needs to be handled separately (it can be expanded in an additional Fourier
series).

From these relations, we can see immediately that the Fourier coe�cients of a function and its
derivative are very simply related by powers of k: if the m

th Fourier coe�cient of f(x) is Cm, the
m

th Fourier coe�cient of df(x)/dx is (ikm)Cm. The extension to multiple derivatives is obvious:
the m

th Fourier coe�cient of dnf(x)/dxn is (ikm)nCm.

This approach can be a way to do a di�cult integral. Integrals of sines and cosines are relatively
easy, so if we need to integrate a function it may be more straightforward to do a Fourier expansion
first.

The main caveat with all this is that we still require that all the quantities being considered must
be suitable for a Fourier representation, and this may not be so. For example, f(x) = 1/

p
x for

0 < x < 1 is an acceptable function: it has a singularity at x = 0, but this is integrable, so all the
Fourier coe�cients converge. But f 0(x) = �x

�3/2
/2, which has a divergent integral over 0 < x < 1.

Attempts to use a Fourier representation for f 0(x) would come adrift in this case, as is illustrated
in Fig. 3.5.
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Figure 3.5: The Fourier expansion of the function f(x) = 1/(4|x|1/2), |x| < 1 is shown in the LH
panel (a cosine series, up to n = 15). The RH panel compares df/dx with the sum of the derivative
of the Fourier series. The mild divergence in f means that the expansion converges; but for df/dx
it does not.

3.10 Fourier series and series expansions

We can sometimes exploit Fourier series to either give us series approximations for numerical quan-
tities, or to give us the result of summing a series.

Consider f(x) = x
2, which we expanded as a Fourier series in Eqn. (3.43) above, and let’s choose

the expansion range to be �⇡ ! ⇡ (i.e. we’ll set L = ⇡). At x = 0 we have f(x) = fFS(x) = 0.
Substituting into Eqn. (3.43) we have

0 =
⇡
2

3
+

1X

n=1

4(�1)n

n2
)

⇡
2

12
= �

1X

n=1

(�1)n

n2
=

1X

n=1

(�1)n+1

n2
(3.80)

This result can be useful in two ways:

1. We solve a physics problem, and find the answer as a sum
P1

n=1
(�1)n+1

n2 . Using the above

result we can replace the sum by ⇡2

12 .

2. We need a numerical approximation for ⇡. We can get this by truncating the sum at some
upper value n = N [as in Eqn. (3.87)] and adding together all the terms in the sum.

⇡
2

12
= 1�

1

4
+

1

9
�

1

16
+ . . . (3.81)

Let’s call this approximation ⇡N :

⇡N ⌘

vuut12
NX

n=1

(�1)n+1

n2
(3.82)

Table 1 shows how ⇡N approaches ⇡ as we increase N .
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N ⇡N ⇡N � ⇡

1 3.4641016151 0.3225089615
2 3.0000000000 �0.1415926536
3 3.2145502537 0.0729576001
4 3.0956959368 �0.0458967168
5 3.1722757341 0.0306830805
6 3.1192947921 �0.0222978615
7 3.1583061852 0.0167135316
8 3.1284817339 �0.0131109197
9 3.1520701305 0.0104774769
10 3.1329771955 �0.0086154581
100 3.1414981140 �0.0000945396
1000 3.1415916996 �0.0000009540
10000 3.1415926440 �0.0000000095
100000 3.1415926535 �0.0000000001

Table 1: A series approximation to ⇡ from Eqn. (3.82)

We can get di↵erent series approximations by considering di↵erent values of x in the same Fourier
series expansions. For instance, consider x = ⇡. This gives:

⇡
2 =

⇡
2

3
+

1X

n=1

4(�1)n

n2
(�1)n )

⇡
2

6
=

1X

n=1

1

n2
⌘ ⇣(2) (3.83)

This is an example of the Riemann zeta function ⇣(s) which crops up a lot in physics. It has limits:

⇣(s) ⌘
1X

n=1

1

ns
!

(
1 as s ! 1

1 as s ! 1
(3.84)
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FOURIER ANALYSIS: LECTURE 5

3.10.1 Convergence of Fourier series

Fourier series (real or complex) are very good ways of approximating functions in a finite range, by
which we mean that we can get a good approximation to the function by using only the first few
modes (i.e. truncating the sum over n after some low value n = N).

This is how music compression works in MP3 players, or how digital images are compressed in
JPEG form: we can get a good approximation to the true waveform by using only a limited number
of modes, and so all the modes below a certain amplitude are simply ignored.

We saw a related example of this in our approximation to ⇡ using Eqn. (3.82) and Table 1.

Not examinable:

Mathematically, this translates as the Fourier components converging to zero i.e. an, bn ! 0 as
n ! 1, provided f(x) is bounded (i.e. has no divergences). But how quickly do the high order
coe�cients vanish? There are two common cases:

1. The function and its first p� 1 derivatives (f(x), f 0(x), . . . f (p�1)(x)) are continuous, but the
p
th derivative f

(p)(x) has discontinuities:

an, bn ⇠ 1/np+1 for large n. (3.85)

An example of this was our expansion of f(x) = x
2. When we periodically extend the function,

there is a discontinuity in the gradient (p = 1 derivative) at the boundaries x = ±L. We have
already seen an ⇠ 1/n2 as expected (with bn = 0).

2. f(x) is periodic and piecewise continuous (i.e. it has jump discontinuities, but only a finite
number within one period):

) an, bn ⇠ 1/n for large n. (3.86)

An example of this is the expansion of the odd function f(x) = x, which jumps at the
boundary. The Fourier components turn out to be bn ⇠ 1/n (with an = 0).

End of non-examinable section.

3.10.2 How close does it get? Convergence of Fourier expansions

We have seen that the Fourier components generally get smaller as the mode number n increases.
If we truncate the Fourier series after N terms, we can define an error DN that measures how much
the truncated Fourier series di↵ers from the original function: i.e. if

fN(x) =
a0

2
+

NX

n=1

h
an cos

⇣
n⇡x

L

⌘
+ bn sin

⇣
n⇡x

L

⌘i
. (3.87)

we define the error as

DN =

Z L

�L

dx |f(x)� fN(x)|
2
� 0. (3.88)
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Figure 3.6: The Gibbs phenomenon for truncated Fourier approximations to the signum function
Eqn. 3.89. Note the di↵erent x-range in the lower two panels.

That is, we square the di↵erence between the original function and the truncated Fourier series at
each point x, then integrate across the full range of validity of the Fourier series. Technically, this
is what is known as an L

2 norm.

Some things you should know, but which we will not prove: if f is reasonably well-behaved (no non-
integrable singularities, and only a finite number of discontinuities), the Fourier series is optimal in
the least-squares sense – i.e. if we ask what Fourier coe�cients will minimise DN for some given
N , they are exactly the coe�cients that we obtain by solving the full Fourier problem.

Furthermore, as N ! 1, DN ! 0. This sounds like we are guaranteed that the Fourier series will
represent the function exactly in the limit of infinitely many terms. But looking at the equation for
DN , it can be seen that this is not so: it’s always possible to have (say) fN = 2f over some range
�x, and the best we can say is that �x must tend to zero as N increases.

EXAMPLE: As an example of how Fourier series converge (or not), consider the signum function
which picks out the sign of a variable:

f(x) = signum x =

(
�1 if x < 0 ,

+1 if x � 0 ,
(3.89)
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N DN

10 0.0808
50 0.0162
100 0.0061
250 0.0032

Table 2: Error DN on the N -term truncated Fourier series approximation to the signum function
Eqn. 3.89.

which we will expand in the range �1  x  1 (i.e. we set L = 1). The function is odd, so an = 0
and we find

bn = 2

Z 1

0

dx sin(n⇡x) =
2

n⇡
[1� (�1)n] . (3.90)

f(x) has discontinuities at x = 0 and x = ±L = ±1 (due to the periodic extension), so from
Sec. 3.10.1 we expected an ⇠ 1/n.

In Table 2 we show the error DN for the signum function for increasing values of DN . As expected
the error decreases as N gets larger, but relatively slowly. We’ll see why this is in the next section.

3.10.3 Ringing artefacts and the Gibbs phenomenon

We saw above that we can define an error associated with the use of a truncated Fourier series of N
terms to describe a function. Note that DN measures the total error by integrating the deviation
at each value of x over the full range. It does not tell us whether the deviations between fN(x)
and f(x) were large and concentrated at certain values of x, or smaller and more evenly distributed
over all the full range.

An interesting case is when we try to describe a function with a finite discontinuity (i.e. a jump)
using a truncated Fourier series, such as our discussion of the signum function above.

In Fig. 3.6 we plot the original function f(x) and the truncated Fourier series for various N . We
find that the truncated sum works well, except near the discontinuity. Here the function overshoots
the true value and then has a ‘damped oscillation’. As we increase N the oscillating region gets
smaller, but the overshoot remains roughly the same size (about 18%).

This overshoot is known as the Gibbs phenomenon. Looking at the plot, we can see that it tends to
be associated with extended oscillations either side of the step, known as ‘ringing artefacts’. Such
artefacts will tend to exist whenever we try to describe sharp transitions with Fourier methods, and
are one of the reasons that MP3s can sound bad when the compression uses too few modes. We can
reduce the e↵ect by using a smoother method of Fourier series summation, but this is well beyond
this course. For the interested, there are some more details at http://en.wikipedia.org/wiki/
Gibbs_phenomenon.

3.11 Parseval’s theorem

There is a useful relationship between the mean square value of the function f(x) and the Fourier
coe�cients. Parseval’s formula is

1

2L

Z L

�L

|f(x)|2 dx = |a0/2|
2 +

1

2

1X

n=1

�
|an|

2 + |bn|
2
�
, (3.91)
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or, for complex Fourier Series,

1

2L

Z L

�L

|f(x)|2 dx =
1X

n=�1
|cn|

2
. (3.92)

The simplicity of the expression in the complex case is an example of the advantage of doing things
this way.

The quantity |cn|
2 is known as the power spectrum. This is by analogy with electrical circuits, where

power is I2R. So the mean of f 2 is like the average power, and |cn|
2 shows how this is contributed

by the di↵erent Fourier modes.

Proving Parseval is easier in the complex case, so we will stick to this. The equivalent for the
sin+cos series is included for interest, but you are not expected to remember it. First, note that
|f(x)|2 = f(x)f ⇤(x) and expand f and f

⇤ as complex Fourier Series:

|f(x)|2 = f(x)f ⇤(x) =
1X

n=�1
cn�n(x)

X

m

c
⇤
m�

⇤
m(x) (3.93)

(recall that �n(x) = e
iknx). Then we integrate over �L  x  L, noting the orthogonality of �n

and �⇤
m:

Z L

�L

|f(x)|2 dx =
1X

m,n=�1
cnc

⇤
m

Z L

�L

�n(x)�
⇤
m(x) dx (3.94)

=
1X

m,n=�1
cnc

⇤
m(2L�mn) = 2L

1X

n=�1
cnc

⇤
n = 2L

1X

n=�1
|cn|

2

where we have used the orthogonality relation
R L

�L �n(x)�⇤
m(x) dx = 2L ifm = n, and zero otherwise.

3.11.1 Summing series via Parseval

Consider once again the case of f = x
2. The lhs of Parseval’s theorem is (1/2L)

R L

�L x
4
dx = (1/5)L4.

The complex coe�cients were derived earlier, so the sum on the rhs of Parseval’s theorem is

1X

n=�1
|cn|

2 = |c0|
2 +

X

n 6=0

|cn|
2 =

✓
L
2

3

◆2

+ 2
1X

n=1

✓
2L2(�1)n

n2⇡2

◆2

=
L
4

9
+

1X

n=1

8L4

n4⇡4
. (3.95)

Equating the two sides of the theorem, we therefore get

1X

n=1

1

m4
= (⇡4

/8)(1/5� 1/9) = ⇡
4
/90. (3.96)

This is a series that converges faster than the ones we obtained directly from the series at special
values of x
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4 Fourier Transforms

Learning outcomes

In this section you will learn about Fourier transforms: their definition and relation to Fourier
series; examples for simple functions; physical examples of their use including the di↵raction and
the solution of di↵erential equations.

You will learn about the Dirac delta function and the convolution of functions.

4.1 Fourier transforms as a limit of Fourier series

We have seen that a Fourier series uses a complete set of modes to describe functions on a finite
interval e.g. the shape of a string of length `. In the notation we have used so far, ` = 2L. In some
ways, it is easier to work with `, which we do below; but most textbooks traditionally cover Fourier
series over the range 2L, and these notes follow this trend.

Fourier transforms (FTs) are an extension of Fourier series that can be used to describe nonperiodic
functions on an infinite interval. The key idea is to see that a non-periodic function can be viewed
as a periodic one, but taking the limit of `! 1. This is related to our earlier idea of being able to
construct a number of di↵erent periodic extensions of a given function. This is illustrated in Fig.
4.1 for the case of a square pulse that is only non-zero between �a < x < +a. When ` becomes
large compared to a, the periodic replicas of the pulse are widely separated, and in the limit of
`! 1 we have a single isolated pulse.

−a  a

Figure 4.1: Di↵erent periodic extensions of a square pulse that is only non-zero between �a <

x < +a. As the period of the extension, `, increases, the copies of the pulse become more widely
separated. In the limit of ` ! 1, we have a single isolated pulse and the Fourier series goes over
to the Fourier transform.
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Fourier series only include modes with wavenumbers kn = 2n⇡
` with adjacent modes separated by

�k = 2⇡
` . What happens to our Fourier series if we let ` ! 1? Consider again the complex series

for f(x):

f(x) =
1X

n=�1
Cne

iknx, (4.1)

where the coe�cients are given by

Cn =
1

`

Z `/2

�`/2

dx f(x) e�iknx . (4.2)

and the allowed wavenumbers are kn = 2n⇡/`. The separation of adjacent wavenumbers (i.e. for
n ! n+ 1) is �k = 2⇡/`; so as `! 1, the modes become more and more finely separated in k. In
the limit, we are then interested in the variation of C as a function of the continuous variable k.
The factor 1/` outside the integral looks problematic for talking the limit ` ! 1, but this can be
evaded by defining a new quantity:

f̃(k) ⌘ `⇥ C(k) =

Z 1

�1
dx f(x) e�ikx

. (4.3)

The function f̃(k) (o�cially called ‘f tilde’, but more commonly ‘f twiddle’; fk is another common
notation) is the Fourier transform of the non-periodic function f .

To complete the story, we need the inverse Fourier transform: this gives us back the function f(x)
if we know f̃ . Here, we just need to rewrite the Fourier series, remembering the mode spacing
�k = 2⇡/`:

f(x) =
X

kn

C(k)eikx =
X

kn

(`/2⇡)C(k)eikx �k =
1

2⇡

X

kn

f̃(k) eikx �k. (4.4)

In this limit, the final form of the sum becomes an integral over k:

X
g(k) �k !

Z
g(k) dk as �k ! 0; (4.5)

this is how integration gets defined in the first place. We can now write an equation for f(x) in
which ` does not appear:

f(x) =
1

2⇡

Z 1

�1
dk f̃(k) eikx . (4.6)

Note the infinite range of integration in k: this was already present in the Fourier series, where the
mode number n had no limit.

EXAM TIP: You may be asked to explain how the FT is the limit of a Fourier Series (for perhaps
6 or 7 marks), so make sure you can reproduce the stu↵ in this section.

The density of states In the above, our sum was over individual Fourier modes. But if C(k) is
a continuous function of k, we may as well add modes in bunches over some bin in k, of size �k:

f(x) =
X

k bin

C(k)eikxNbin, (4.7)
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where Nbin is the number of modes in the bin. What is this? It is just �k divided by the mode
spacing, 2⇡/`, so we have

f(x) =
`

2⇡

X

k bin

C(k)eikx�k (4.8)

The term `/2⇡ is the density of states: it tells us how many modes exist in unit range of k. This is
a widely used concept in many areas of physics, especially in thermodynamics. Once again, we can
take the limit of �k ! 0 and obtain the integral for the inverse Fourier transform.

Summary A function f(x) and its Fourier transform f̃(k) are therefore related by:

f(x) =
1

2⇡

Z 1

�1
dk f̃(k) eikx ; (4.9)

f̃(k) =

Z 1

�1
dx f(x) e�ikx

. (4.10)

We say that f̃(k) is the FT of f(x), and that f(x) is the inverse FT of f̃(k).

EXAM TIP: If you are asked to state the relation between a function and its Fourier transform
(for maybe 3 or 4 marks), it is su�cient to quote these two equations. If the full derivation is
required, the question will ask explicitly for it.

Note that, since the Fourier Transform is a linear operation,

FT [f(x) + g(x)] = f̃(k) + g̃(k). (4.11)

For a real function f(x), its FT satisfies the same Hermitian relation that we saw in the case of
Fourier series:

f̃(�k) = f̃
⇤(k) (4.12)

Exercise: prove this.

FT conventions Eqns. (4.10) and (4.9) are the definitions we will use for FTs throughout this
course. Unfortunately, there are many di↵erent conventions in active use for FTs. Aside from using
di↵erent symbols, these can di↵er in:

• The sign in the exponent

• The placing of the 2⇡ prefactor(s) (and sometimes it is
p
2⇡)

• Whether there is a factor of 2⇡ in the exponent

The bad news is that you will probably come across all of these di↵erent conventions. The good
news is that that it is relatively easy to convert between them if you need to. The best news is that
you will almost never need to do this conversion.
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k space and momentum space The Fourier convention presented here is the natural one that
emerges as the limit of the Fourier series. But it has the disadvantage that it treats the Fourier
transform and the inverse Fourier transform di↵erently by a factor of 2⇡, whereas in physics we need
to learn to treat the functions f(x) and f̃(k) as equally valid forms of the same thing: the ‘real-space’
and ‘k-space’ forms. This is most obvious in quantum mechanics, where a wave function exp(ikx)
represents a particle with a well-defined momentum, p = h̄k according to de Broglie’s hypothesis.
Thus the description of a function in terms of f̃(k) is often called the ‘momentum-space’ version.

The result that illustrates this even-handed approach most clearly is to realise that the Fourier
transform of f(x) can itself be transformed:

g̃
f(k)(K) =

Z 1

�1
dk f̃(k) e�iKk

. (4.13)

We will show below that
g̃
f(k)(K) = 2⇡f(�K) : (4.14)

so in essence, repeating the Fourier transform gets you back the function you started with. f and
f̃ are really just two sides of the same coin.
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4.2 Some simple examples of FTs

In this section we’ll find the FTs of some simple functions.

EXAM TIP: You may be asked to define and sketch f(x) in each case, and also to calculate and
sketch f̃(k).

4.2.1 The top-hat

A top-hat function ⇧(x) of height h and width 2a (a assumed positive), centred at x = d is defined
by:

⇧(x) =

(
h, if d� a < x < d+ a ,

0, otherwise .
(4.15)

The function is sketched in Fig. 4.2.

Its FT is:

f̃(k) =

Z 1

�1
dx ⇧(x) e�ikx = h

Z d+a

d�a

dx e
�ikx = 2ah e

�ikd sinc(ka) (4.16)

The derivation is given below. The function sincx ⌘
sinx
x is sketched in Fig. 4.3 (with notes on

how to do this also given below). f̃(k) will look the same (for d = 0), but the nodes will now be at
k = ±

n⇡
a and the intercept will be 2ah rather than 1. You are very unlikely to have to sketch f̃(k)

for d 6= 0.

EXAM TIPS: If the question sets d = 0, clearly there is no need to do a variable change from
x to y.

Sometimes the question specifies that the top-hat should have unit area i.e. h ⇥ (2a) = 1, so you
can replace h.

The width of the top-hat won’t necessarily be 2a. . .

Deriving the FT:

f̃(k) =

Z 1

�1
dx ⇧(x) e�ikx = h

Z d+a

d�a

dx e
�ikx (4.17)

Now we make a substitution u = x � d (which now centres the top-hat at u = 0). The integrand
e
�ikx becomes e

�ik(u+d) = e
�iku

⇥ e
�ikd. We can pull the factor e�ikd outside the integral because

it does not depend on u. The integration limits become u = ±a. There is no scale factor, i.e.
du = dx.
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Figure 4.2: Sketch of top-hat function defined in Eqn. (4.15)

Figure 4.3: Sketch of sincx ⌘
sinx
x

This gives

f̃(k) = he
�ikd

Z a

�a

du e
�iku = he

�ikd


e
�iku

�ik

�a

�a

= he
�ikd

✓
e
�ika

� e
ika

�ik

◆

= he
�ikd

⇥
2a

ka
⇥

e
ika

� e
�ika

2i
= 2ahe�ikd

⇥
sin(ka)

ka
= 2ah e

�ikd sinc(ka) (4.18)

Note that we conveniently multiplied top and bottom by 2a midway through.

Sketching sincx: You should think of sincx ⌘
sinx
x as a sin x oscillation (with nodes at x = ±n⇡

for integer n), but with the amplitude of the oscillations dying o↵ as 1/x. Note that sincx is an
even function, so it is symmetric when we reflect about the y-axis.

The only complication is at x = 0, when sinc 0 = 0
0 which appears undefined. To deal with this,

expand sin x = x� x
3
/3! + x

5
/5! + . . . , so it is obvious that sinx/x ! 1 as x ! 0.

EXAM TIP: Make sure you can sketch this, and that you label all the zeros (‘nodes’) and
intercepts.
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Figure 4.4: Sketch of Gaussians with N = 1

Figure 4.5: Sketch of normalized Gaussians. The intercepts are f(0) = 1p
2⇡�2

.

4.2.2 The Gaussian

The Gaussian curve is also known as the bell-shaped or normal curve. A Gaussian of width �

centred at x = d is defined by:

f(x) = N exp

✓
�
(x� d)2

2�2

◆
(4.19)

where N is a normalization constant, which is often set to 1. We can instead define the normalized
Gaussian, where we choose N so that the area under the curve to be unity i.e. N = 1/

p
2⇡�2.

This normalization can be proved by a neat trick, which is to extend to a two-dimensional Gaussian
for two independent (zero-mean) variables x and y, by multiplying the two independent Gaussian
functions:

p(x, y) =
1

2⇡�2
e
�(x2+y2)/2�2

. (4.20)

The integral over both variables can now be rewritten using polar coordinates:
ZZ

p(x, y) dx dy =

Z
p(x, y) 2⇡ r dr =

1

2⇡�2

Z
2⇡ r e�r2/2�2

dr (4.21)
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and the final expression clearly integrates to

P (r > R) = exp
�
�R

2
/2�2

�
, (4.22)

so the distribution is indeed correctly normalized.

The Gaussian is sketched for d = 0 and two di↵erent values of the width parameter �. Fig. 4.4 has
N = 1 in each case, whereas Fig. 4.5 shows normalized curves.

For d = 0, the FT of the Gaussian is

f̃(k) =

Z 1

�1
dx N exp

✓
�

x
2

2�2

◆
e
�ikx =

p
2⇡N� exp

✓
�
k
2
�
2

2

◆
, (4.23)

i.e. the FT of a Gaussian is another Gaussian (this time as a function of k).

Deriving the FT For notational convenience, let’s write a = 1
2�2 , so

f̃(k) = N

Z 1

�1
dx exp

�
�
⇥
ax

2 + ikx
⇤�

(4.24)

Now we can complete the square inside [. . .]:

� ax
2
� ikx = �a

✓
x+

ik

2a

◆2

�
k
2

4a
(4.25)

giving

f̃(k) = Ne
�k2/4a

Z 1

�1
dx exp

 
�a


x+

ik

2a

�2!
. (4.26)

We then make a change of variables:

u =
p
a

✓
x+

ik

2a

◆
. (4.27)

This does not change the limits on the integral, and the scale factor is dx = du/
p
a, giving

f̃(k) =
N
p
a
e
�k2/4a

Z 1

�1
du e

�u2
= N

r
⇡

a
⇥ e

�k2/4a = e
�k2/4a

. (4.28)

where we changed back from a to �. To get this result, we have used the standard result
Z 1

�1
du e

�u2
=

p
⇡ . (4.29)

This looks plausible at a quick glance, but you should feel a little uneasy, since the variable u is not
real and the integral is along a line in the complex plane that is displaced from the x axis. At the
level of this course, it’s not possible to prove that this makes no di↵erence to the result.
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4.3 Reciprocal relations between a function and its FT

These examples illustrate a general and very important property of FTs: there is a reciprocal (i.e.
inverse) relationship between the width of a function and the width of its Fourier transform. That
is, narrow functions have wide FTs and wide functions have narrow FTs.

This important property goes by various names in various physical contexts, e.g.:

• Heisenberg Uncertainty Principle: the rms uncertainty in position space (�x) and the rms
uncertainty in momentum space (�p) are inversely related: (�x)(�p) � h̄/2. The equality
holds for the Gaussian case (see below).

• Bandwidth theorem: to create a very short-lived pulse (small �t), you need to include a very
wide range of frequencies (large �!).

• In optics, this means that big objects (big relative to wavelength of light) cast sharp shadows
(narrow FT implies closely spaced maxima and minima in the interference fringes).

We discuss two explicit examples in the following subsections:

4.3.1 The top-hat

The width of the top-hat as defined in Eqn. (4.15) is obviously 2a.

For the FT, whilst the sinc ka function extends across all k, it dies away in amplitude, so it does
have a width. Exactly how we define the width does not matter; let’s say it is the distance between
the first nodes k = ±⇡/a in each direction, giving a width of 2⇡/a.

Thus the width of the function is proportional to a, and the width of the FT is proportional to 1/a.
Note that this will be true for any reasonable definition of the width of the FT.

4.3.2 The Gaussian

Again, the Gaussian extends infinitely but dies away, so we can define a width. For a Gaussian,
it is easy to do this rigorously in terms of the standard deviation (square root of the average of
(x� d)2), which is just � (check you can prove this).

Comparing the form of FT in Eqn. (4.23) to the original definition of the Gaussian in Eqn. (4.19), if
the width of f(x) is �, the width of f̃(k) is 1/� by the same definition. Again, we have a reciprocal
relationship between the width of the function and that of its FT. Since p = h̄k, the width in
momentum space is h̄ times that in k space.

The only subtlety in relating this to the uncertainty principle is that the probability distributions
use | |2, not | |. If the width of  (x) is �, then the width of | |2 is �/

p
2. Similarly, the uncertainty

in momentum is (1/�)/
p
2, which gives the extra factor 1/2 in (�x)(�p) = h̄/2.

4.4 Fourier transforms and di↵raction

The mathematics of Fourier analysis lies at the heart of di↵raction. Suppose we shine coherent light
in the form of a single plane wave onto an optical grating that allows light through with a variable
transmission. We can describe this using a transmission function t(x) whose values are positive or
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zero. A single slit of finite width therefore has a top-hat transmission function t(x) = ⇧(x), where x
measures the distance across the grating (perpendicular to the direction of the incident radiation).
The far-field di↵raction pattern for light passing through this grating is related to the FT of the
transmission function. To see this,

• Using Huygens’ principle, each point on the grating x is a source of secondary, spherical
wavelets.

• The amplitude of the electric field associated with each set of spherical wavelets E(x) / t(x).

• Place a detector a long way away (relative to the size of the grating), so that all light reaching
it e↵ectively left the grating at the same angle ✓ to the normal. This is the far-field limit,
otherwise known as Fraunhofer di↵raction.

• The observed electric field E(✓) is given by summing the contributions from each position on
the grating x, allowing for the path di↵erence �x = x sin ✓ (relative to the arbitrary, but fixed,
choice of origin). The wavelet from position x contributes

E(x) / t(x) exp


�i

2⇡

�
(�x)

�
= t(x) exp


�i

2⇡

�
x sin ✓

�
.

• Because the light is coherent, the total observed electrical field is

E(✓) /

Z 1

�1
dx E(x) /

Z 1

�1
dx t(x) exp


�i

2⇡

�
x sin ✓

�
.

• Writing v = (2⇡/�) sin ✓, we have

E(✓) /

Z 1

�1
dx t(x) e�ivx ;

• i.e the electric field is (proportional to) the Fourier transform of the transmission function
(using v as the FT variable rather than k).

• The observed intensity is I(✓) / |E(✓)|2.
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5 The Dirac delta function

We have already given a brief introduction to the delta function, and now we should revisit it more
thoroughly. The Dirac delta function is a very useful tool in physics, as it can be used to represent
a very localised or instantaneous impulse, of which the outstanding example is a point charge or
point mass.

5.1 Definition

Recall that the delta function �(x � d) is defined by two expressions. First, it is zero everywhere
except at the point x = d where it is infinite:

�(x� d) =

(
0 for x 6= d ,

! 1 for x = d .
(5.30)

Secondly, it tends to infinity at x = d in such a way that the area under the Dirac delta function is
unity: Z 1

�1
dx �(x� d) = 1 . (5.31)

We have also seen how the function can be represented in practice as the limit of a finite function
whose width tends to zero. We illustrated this by the top-hat function, but it is important to
be clear that this is a matter of convenience: for example, we might just as easily have used a
normalized Gaussian.

EXAM TIP: When asked to define the Dirac delta function, make sure you write both Eqns. (5.30)
and (5.31). These are the only general definitions of the function, and should not be confused with
a specific representation such as the limit of a top-hat.

5.1.1 Delta function of a more complicated argument

Sometimes you may come across the Dirac delta function of a more complicated argument, �[f(x)],
e.g. �(x2

� 4). How do we deal with these? Essentially we use the definition that the delta function
integrates to unity when it is integrated with respect to its argument. i.e.

Z 1

�1
�[f(x)]df = 1. (5.32)

Changing variables from f to x, Z
�[f(x)]

����
df

dx

���� dx = 1, (5.33)
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where we have not put the limits on x, as they depend on f(x). Note the modulus sign around
df/dx: this is the 1D version of the Jacobian determinant in change of variables. If we had simply
used the chain rule and written df/dx instead, there is no guarantee that the integral would be over
increasing values of x. Now, �[f(x)] can only produce a spike at the point x = x0 where f(x0) = 0,
so it must be proportional to �(x� x0). The constant of proportionality comes from requiring the
integral to be unity:

�[f(x)] =
�(x� x0)

|df/dx|x=x0

, (5.34)

where the derivative is evaluated at the point x = x0. Note that if there is more than one solution
(xi; i = 1, . . .) to f = 0, then �(f) is a sum

�[f(x)] =
X

i

�(x� xi)

|df/dx|x=xi

. (5.35)

5.1.2 Some other properties of the delta function

The proofs of the following results are left as exercises:

�(�x) = �(x)

x�(x) = 0

�(ax) =
�(x)

|a|

�(x2
� a

2) =
�(x� a) + �(x+ a)

2|a|
. (5.36)

5.2 Sifting property

The sifting property of the Dirac delta function is that, given some function f(x):
Z 1

�1
dx �(x� d) f(x) = f(d) (5.37)

i.e. the delta function picks out the value of the function at the position of the spike (so long as it
is within the integration range). This is just like the sifting property of the Kronecker delta inside
a discrete sum.

EXAM TIP: If you are asked to state the sifting property, it is su�cient to write Eqn. (5.37).
You do not need to prove the result as below unless specifically asked to.

Technical aside: The integration limits don’t technically need to be infinite in the above formulæ.
If we integrate over a finite range a < x < b the expressions become:

Z b

a

dx �(x� d) =

(
1 for a < d < b ,

0 otherwise.
(5.38)

Z b

a

dx �(x� d) f(x) =

(
f(d) for a < d < b ,

0 otherwise.
(5.39)
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That is, we get the above results if the position of the spike is inside the integration range, and zero
otherwise.

We can use the representation of the Dirac delta function as the limit of a top-hat to prove the
sifting property given in Eqn. (5.37):

Z 1

�1
dx f(x) �(x) =

Z 1

�1
dx f(x) lim

a!0
⇧a(x) = lim

a!0

Z 1

�1
dx f(x) ⇧a(x) . (5.40)

We are free to pull the limit outside the integral because nothing else depends on a. Substituting
for ⇧a(x), the integral is only non-zero between �a and a. Similarly, we can pull the normalization
factor out to the front: Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

Z a

�a

dx f(x) . (5.41)

What this is doing is averaging f over a narrow range of width 2a around x = 0. Provided the
function is continuous, this will converge to a well-defined value f(0) as a ! 0 (this is pretty well
the definition of continuity).

Alternatively, suppose the function was di↵erentiable at x = 0 (which not all continuous functions
will be: e.g. f(x) = |x|). Then we can Taylor expand the function around x = 0 (i.e. the position
of the centre of the spike):

Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

Z a

�a

dx


f(0) + xf

0(0) +
x
2

2!
f
00(0) + . . .

�
. (5.42)

The advantage of this is that all the f
(n)(0) are constants, which makes the integral easy:

Z 1

�1
dx f(x) �(x) = lim

a!0

1

2a

✓
f(0) [x]a�a + f

0(0)


x
2

2

�a

�a

+
f
00(0)

2!


x
3

3

�a

�a

+ . . .

◆
(5.43)

= lim
a!0

✓
f(0) +

a
2

6
f
00(0) + . . .

◆
= f(0) . (5.44)

Note that the odd terms vanished after integration. This is special to the case of the spike being
centred at x = 0. It is a useful exercise to see what happens if the spike is centred at x = d instead.

EXAM TIP: An exam question may ask you to derive the sifting property in this way. Make
sure you can do it.

5.3 Calculus with the delta function

The �-function is easily integrated:
Z x

�1
dy �(y � d) = ⇥(x� d), (5.45)

where

⇥(x� d) =

(
0 x < d

1 x � d
(5.46)

which is called the Heaviside function, or just the ‘step function’.
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The derivative can also be written down, realising that the delta-function must obey the relation
f(x)�(x) = f(0)�(x), and applying the product rule:

f(x) d�(x)/dx = �f
0(x) �(x) + f(0) d�(x)/dx. (5.47)

Integrating this over an infinite range, the first term on the RHS gives �f
0(0), using the sifting

property; the second term gives zero, since �(x) = 0 at either end of the interval. Thus the derivative
of the delta-function sifts for (minus) the derivative of the function:

Z 1

�1
f(x) [d�(x)/dx] dx = �f

0(0), (5.48)

which could alternatively be proved by applying integration by parts.

5.4 More than one dimension

In some physical situations (e.g. a point charge at r = r0), we might need a 3D Dirac delta function,
which we can write as a product of three 1D delta functions:

�(r� r0) = �(x� x0)�(y � y0)�(z � z0) (5.49)

where r0 = (x0, y0, z0). Note that �(r � a) is not the same as �(r � a): the former picks out a
point at position a, but the latter picks out an annulus of radius a. Suppose we had a spherically
symmetric function f(r). The sifting property of the 3D function is

Z
f(r) �(r� a) d3x = f(a) = f(a), (5.50)

whereas Z
f(r) �(r � a) d3x =

Z
f(r) �(r � a) 4⇡r2 dr = 4⇡a2f(a). (5.51)

5.5 Physical importance of the delta function

The �-function is a tool that arises a great deal in physics. There are a number of reasons for this.
One is that the classical world is made up out of discrete particles, even though we often treat
matter as having continuously varying properties such as density. Individual particles of zero size
have infinite density, and so are perfectly suited to be described by �-functions. We can therefore
write the density field produced by a set of particles at positions xi as

⇢(x) =
X

i

Mi�(x� xi). (5.52)

This expression means we can treat all matter in terms of just the density as a function of position,
whether the matter is continuous or made of particles.

This decomposition makes us look in a new way at the sifting theorem:

f(x) =

Z
f(q) �(x� q) dq. (5.53)

The integral is the limit of a sum, so this actually says that the function f(x) can be thought
of as made up by adding together infinitely many �-function spikes: think of a function as a
mathematical hedgehog. This turns out to be an incredibly useful viewpoint when solving linear
di↵erential equations: the response of a given system to an applied force f can be calculated if we
know how the system responds to a single spike. This response is called a Green’s function, and
will be a major topic later in the course.
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5.6 FT and integral representation of �(x)

The Dirac delta function is very useful when we are doing FTs. The FT of the delta function follows
easily from the sifting property:

f̃(k) =

Z 1

�1
dx �(x� d) e�ikx = e

�ikd
. (5.54)

In the special case d = 0, we get simply f̃(k) = 1.

The inverse FT gives us the integral representation of the delta function:

�(x� d) =
1

2⇡

Z 1

�1
dk f̃(k)eikx =

1

2⇡

Z 1

�1
dk e

�ikd
e
ikx (5.55)

=
1

2⇡

Z 1

�1
dk e

ik(x�d)
. (5.56)

You ought to worry that it’s entirely unobvious whether this integral converges, since the integrand
doesn’t die o↵ at 1. A safer approach is to define the �-function (say) in terms of a Gaussian of
width �, where we know that the FT and inverse FT are well defined. Then we can take the limit
of � ! 0.

In the same way that we have defined a delta function in x, we can also define a delta function
in k. This would, for instance, represent a signal composed of oscillations of a single frequency or
wavenumber K. Again, we can write it in integral form if we wish:

�(k �K) =
1

2⇡

Z 1

�1
e
i(k�K)x

dx. (5.57)

This k-space delta function has exactly the same sifting properties when we integrate over k as the
original version did when integrating over x.

Note that the sign of the exponent is irrelevant:

�(x) =
1

2⇡

Z 1

�1
e
±ikx

dk, (5.58)

which is proved by changing variable from k to �k (the limits swap, which cancels the minus sign
arising from dk ! �dk).
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Figure 6.6: Illustration of the convolution of two functions, viewed as the area of the overlap
resulting from a relative shift of x.

FOURIER ANALYSIS: LECTURE 9

6 Convolution

Convolution combines two (or more) functions in a way that is useful for describing physical sys-
tems. Convolution describes, for example, how optical systems respond to an image: it gives a
mathematical description of the process of blurring. We will also see how Fourier solutions to dif-
ferential equations can often be expressed as a convolution. The FT of the convolution is easy to
calculate, so Fourier methods are ideally suited for solving problems that involve convolution.

First, the definition. The convolution of two functions f(x) and g(x) is defined to be

f(x) ⇤ g(x) =

Z 1

�1
dx

0
f(x0)g(x� x

0) , (6.59)

The result is also a function of x, meaning that we get a di↵erent number for the convolution for
each possible x value. Note the positions of the dummy variable x

0, especially that the argument
of g is x� x

0 and not x0
� x (a common mistake in exams).

There are a number of ways of viewing the process of convolution. Most directly, the definition here
is a measure of overlap: the functions f and g are shifted relative to one another by a distance x,
and we integrate to find the product. This viewpoint is illustrated in Fig. 6.6.

But this is not the best way of thinking about convolution. The real significance of the operation is
that it represents a blurring of a function. Here, it may be helpful to think of f(x) as a signal, and
g(x) as a blurring function. As written, the integral definition of convolution instructs us to take
the signal at x0, f(x0), and replace it by something proportional to f(x0)g(x � x

0): i.e. spread out
over a range of x around x

0. This turns a sharp feature in the signal into something fuzzy centred
at the same location. This is exactly what is achieved e.g. by an out-of-focus camera.

Alternatively, we can think about convolution as a form of averaging. Take the above definition of
convolution and put y = x � x

0. Inside the integral, x is constant, so dy = �dx
0. But now we are

integrating from y = 1 to �1, so we can lose the minus sign by re-inverting the limits:

f(x) ⇤ g(x) =

Z 1

�1
dy f(x� y)g(y) . (6.60)
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Figure 6.7: Convolution of two top hat functions.

This says that we replace the value of the signal at x, f(x) by an average of all the values around
x, displaced from x by an amount y and weighted by the function g(y). This is an equivalent view
of the process of blurring. Since it doesn’t matter what we call the dummy integration variable,
this rewriting of the integral shows that convolution is commutative: you can think of g blurring f

or f blurring g:

f(x) ⇤ g(x) =

Z 1

�1
dz f(z)g(x� z) =

Z 1

�1
dz f(x� z)g(z) = g(x) ⇤ f(x). (6.61)

6.1 Examples of convolution

1. Let ⇧(x) be the top-hat function of width a.

• ⇧(x) ⇤ ⇧(x) is the triangular function of base width 2a.

• This is much easier to do by sketching than by working it out formally: see Figure 6.7.

2. Convolution of a general function g(x) with a delta function �(x� a).

�(x� a) ⇤ g(x) =

Z 1

�1
dx

0
�(x0

� a)g(x� x
0) = g(x� a). (6.62)

using the sifting property of the delta function. This is a clear example of the blurring e↵ect of
convolution: starting with a spike at x = a, we end up with a copy of the whole function g(x),
but now shifted to be centred around x = a. So here the ‘sifting’ property of a delta-function
has become a ‘shifting’ property. Alternatively, we may speak of the delta-function becoming
‘dressed’ by a copy of the function g.

The response of the system to a delta function input (i.e. the function g(x) here) is sometimes
called the Impulse Response Function or, in an optical system, the Point Spread Function.

3. Making double slits: to form double slits of width a separated by distance 2d between centres:

[�(x+ d) + �(x� d)] ⇤ ⇧(x) . (6.63)

We can form di↵raction gratings with more slits by adding in more delta functions.
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6.2 The convolution theorem

States that the Fourier transform of a convolution is a product of the individual Fourier transforms:

FT [f(x) ⇤ g(x)] = f̃(k) g̃(k) (6.64)

FT [f(x) g(x)] =
1

2⇡
f̃(k) ⇤ g̃(k) (6.65)

where f̃(k), g̃(k) are the FTs of f(x), g(x) respectively.

Note that:

f̃(k) ⇤ g̃(k) ⌘

Z 1

�1
dq f̃(q) g̃(k � q) . (6.66)

We’ll do one of these, and we will use the Dirac delta function.

The convolution h = f ⇤ g is

h(x) =

Z 1

�1
f(x0)g(x� x

0) dx0
. (6.67)

We substitute for f(x0) and g(x� x
0) their FTs, noting the argument of g is not x0:

f(x0) =
1

2⇡

Z 1

�1
f̃(k)eikx

0
dk

g(x� x
0) =

1

2⇡

Z 1

�1
g̃(k)eik(x�x0)

dk

Hence (relabelling the k to k
0 in g, so we don’t have two k integrals)

h(x) =
1

(2⇡)2

Z 1

�1

✓Z 1

�1
f̃(k)eikx

0
dk

Z 1

�1
g̃(k0)eik

0(x�x0)
dk

0
◆
dx

0
. (6.68)

Now, as is very common with these multiple integrals, we do the integrations in a di↵erent order.
Notice that the only terms which depend on x

0 are the two exponentials, indeed only part of the
second one. We do this one first, using the fact that the integral gives 2⇡ times a Dirac delta
function:

h(x) =
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0x

✓Z 1

�1
e
i(k�k0)x0

dx
0
◆

dk
0
dk

=
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0x [2⇡�(k � k
0)] dk0

dk

Having a delta function simplifies the integration enormously. We can do either the k or the k
0

integration immediately (it doesn’t matter which you do – let us do k
0):

h(x) =
1

2⇡

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0x
�(k � k

0) dk0
�
dk

=
1

2⇡

Z 1

�1
f̃(k)g̃(k) eikx dk

Since

h(x) =
1

2⇡

Z 1

�1
h̃(k) eikx dk (6.69)
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we see that
h̃(k) = f̃(k)g̃(k). (6.70)

Note that we can apply the convolution theorem in reverse, going from Fourier space to real space,
so we get the most important key result to remember about the convolution theorem:

Convolution in real space , Multiplication in Fourier space (6.71)

Multiplication in real space , Convolution in Fourier space

This is an important result. Note that if one has a convolution to do, it is often most e�cient to
do it with Fourier Transforms, not least because a very e�cient way of doing them on computers
exists – the Fast Fourier Transform, or FFT.

CONVENTION ALERT! Note that if we had chosen a di↵erent convention for the 2⇡ factors
in the original definitions of the FTs, the convolution theorem would look di↵erently. Make sure
you use the right one for the conventions you are using!

Note that convolution commutes, f(x) ⇤ g(x) = g(x) ⇤ f(x), which is easily seen (e.g. since the FT
is f̃(k)g̃(k) = g̃(k)f̃(k).)

Example application: Fourier transform of the triangular function of base width 2a. We know
that a triangle is a convolution of top hats:

�(x) = ⇧(x) ⇤ ⇧(x) . (6.72)

Hence by the convolution theorem:

FT [�] = (FT [⇧(x)])2 =

✓
sinc

ka

2

◆2

(6.73)
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7 Parseval’s theorem for FTs (Plancherel’s theorem)

For FTs, there is a similar relationship between the average of the square of the function and the
FT coe�cients as there is with Fourier Series. For FTs it is strictly called Plancherel’s theorem, but
is often called the same as FS, i.e. Parseval’s theorem; we will stick with Parseval. The theorem
says Z 1

�1
|f(x)|2 dx =

1

2⇡

Z 1

�1
|f̃(k)|2 dk. (7.74)

It is useful to compare di↵erent ways of proving this:

(1) The first is to go back to Fourier series for a periodic f(x): f(x) =
P

n cn exp(iknx), and |f |
2

requires us to multiply the series by itself, which gives lots of cross terms. But when we integrate
over one fundamental period, all oscillating terms average to zero. Therefore the only terms that
survive are ones where cn exp(iknx) pairs with c

⇤
n exp(�iknx). This gives us Parseval’s theorem for

Fourier series:

1

`

Z `/2

�`/2

|f(x)|2 dx =
X

n

|cn|
2
)

Z `/2

�`/2

|f(x)|2 dx = `

X

n

|cn|
2 =

1

`

X

n

|f̃ |
2
, (7.75)

using the definition f̃ = `cn. But the mode spacing is dk = 2⇡/`, so 1/` is dk/2⇡. Now we take the
continuum limit of `! 1 and dk

P
becomes

R
dk.

(2) Alternatively, we can give a direct proof using delta-functions:

|f(x)|2 = f(x)f ⇤(x) =

✓
1

2⇡

Z
f̃(k) exp(ikx) dk

◆
⇥

✓
1

2⇡

Z
f̃
⇤(k0) exp(�ik

0
x) dk0

◆
, (7.76)

which is
1

(2⇡)2

ZZ
f̃(k)f̃ ⇤(k0) exp[ix(k � k

0)] dk dk0
. (7.77)

If we now integrate over x, we generate a delta-function:
Z

exp[ix(k � k
0)] dx = (2⇡)�(k � k

0). (7.78)

So Z
|f(x)|2 dx =

1

2⇡

ZZ
f̃(k)f̃ ⇤(k0) �(k � k

0) dk dk0 =
1

2⇡

Z
|f̃(k)|2 dk. (7.79)

7.1 Energy spectrum of decaying signal

As in the case of Fourier series, |f̃(k)|2 is often called the Power Spectrum of the signal. If we have
a field (such as an electric field) where the energy density is proportional to the square of the field,
then we can interpret the square of the Fourier Transform coe�cients as the energy associated with
each frequency – i.e. total energy radiated is

Z 1

�1
|f(t)|2 dt. (7.80)
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Figure 7.8: Frequency spectrum of two separate exponentially decaying systems with 2 di↵erent
time constants ⌧ . (x axis is frequency, y axis / |f̃(!)|2 in arbitrary units).

By Parseval’s theorem, this is equal to

1

2⇡

Z 1

�1
|f̃(!)|2 d!. (7.81)

and we interpret |f̃(!)|2/(2⇡) as the energy radiated per unit (angular) frequency, at frequency !.

If we have a quantum transition from an upper state to a lower state, which happens spontaneously,
then the intensity of emission will decay exponentially. We can model this semi-classically as a field
that oscillates with frequency !0, but with an amplitude that is damped with a timescale ⌧ = 1/a:

f(t) = e
�at cos(!0t) (t > 0). (7.82)

Algebraically it is easier to write this as the real part of a complex exponential, do the FT with the
exponential, and take the real part at the end. So consider

f(t) =
1

2
e
�at(ei!0t + e

�i!0t) (t > 0). (7.83)

The Fourier transform is 1

f̃(!) =
1

2

Z 1

0

(e�at�i!t+i!0t + e
�at�i!t�i!0t) dt (7.84)

) 2f̃(!) =


e
�at�i!t+i!0t

�a� i! + i!0
�

e
�at�i!t�i!0t

�a� i! � i!0

�1

0

=
1

(a+ i! � i!0)
+

1

(a+ i! + i!0)

(7.85)

This is sharply peaked near ! = !0; near this frequency, we therefore ignore the second term, and
the frequency spectrum is

|f̃(!)|2 '
1

4 [a+ i(! � !0)]

1

[a� i(! � !0)]
=

1

4 [a2 + (! � !0)2]
. (7.86)

1Note that this integral is similar to one which leads to Delta functions, but it isn’t, because of the e�at term. For
this reason, you can integrate it by normal methods. If a = 0, then the integral does indeed lead to Delta functions.
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This is a Lorentzian curve with width a = 1/⌧ . Note that the width of the line in frequency is
inversely proportional to the decay timescale ⌧ . This is an example of the Uncertainty Principle,
and relates the natural width of a spectral line to the decay rate. See Fig. 7.8.

8 Correlations and cross-correlations

Correlations are defined in a similar way to convolutions, but look carefully, as they are slightly
di↵erent. With correlations, we are concerned with how similar functions are when one is displaced
by a certain amount. If the functions are di↵erent, the quantity is called the cross-correlation; if it
is the same function, it is called the auto-correlation, or simply correlation.

The cross-correlation of two functions is defined by

c(X) ⌘ hf
⇤(x)g(x+X)i ⌘

Z 1

�1
f
⇤(x)g(x+X) dx. (8.87)

Compare this with convolution (equation 6.59). X is sometimes called the lag. Note that cross-
correlation does not commute, unlike convolution. The most interesting special case is when f and
g are the same function: then we have the auto-correlation function.

The meaning of these functions is easy to visualise if the functions are real: at zero lag, the auto-
correlation function is then proportional to the variance in the function (it would be equal if we
divided the integral by a length `, where the functions are zero outside that range). So then the
correlation coe�cient of the function is

r(X) =
hf(x)f(x+X)i

hf 2i
. (8.88)

If r is small, then the values of f at widely separated points are unrelated to each other: the point
at which r falls to 1/2 defines a characteristic width of a function. This concept is used particularly
in random processes.

The FT of a cross-correlation is
c̃(k) = f̃

⇤(k) g̃(k). (8.89)

This looks rather similar to the convolution theorem, which is is hardly surprising given the similarity
of the definitions of cross-correlation and convolution. Indeed, the result can be proved directly from
the convolution theorem, by writing the cross-correlation as a convolution.

A final consequence of this is that the FT of an auto-correlation is just the power spectrum; or, to
give the inverse relation:

hf
⇤(x)f(x+X)i =

1

2⇡

Z
|f̃ |

2 exp(ikX) dk. (8.90)

This is known as the Wiener-Khinchin theorem, and it generalises Parseval’s theorem (to which it
reduces when X = 0). It is straightforward to prove directly, by writing the Fourier integral for f
twice and using a delta-function; we will do this in the workshops.

Finally, note that much of this discussion applies also to periodic functions defined as Fourier series,
where the proof is even easier.

f(x) =
X

n

cn exp(iknx) ) f
⇤(x)f(x+X) =

X

n,m

c
⇤
ncm exp[i(km � kn)x] exp(ikmX). (8.91)
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If we now interpret the averaging h. . . i as integrating in x over one period and dividing by the
period, the exp[i(km � kn)x] term yields just �mn. Hence

hf
⇤(x)f(x+X)i =

X

n

|cn|
2 exp(iknX). (8.92)

9 Fourier analysis in multiple dimensions

We have now completed all the major tools of Fourier analysis, in one spatial dimension. In many
cases, we want to consider more than one dimension, and the extension is relatively straightforward.
Start with the fundamental Fourier series, f(x) =

P
n cn exp(i2⇡nx/`x). f(x) can be thought of

as F (x, y) at constant y; if we change y, the e↵ective f(x) changes, so the cn must depend on y.
Hence we can Fourier expand these as a series in y:

cn(y) =
X

m

dnm exp(i2⇡my/`y), (9.93)

where we assume that the function is periodic in x, with period `x, and y, with period `y. The
overall series is than

F (x, y) =
X

n,m

dnm exp[2⇡i(nx/`x +my/`y)] =
X

n,m

dnm exp[i(kxx+ kyy)] =
X

n,m

dnm exp[i(k · x)].

(9.94)
This is really just the same as the 1D form, and the extension to D dimensions should be obvious.
In the end, we just replace the usual kx term with the dot product between the position vector and
the wave vector.

The Fourier transform in D dimensions just involves taking the limit of `x ! 1, `y ! 1 etc. The
Fourier coe�cients become a continuous function of k, in which case we can sum over bins in k

space, each containing Nmodes(k) modes:

F (x) =
X

bin

d(k) exp[i(k · x)]Nmodes. (9.95)

The number of modes in a given k-space bin is set by the period in each direction: allowed modes
lie on a grid of points in the space of kx, ky etc. as shown in Figure 9.9. If for simplicity the period
is the same in all directions, the density of states is `D/(2⇡)D:

Nmodes =
`
D

(2⇡)D
d
D
k. (9.96)

This is an important concept which is used in many areas of physics.

The Fourier expression of a function is therefore

F (x) =
1

(2⇡)D

Z
F̃ (k) exp[i(k · x) dDk], (9.97)

Where we have defined F̃ (k) ⌘ `
D
d(k). The inverse relation would be obtained as in 1D, by

appealing to orthogonality of the modes:

F̃ (k) =

Z
F (x) exp[�i(k · x)] dDx. (9.98)
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Figure 9.9: Illustrating the origin of the density of states in 2D. The allowed modes are shown as
points, with a separation in kx and ky of 2⇡/`, where ` is the periodicity. The number of modes
between |k| and |k| + d|k| (i.e. inside the shaded annulus) is well approximated by (`/2⇡)2 times
the area of the annulus, as `! 1, and the mode spacing tends to zero. Clearly, in D dimensions,
the mode density is just (`/2⇡)D.
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10 Digital analysis and sampling

Imagine we have a continuous signal (e.g. pressure of air during music) which we sample by making
measurements at a few particular times. Any practical storage of information must involve this
step of analogue-to-digital conversion. This means we are converting a continuous function into
one that is only known at discrete points – i.e. we are throwing away information. We would feel
a lot more comfortable doing this if we knew that the missing information can be recovered, by
some form of interpolation between the sampled points. Intuitively, this seems reasonable if the
sampling interval is very fine: by the definition of continuity, the function between two sampled
points should be arbitrarily close to the average of the sample values as the locations of the samples
gets closer together. But the sampling interval has to be finite, so this raises the question of how
coarse it can be; clearly we would prefer to use as few samples as possible consistent with not losing
any information. This question does have a well-posed answer, which we can derive using Fourier
methods.

The first issue is how to represent the process of converting a function f(x) into a set of values
{f(xi)}. We can do this by using some delta functions:

f(x) ! fs(x) ⌘ f(x)
X

i

�(x� xi). (10.99)

This replaces our function by a sum of spikes at the locations xi, each with a weight f(xi). This
representation of the sampled function holds the information of the sample values and locations.
So, for example, if we try to average the sampled function over some range, we automatically get
something proportional to just adding up the sample values that lie in the range:

Z x2

x1

fs(x) dx =
X

in range

f(xi). (10.100)

10.1 The infinite comb

If we sample regularly with a spacing �x, then we have an ‘infinite comb’ – an infinite series of
delta functions. The comb is (see Fig. 10.10):

g(x) =
1X

j=�1

�(x� j�x) (10.101)

This is also known as the Shah function.

To compute the FT of the Shah function, we will write it in another way. This is derived from
the fact that the function is periodic, and therefore suitable to be written as a Fourier series with
` = �x:

g(x) =
X

n

cn exp(2⇡nix/�x). (10.102)

The coe�cients cn are just

cn =
1

�x

Z �x/2

��x/2

�(x) dx =
1

�x
, (10.103)
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Figure 10.10: Top: An infinite comb in real space. This represents the sampling pattern of a
function which is sampled regularly every �x. Bottom: The FT of the infinite comb, which is also
an infinite comb. Note that u here is k/(2⇡).

so that

g(x) =
1

�x

X

n

exp(2⇡nix/�x) =
1

2⇡

Z
g̃(k) exp(ikx) dx. (10.104)

From this, we can see that g̃(k) must involve a sum of delta-functions in k space, since g(x) has
ended up as a sum of exp(iknx) terms, each of which could be sifted out of the Fourier integral by a
contribution to g̃(k) that is / �(k�kn). More formally, we could take the FT of our new expression
for g(x), which would yield a series of delta-functions. In any case,

g̃(k) =
2⇡

�x

1X

n=�1
�(k � 2⇡n/�x). (10.105)

which is an infinite comb in Fourier space, with spacing 2⇡/�x.

The FT of a function sampled with an infinite comb is therefore (1/2⇡ times) the convolution of
this and the FT of the function:

f̃s(k) =
1

2⇡
f̃(k) ⇤ g̃(k) =

1

�x

1X

n=�1
f̃(k � 2⇡n/�x). (10.106)

In other words, each delta-function in the k-space comb becomes ‘dressed’ with a copy of the
transform of the original function.
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Figure 10.11: If the sampling is not fine enough, then the power at di↵erent frequencies gets mixed
up, and the original spectrum cannot be recovered. To avoid aliasing �x has to be small enough
such that ⇡/�x � kmax, where kmax is the band-width limit. As a corolarium, note that this
condition can only be met if kmax is finite! (that is, the spectrum is band-limited).
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Figure 10.12: If sin t is sampled at unit values of t, then sin(t + 2⇡t) is indistinguishable at the
sampling points. The sampling theorem says we can only reconstruct the function between the
samples if we know that high-frequency components are absent.

10.2 Shannon sampling, aliasing and the Nyquist frequency

We can now go back to the original question: do the sampled values allow us to reconstruct the
original function exactly? An equivalent question is whether the transform of the sampled function
allows us to reconstruct the transform of the original function.

The answer is that this is possible (a) if the original spectrum is bandlimited, which means that the
power is confined to a finite range of wavenumber (i.e. there is a maximum wavenumber kmax which
has non-zero Fourier coe�cients); and (b) if the sampling is fine enough. This is illustrated in Figs
10.11 and 10.12. If the sampling is not frequent enough, the power at di↵erent wavenumbers gets
mixed up. This is called aliasing. The condition to be able to measure the spectrum accurately is
to have a sample at least as often as the Shannon Rate �x.

The Nyquist wavenumber is defined as

kNyquist =
⇡

�x
(10.107)

which needs to exceed the maximum wavenumber in order to avoid aliasing:

kNyquist � kmax. (10.108)

For time-sampled data (such as sound), the same applies, with wavenumber k replaced by frequency
!.

There is a simple way of seeing that this makes sense, as illustrated in Figure 10.12. Given samples
of a Fourier mode at a certain interval, �x, a mode with a frequency increased by any multiple of
2⇡/�x clearly has the same result at the sample points.

10.2.1 Interpolation of samples

The idea of having data that satisfy the sampling theorem is that we should be able to reconstruct
the full function from the sampled values; how do we do this in practice? If the sampled function is
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the product of f(x) and the Shah function, we have seen that the FT of the sampled function is the
same as f̃/�x, for |k| < ⇡/�x. If we now multiply by T̃ (k): a top-hat in k space, extending from
�⇡/�x to +⇡/�x, with height �x, then we have exactly f̃ and can recover f(x) by an inverse
Fourier transform. This k-space multiplication amounts to convolving the sampled data with the
inverse Fourier transform of T (k), so we recover f(x) in the form

f(x) = [f(x)g(x)]⇤T (x) =

Z
f(q)

X

n

�(q�n�x)T (x�q) dq =

Z X

n

f(n�x)�(q�n�x)T (x�q) dq,

(10.109)
using f(x)�(x� a) = f(a)�(x� a). The sum of delta-functions sifts to give

f(x) =
X

n

f(n�x)T (x� n�x), (10.110)

i.e. the function T (x) = sin[⇡x/�x]/(⇡x/�x) is the interpolating function. This is known as ‘sinc
interpolation’.
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10.3 CDs and compression

Most human beings can hear frequencies in the range 20 Hz – 20 kHz. The sampling theorem means
that the sampling frequency needs to be at least 40 kHz to capture the 20 kHz frequencies. The
CD standard samples at 44.1 kHz. The data consist of stereo: two channels each encoded as 16-bit
integers. Allowing one bit for sign, the largest number encoded is thus 215� 1 = 32767. This allows
signals of typical volume to be encoded with a fractional precision of around 0.01% – an undetectable
level of distortion. This means that an hour of music uses about 700MB of information. But in
practice, this requirement can be reduced by about a factor 10 without noticeable degradation in
quality. The simplest approach would be to reduce the sampling rate, or to encode the signal
with fewer bits. The former would require a reduction in the maximum frequency, making the
music sound dull; but fewer bits would introduce distortion from the quantization of the signal.
The solution implemented in the MP3 and similar algorithms is more sophisticated than this: the
time series is split into ‘frames’ of 1152 samples (0.026 seconds at CD rates) and each is Fourier
transformed. Compression is achieved by storing simply the amplitudes and phases of the strongest
modes, as well as using fewer bits to encode the amplitudes of the weaker modes, according to a
‘perceptual encoding’ where the operation of the human ear is exploited – knowing how easily faint
tones of a given frequency are masked by a loud one at a di↵erent frequency.

11 Discrete Fourier Transforms & the FFT

This section is added to the course notes as a non-examinable supplement, which may be of interest
to those using numerical Fourier methods in project work. We have explored the properties of
sampled data using the concept of an infinite array of delta functions, but this is not yet a practical
form that can be implemented on a computer.

11.1 The DFT

Suppose that we have a function, f(x), that is periodic with period `, and which is known only at
N equally spaced values xn = n(`/N). Suppose also that f(x) is band-limited with a maximum
wavenumber that satisfies |kmax| < ⇡/(`/N), i.e. it obeys the sampling theorem. If we wanted to
describe this function via a Fourier series, we would need the Fourier coe�cients

fk(k) =
1

`

Z `

0

f(x) exp[�ikx] dx. (11.111)

This integral can clearly be approximated by summing over the N sampled values:

fk(k) =
1

`

X

n

f(xn) exp[�ikxn] `/N =
1

N

X

n

f(xn) exp[�ikxn]; (11.112)

in fact, we show below that this expression yields the exact integral for data that obey the sampling
theorem. The range of grid values is irrelevant because of the periodicity of f . Suppose we sum
from n = 1 to N and then change to n = 0 to N � 1: the sum changes by f(x0) exp[�ikx0] �
f(xN) exp[�ikxN ], but f(x0) = f(xN) and xN � x0 = `. Since the allowed values of k are multiples
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of 2⇡/`, the change in the sum vanishes. We can therefore write what can be regarded as the
definition of the discrete Fourier transform of the data:

fk(km) =
1

N

N�1X

n=0

f(xn) exp[�ikmxn], (11.113)

where the allowed values of k are km = m(2⇡/`) and the allowed values of x are xn = n(`/N). This
expression has an inverse of very similar form:

f(xj) =
N�1X

m=0

fk(km) exp[ikmxj]. (11.114)

To prove this, insert the first definition in the second, bearing in mind that kmxn = 2⇡mn/N . This
gives the expression

1

N

X

m,n

f(xn) exp[2⇡im(j � n)/N ] =
1

N

X

m,n

f(xn) z
m
, (11.115)

where z = exp[2⇡i(j�n)/N ]. Consider
P

m z
m: where j = n we have z = 1 and the sum is N . But

if j 6= n, the sum is zero. To show this, consider z
P

m z
m =

P
m z

m + z
N
� 1. But zN = 1, and

we have z
P

m z
m =

P
m z

m, requiring the sum to vanish if z 6= 1. Hence
P

m z
m = N�jn, and this

orthogonality relation proves that the inverse is exact.

11.2 The FFT

We have seen the advantages of the DFT in data compression, meaning that it is widely used
in many pieces of contemporary consumer electronics. There is therefore a strong motivation to
compute the DFT as rapidly as possible; the Fast Fourier Transform does exactly this.

At first sight, there may seem little scope for saving time. If we define the complex number
WN ⌘ exp[�i2⇡/N ], then the DFT coe�cients involves us calculating the quantity

Fm ⌘

N�1X

n=0

fnW
nm
N . (11.116)

This requires N mutiplications of the complex numbers fn and W and N � 1 additions for each
coe�cient m. So the time for DFT computation scales as O(N2) for large N . The Fast Fourier
Transform allows us to reduce that dependence to O(N log2 N). This is a huge gain. For N = 109

we go from 1018 operations down to 30 ⇥ 109 (8 orders of magnitude!). If an operation takes one
nanosecond this would mean going from 1018ns ⇠ 31.2 years down to 30⇥ 109ns ' 30 seconds!

FFT algorithms exploit two symmetries of WN ⌘ exp[�i2⇡/N ]

• Complex conjugate symmetry: W (k(N�n))
N = W

kN
N W

�kn
N = W

�kn
N = (W kn

N )⇤.

• Periodicity in n and k: W kn
N = W

k(n+N)
N = W

n(k+N)
N .

The steps to follow are : (i) build a big DFT from smaller ones, (ii) assume that N = 2p and (iii)
separate the sum into even and odd indices
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Fm ⌘

N�1X

n=0

fnW
nm
N =

X

n even

fnW
nm
N +

X

n odd

fnW
nm
N . (11.117)

Even and odd indices can be written as 2r and 2r + 1, respectively, with r = 0, 1, ..., N/2� 1, such
that

Fm =
N/2�1X

r=0

f2rW
2rm
N +

N/2�1X

r=0

f2r+1W
(2r+1)m
N (11.118)

=
N/2�1X

r=0

f2r(W
2
N)

rm +W
m
N

N/2�1X

r=0

f2r+1(W
2
N)

rm
. (11.119)

But W 2
N = exp[�2(i2⇡/N)] = exp[�i2⇡/(N/2)] = WN/2,thus

Fm =
N/2�1X

r=0

f2rW
rm
N/2 +W

m
N

N/2�1X

r=0

f2r+1W
rm
N/2 = Fem +W

m
N Fom, (11.120)

where Fem and Fom are two sets of DFTs, each with N/2 samplings.

Figure 11.13: FFT for N = 8, first splitting.

By cutting N samplings into odd and even we reduce the number of operations down to approx.
half, 2(N/2)2 +N ⇠ N/2.

SinceN = 2p we can keep splitting each odd/even DFT p = log2 N times: N/2, N/4, ..., N/2p�1
, N/2p,

where N = 2p. The total number of operations is therefore

55



Split 1 : N/2 ! 2(N/2)2 +N = N
2
/2 +N (11.121)

Split 2 : N/4 ! 2(2(N/4)2 +N/2) +N = N
2
/4 + 2N (11.122)

Split 3 : N/8 ! 2(2(2(N/8)2 +N/4) +N/2) +N = N
2
/8 + 3N (11.123)

.... (11.124)

Split p : N/2p ! N
2
/2p + pN = N

2
/N +N log2 N (11.125)

(11.126)

which scales as O(N log2 N) for N � 1.

It would take us too far afield to discuss how general algorithms for an FFT are constructed to
achieve the above savings for any value of N . The book Numerical Recipes by Press et al. (CUP) has
plenty of detail. The result is that the naive ⇠ N

2 time requirement can be reduced to ⇠ N lnN ,
provided N has only a few small prime factors – most simply a power of 2.
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12 Ordinary Di↵erential Equations

A powerful application of Fourier methods is in the solution of di↵erential equations. This is because
of the following identity for the FT of a derivative:

FT
⇥
f
(p)(x)

⇤
= FT


d
p
f

dxp

�
= (ik)pf̃(k) (12.127)

Thus applying a FT to terms involving derivatives replaces the di↵erential equation with an algebraic
equation for f̃ , which may be easier to solve.

Let’s remind ourselves of the origin of this fundamental result. The simplest approach is to write
a function f(x) as a Fourier integral: f(x) =

R
f̃(k) exp(ikx) dk/2⇡. Di↵erentiation with respect

to x can be taken inside the integral, so that df/dx =
R
f̃(k) ik exp(ikx) dk/2⇡. From this we can

immediately recognise ikf̃(k) as the FT of df/dx. The same argument can be made with a Fourier
series.

We will illustrate the application of this result with the familiar example of the driven damped
simple harmonic oscillator.

12.1 The driven damped Simple Harmonic Oscillator

Probably the most familiar physical context for this equation is where we have a mass m attached to
a spring with a spring constant k, and which is also immersed in a viscous fluid that exerts a resistive
force proportional to the speed of the mass, with a constant of proportionality D. Imagine further
that the mass is driven by an external force F (t). The equation of motion for the displacement z(t)
is

mz̈ = �kz �Dż + F (t) (12.128)

(negative signs in �kz�Dż because both spring and drag oppose motion in the z direction). Now
define a characteristic frequency by !2

0 = k/m, and let � = D/m. Then we can write the equation
in what will be our standard form:

z̈ + �ż + !
2
0z = f(t), (12.129)

where f(t) = F (t)/m.

The identical equation arises in an LCR electrical circuit consisting of an inductor of inductance
L, a capacitor of capacitance C and a resistor of resistance R. If they are in series, then in the
simplest case of one of each in the circuit, the voltage across all three is the sum of the voltages
across each component. The voltage across R is IR, where I is the current; across the inductor it
is LdI/dt, and across the capacitor it is Q/C, where Q is the charge on the capacitor:

V (t) = L
dI

dt
+RI +

Q

C
. (12.130)
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Figure 12.14: A simple series LCR circuit.

Now, since the rate of change of charge on the capacitor is simply the current, dQ/dt = I, we can
di↵erentiate this equation, to get a second-order ODE for I:

L
d
2
I

dt2
+R

dI

dt
+

I

C
=

dV

dt
. (12.131)

This is the same di↵erential equation as before, with

(z, �,!2
0, f) ! (I, R/L, 1/LC, V̇ /L). (12.132)

12.1.1 Periodic driving force

The simplest case to consider is where the driving force oscillates at a single frequency, !. Let’s
look at how this is often solved, without using any Fourier terminology. We can always choose the
origin of time so that f(t) = A cos!t, so we want to solve z̈ + �ż + !

2
0z = A cos!t. The normal

approach is to guess that z must respond at the same frequency, so that z = a cos!t + b sin!t.
Substituting this guess, we get

(!2
0 � !

2)(a cos!t+ b sin!t) + �!(�a sin!t+ b cos!t) = A cos!t. (12.133)

In order for the lhs to be a pure cos, the sin coe�cient must vanish: b(!2
0�!

2)�a�! = 0. Equating
cos coe�cients then gives a(!2

0 � !
2) + b�! = A. These equations can be written in matrix form:

✓
(!2

0 � !
2) �!

��! (!2
0 � !

2)

◆✓
a

b

◆
=

✓
A

0

◆
. (12.134)

So inverting the matrix gives
✓
a

b

◆
=

1

�2!2 + (!2
0 � !2)2

✓
(!2

0 � !
2) ��!

�! (!2
0 � !

2)

◆✓
A

0

◆
. (12.135)

Hence the solution is

z = A
⇥
(!2

0 � !
2)2 + �

2
!
2
⇤�1 ⇥

(!2
0 � !

2) cos!t+ �! sin!t
⇤
. (12.136)

Because of the occurrence of sin and cos terms, there is a phase shift with respect to the driving
term, so we must be able to write this as z = z0 cos(!t+ �), and expressions for the amplitude and
phase could be obtained with a bit of trigonometric e↵ort. But there is an easier way.
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12.1.2 Complex solution

Write the driving term as f = A exp(i!t). The normal justification for this complex approach is that
we will take the real part at the end. This is fair enough, but we will give a better justification later.
Note that the amplitude A could be complex, A = |A| exp(i�), so we can easily include a phase
in the input signal; in the real formalism, we chose the origin of time so that this phase vanished,
otherwise the algebra would have been even messier. If we now try a solution z = c exp(i!t), where
again c can include a phase, we get

� !
2
c+ i�!c+ !

2
0c = A, (12.137)

since the exp(i!t) factor on each side can be divided out. This gives us the solution for c immediately
with almost no work.

The result can be made a bit more intuitive by splitting the various factors into amplitudes and
phases. Let A = |A| exp(i�) and (�!2 + i�! + !

2
0) = |B| exp(i↵), where

|B| =
q

(!2
0 � !2)2 + �2!2 (12.138)

and
tan↵ = �!/(!2

0 � !
2). (12.139)

Then we have simply

z(t) =
|A|

|B|
exp[i(!t+ �� ↵)], (12.140)

so the dynamical system returns the input oscillation, modified in amplitude by the factor 1/|B|

and lagging in phase by ↵. For small frequencies, this phase lag is very small; it becomes ⇡/2 when
! = !0; for larger !, the phase lag tends to ⇡.

The same equations can be obtained using the real approach, but it takes a great deal longer. Once
again, we see the advantage of the complex formalism.

12.2 Fourier approach

The above traditional approach works, but it can seem a little ad hoc. We guess form for the
solution (how did we know to make this guess?), and we have to remember to take the real part of a
complex calculation and throw away the imaginary part. But Fourier analysis allows us to be more
systematic. The key point is that the di↵erential equations of interest are linear in the unknown,
z, and in its derivatives. Since the FT is also a linear operation, we immediately get an equation
relating the Fourier transforms of z and f :

z̈ + �ż + !
2
0z = f(t) ) �!

2
z̃(!) + i!�z̃(!) + !

2
0 z̃(!) = f̃(!), (12.141)

because the FT of ż(t) is i!z̃(w), and the FT of z̈(t) is �!2
z̃(!). Thus

z̃(!) =
f̃(!)

!
2
0 � !2 + i�!

. (12.142)

This solution in Fourier space is general and works for any time-dependent force. Once we have a
specific form for the force, we can in principle use the Fourier expression to obtain the exact solution
for z(t), assuming we can do the necessary integrals.
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As a simple example, consider a driving force that can be written as a single complex exponential:

f(t) = A exp(i⌦t). (12.143)

Fourier transforming, we get

f̃(!) =

Z 1

�1
Ae

i⌦t
e
�i!t

dt = 2⇡A�(⌦� !) = 2⇡A�(! � ⌦). (12.144)

Unsurprisingly, the result is a �-function spike at the driving frequency. Since we know that z̃(!) =
f̃(!)/(!2

0 � !
2 + i�!), we can now use the inverse FT to compute z(t):

z(t) =
1

2⇡

Z 1

�1

f̃(!)

!
2
0 � !2 + i�

e
i!t

d! (12.145)

= A

Z 1

�1

�(! � ⌦)

!
2
0 � !2 + i�!

e
i!t

d!

= A
exp(i⌦t)

!
2
0 � ⌦2 + i�⌦

=
|A|

|B|
exp(i⌦t+ �� ↵),

where A = |A| exp(i�) and !2
0 � ⌦2 + i�⌦ = |B| exp(i↵). This is just the answer we obtained by

taking the usual route of trying a solution proportional to exp(i⌦t) – but the nice thing is that the
inverse FT has produced this for us automatically, without needing to guess.

Finally, we can also clarify the common use of complex exponentials to represent real oscillations.
The traditional argument is that (as long as we deal with linear equations) the real and imaginary
parts process separately and so we can just take the real part at the end. But in Fourier analysis,
we have noted that real functions require the Hermitian symmetry f̃(!) = f̃

⇤(�!). If f(t) is to be
real, it therefore makes no sense to consider purely a signal at a single !: we must allow for the
negative-frequency part simultaneously. If there is to be a spike in f̃ at ! = +⌦, we therefore need
a corresponding spike at ! = �⌦:

f̃(!) = 2⇡A�(! � ⌦) + 2⇡A⇤
�(! + ⌦). (12.146)

The inverse Fourier transform of this is just a real oscillation with arbitrary phase:

f(t) = A exp(i⌦t) + A
⇤ exp(�i⌦t) = 2|A| cos(⌦t+ �), (12.147)

where A = |A| exp(i�). Notice that this f(t) is the sum of a complex exponential and its conjugate,
so we have

f(t) = 2Re[A exp(i⌦t)]. (12.148)

Thus the Hermitian symmetry between positive and negative frequencies ends up instructing us to
adopt exactly the traditional approach: solve the problem with f / exp(i⌦t) and take the real part
at the end.

Finally, then, the time-dependent solution when we insist on this real driving force of given frequency
comes simply from adding the previous solution to its complex conjugate:

z(t) =
|A|

|B|
exp[i(⌦t+ �� ↵)] +

|A|

|B|
exp[�i(⌦t+ �� ↵)] = 2

|A|

|B|
cos(⌦t+ �� ↵). (12.149)

The factor 2 is unimportant; it also occurs in the definition of f(t) = 2|A| cos(⌦t+ �), so it can be
absorbed in the definition of |A|.
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12.3 Periodic vs non-periodic forces

The Fourier Transform approach does not assume the driving force, or the response, to be periodic.
It’s worth contrasting explicitly this general approach with what we do when the force is periodic
with period T (i.e. f(t+ T ) = f(t) for all t).

In this case, we expand both f and z as Fourier Series. If we use a sin+cos series, then

z(t) =
1

2
a0 +

1X

n=1

an cos (!nt) +
1X

n=1

bn sin (!nt) (12.150)

f(t) =
1

2
A0 +

1X

n=1

An cos (!nt) +
1X

n=1

Bn sin (!nt)

where !n = 2⇡n/T .

dz

dt
= �

1X

n=1

!nan sin (!nt) +
1X

n=1

n!bn cos (n!t) (12.151)

d
2
z(t)

dt2
= �

1X

n=1

!
2
nan cos (!nt)�

1X

n=1

!
2
nbn sin (!nt)

Then the l.h.s. of the di↵erential equation becomes

z̈+�ż+!2
0z =

!
2
0

2
a0+

1X

n=1

⇥�
�!

2
nan + �!nbn + !

2
0an

�
cos(!nt) +

�
�!

2
nbn � �!nbn + !

2
0bn

�
sin(!nt)

⇤
.

(12.152)
This Fourier series must match the one for f(t). Now, because of the orthogonality of the sin & cos
modes, we can extract from either side the coe�cients corresponding to a given sin or cos mode,
which must then match on either side of the equation, mode-by-mode. In the traditional solution
of the problem, this same matching approach is taken, but without the formal justification from
orthogonality.

Similarly, for a complex series of a periodic force, we would write

z(t) =
X

n

cn exp(i!nt); f(t) =
X

n

dn exp(i!nt), (12.153)

giving
z̈ + �ż + !

2
0z =

X

n

[(!2
0 � !

2) + i�!n]cn exp(i!nt). (12.154)

Again, using orthogonality to justify equating coe�cients, we would deduce

cn = dn/[(!
2
0 � !

2
n) + i�!n], (12.155)

Which is the same relation we found between z̃ and f̃ when we took the direct Fourier Transform
of the di↵erential equation.
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12.4 Complex impedance

In the previous lecture, we looked at using Fourier transforms to solve the di↵erential equation
for the damped harmonic oscillator. It’s illuminating to reconsider this analysis in the specific
context of the LCR circuit, where LÏ + Rİ + I/C = V̇ . Let the voltage be a complex oscillation,
V = Ṽ exp(i!t), so that the current is of the same form, I = Ĩ exp(i!t), obeying

� !
2
LĨ + i!RĨ +

1

C
Ĩ = i!Ṽ , (12.156)

Thus we see that the circuit obeys a form of Ohm’s law, but involving a complex impedance, Z:

Ṽ = Z(!)Ĩ; Z(!) = R + i!L�
i

!C
. (12.157)

This is a very useful concept, as it immediately allows more complex circuits to be analysed, using
the standard rules for adding resistances in series or in parallel.

The frequency dependence of the impedance means that di↵erent kinds of LCR circuit have functions
as filters of the time-dependent current passing through them: di↵erent Fourier components (i.e.
di↵erent frequencies) can be enhanced or suppressed. For example, consider a resistor and inductor
in series:

Ĩ(!) =
Ṽ (!)

R + i!L
. (12.158)

For high frequencies, the current tends to zero; for ! ⌧ R/L, the output of the circuit (current
over voltage) tends to the constant value I(!)/V (!) = R. So this would be called a low-pass filter:
it only transmits low-frequency vibrations. Similarly, a resistor and capacitor in series gives

Ĩ(!) =
Ṽ

R + (i!C)�1
. (12.159)

This acts as a high-pass filter, removing frequencies below about (RC)�1. Note that the LR circuit
can also act in this way if we measure the voltage across the inductor, VL, rather than the current
passing through it:

ṼL(!) = i!LĨ(!) = i!L
Ṽ

R + i!L
=

Ṽ

1 +R(i!L)�1
. (12.160)

Finally, a full series LCR circuit is a band-pass filter, which removes frequencies below (RC)�1 and
above R/L from the current.

12.5 Resonance

It is interesting to look at the solution to the damped harmonic oscillator in a bit more detail. If the
forcing term has a very high frequency (! � !0) then |B| is large and the amplitude is suppressed
– the system cannot respond to being driven much faster than its natural oscillation frequency. In
fact the amplitude is greatest if ! is about !0 (if � is small). We can di↵erentiate to show that the
maximum amplitude is reached at the resonant frequency:

! = !res =
q
!
2
0 � �2/2. (12.161)

When � is small, this is close to the natural frequency of the oscillator: !res ' !0 � �
2
/4!0.
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The amplitude of the oscillation falls rapidly as we move away from resonance. To see this, write
|B|

2 = (!2
0 � !

2)2 + �
2
!
2 in terms of !2 = !

2
res + x:

|B|
2 = �

2
!
2
res � �

4
/4 + x

2
. (12.162)

If we write ! = !res + ✏, then x ' 2!res✏ to lowest order in ✏. If � ⌧ !0, we can now neglect the
di↵erence between !res and !0, so that the amplitude of oscillation becomes approximated by the
following expression:

1

|B|2
'

(�!0)�2

(1 + 4✏2/�2)
. (12.163)

This is a Lorentzian dependence of the square of the amplitude on frequency deviation from reso-
nance. The width of the resonance is set by the damping: moving a frequency ✏ = �/2 away from
resonance halves the squared amplitude.

12.6 Transients

Finally, note that we can always add a solution to the homogeneous equation (i.e. where we set the
right hand side to zero). The final solution will be determined by the initial conditions (z and dz/dt).
This is because the equation is linear and we can superimpose di↵erent solutions. For this additional
solution (also called the complementary function), we try an oscillating solution z / exp(i!t).
Substituting in the damped oscillator di↵erential equation gives the auxiliary equation:

� !
2 + i�! + !

2
0 = 0, (12.164)

a quadratic equation with the solution ! = i�/2 ±
p

��2/4 + !
2
0. There are two main cases to

consider:

(1) Underdamped: �/2 < !0. z = e
��t/2(Aei⌦t +Be

�i⌦t), where ⌦ =
p

��2/4 + !
2
0.

(2) Overdamped: �/2 > !0. z = e
��t/2(Ae⌦

0t +Be
�⌦0t), where ⌦0 =

p
�2/4� !

2
0.

So there is only oscillation if the damping is not too high. For very heavy damping, e��t/2
Ae

⌦0t

yields very nearly a time independent z, as is physically reasonable for an extremely viscous fluid.
But in all cases, the solution damps to zero as t ! 1. Therefore, if the initial conditions require
a component of the homogeneous solution, this only causes an initial transient, and the solution
settles down to the steady-state response, which is what was calculated earlier.

One mathematical complication arises with critical damping: �/2 = !0, so that the two roots
coincide at ⌦ = 0. The simplest way of seeing how to deal with this is to imagine that ⌦ is non-zero
but very small. Thus Ae⌦

0t + Be
�⌦0t

' (A + B) + (A � B)⌦0
t. So the critically damped solution

is z = e
��t/2(C +Dt) (you can check that this does solve the critically-damped equation exactly).

One might also consider generalising the equation so that � or !2
0 are negative. This changes the

physical behaviour and interpretation (e.g. we will now get runaway solutions that increase with
time), but no new algebraic issues arise.

Whatever the form of the complementary function, it presents a problem for the Fourier solution of
the di↵erential equation, especially with a periodic driving force: in general the undriven motion of
the system will not share this periodicity, and hence it cannot be described by a Fourier series. As a
result, the Fourier solution is always zero if the Fourier components of the driving force vanish, even
though this is unphysical: an oscillator displaced from z = 0 will show motion even in the absence
of an applied force. For a proper treatment of this problem, we have to consider the boundary
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conditions of the problem, which dictate the amount of the homogeneous solution to be added to
yield the complete solution.

When dealing with Fourier transforms, this step may seem inappropriate. The Fourier transform
describes non-periodic functions that stretch over an infinite range of time, so it may seem that
boundary conditions can only be set at t = �1. Physically, we would normally lack any reason for
a displacement in this limit, so the homogeneous solution would tend to be ignored – even though
it should be included as a matter of mathematical principle. In fact, we will eventually see that the
situation is not this simple, and that boundary conditions have a subtle role in yielding the correct
solution even when using Fourier methods.

12.7 Approach using convolution

The solution to di↵erential equations using Fourier methods automatically generates an answer in
the form of a product in Fourier space, so a little thought and a memory of the convolution theorem
shows that the result can be presented in term of a convolution.

Let’s illustrate this point with a simple example that bears some resemblance to the harmonic
oscillator:

d
2
z

dt2
� !

2
0z = f(t). (12.165)

Taking the FT gives

� !
2
z̃(!)� !

2
0 z̃(!) = f̃(!) ) z̃(!) =

�f̃(!)

!
2
0 + !2

, (12.166)

with a solution

z(t) = �
1

2⇡

Z 1

�1

f̃(!)

!
2
0 + !2

e
i!t

d!. (12.167)

What this says is that a single oscillating f(t), with amplitude a, will generate a response in
antiphase with the applied oscillation, with amplitude �a/(!2

0 + !
2). For the general case, we

superimpose oscillations of di↵erent frequency, which is what the inverse Fourier transform does for
us.

But now we see that the FT of z(t) is a product (in Fourier space), of f̃(!) and

g̃(!) ⌘
�1

!
2
0 + !2

(12.168)

hence the solution is a convolution in real (i.e. time) space:

z(t) =

Z 1

�1
f(t0)g(t� t

0) dt0. (12.169)

An exercise for you is to show that the FT of

g(t) = �
e
�!0|t|

2!0
(12.170)

is g̃(!) = �1/(!2
0 + !

2), so we finally arrive at the steady solution for a driving force f(t):

z(t) = �
1

2!0

Z 1

�1
f(t0)e�!0|t�t0|

dt
0
. (12.171)

Note how we have used g(t� t
0) = �e

�!0|t�t0|
/2!0 here, as required for a convolution.
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FOURIER ANALYSIS: LECTURE 15

13 Green’s functions

13.1 Response to an impulse

We have spent some time so far in applying Fourier methods to solution of di↵erential equations
such as the damped oscillator. These equations are all in the form of

Ly(t) = f(t), (13.172)

where L is a linear di↵erential operator. For the damped harmonic oscillator, L = (d2/dt2 +
�d/dt + !

2
0). As we know, linearity is an important property because it allows superposition:

L(y1 + y2) = Ly1 +Ly2. It is this property that lets us solve equations in general by the method of
particular integral plus complementary function: guess a solution that works for the given driving
term on the RHS, and then add any solution of the homogeneous equation Ly = 0; this is just
adding zero to each side, so the sum of the old and new y functions still solves the original equation.

In this part of the course, we focus on a very powerful technique for finding the solution to such
problems by considering a very simple form for the RHS: an impulse, where the force is concentrated
at a particular instant. A good example would be striking a bell with a hammer: the subsequent
ringing is the solution to the equation of motion. This impulse response function is also called a
Green’s function after George Green, who invented it in 1828 (note the apostrophe: this is not a
Green function). We have to specify the time at which we apply the impulse, T , so the applied
force is a delta-function centred at that time, and the Green’s function solves

LG(t, T ) = �(t� T ). (13.173)

Notice that the Green’s function is a function of t and of T separately, although in simple cases it
is also just a function of t� T .

This may sound like a peculiar thing to do, but the Green’s function is everywhere in physics. An
example where we can use it without realising is in electrostatics, where the electrostatic potential
satisfies Poisson’s equation:

r
2
� = �⇢/✏0, (13.174)

where ⇢ is the charge density. What is the Green’s function of this equation? It is the potential
due to a charge of value �✏0 at position vector q:

G(r,q) =
�1

4⇡|r� q|
. (13.175)

13.2 Superimposing impulses

The reason it is so useful to know the Green’s function is that a general RHS can be thought of as
a superposition of impulses, just as a general charge density arises from summing individual point
charges. We have seen this viewpoint before in interpreting the sifting property of the delta-function:

f(x) =

Z
f(q) �(x� q) dq. (13.176)
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To repeat, we normally tend to think of this as involving a single spike located at q = x, which pulls
out the value of f at the location of this spike. But we can flip the viewpoint and think of �(x� q)
as specifying a spike at x = q, where now the integral covers all values of q: spikes everywhere.
Alternatively, consider the analogy with the inverse Fourier transform:

f(x) =

Z
f̃(k)/2⇡ exp(ikx), dk. (13.177)

Here, we have basis functions exp(ikx), which we think of as functions of x with k as a parameter,
with expansion coe�cients f̃(k)/2⇡. From this point of view, the sifting relation uses �(x � q) as
the basis function, with q as the parameter specifying where the spike is centred.

So if f(x) is a superposition of spikes, we only need to understand the response of a linear system to
one spike and then superposition of responses will give the general solution. To show this explicitly,
take LG(t, T ) = �(t�T ) and multiply both sides by f(T ) (which is a constant). But now integrate
both sides over T , noting that L can be taken outside the integral because it doesn’t depend on T :

L

Z
G(t, T )f(T ) dT =

Z
�(t� T )f(T ) dT = f(t). (13.178)

The last step uses sifting to show that indeed adding up a set of impulses on the RHS, centred at
di↵ering values of T , has given us f(t). Therefore, the general solution is a superposition of the
di↵erent Green’s functions:

y(t) =

Z
G(t, T )f(T ) dT. (13.179)

This says that we apply a force f(T ) at time T , and the Green’s function tells us how to propagate
its e↵ect to some other time t (so the Green’s function is also known as a propagator).

13.2.1 Importance of boundary conditions

When solving di↵erential equations, the solution is not unique until we have applied some boundary
conditions. This means that the Green’s function that solves LG(t, T ) = �(t � T ) also depends
on the boundary conditions. This shows the importance of having boundary conditions that are
homogeneous: in the form of some linear constraint(s) being zero, such as y(a) = y(b) = 0, or y(a) =
ẏ(b) = 0. If such conditions apply to G(t, T ), then a solution that superimposes G(t, T ) for di↵erent
values of T will still satisfy the boundary condition. This would not be so for y(a) = y(b) = 1,
and the problem would have to be manipulated into one for which the boundary conditions were
homogeneous – by writing a di↵erential equation for z ⌘ y � 1 in that case.

13.3 Finding the Green’s function

The above method is general, but to find the Green’s function it is easier to restrict the form of the
di↵erential equation. To emphasise that the method is not restricted to dependence on time, now
consider a spatial second-order di↵erential equation of the general form

d
2
y

dx2
+ a1(x)

dy

dx
+ a0(x)y(x) = f(x). (13.180)

Now, if we can solve for the complementary function (i.e. solve the equation for zero RHS), the
Green’s function can be obtained immediately. This is because a delta function vanishes almost
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everywhere. So if we now put f(x) ! �(x � z), then the solution we seek is a solution of the
homogeneous equation everywhere except at x = z.

We split the range into two, x < z, and x > z. In each part, the r.h.s. is zero, so we need to solve
the homogeneous equation, subject to the boundary conditions at the edges. At x = z, we have to
be careful to match the solutions together. The � function is infinite here, which tells us that the
first derivative must be discontinuous, so when we take the second derivative, it diverges. The first
derivative must change discontinuously by 1. To see this, integrate the equation between z � ✏ and
z + ✏, and let ✏! 0:

Z z+✏

z�✏

d
2
G

dx2
dx+

Z z+✏

z�✏

a1(x)
dG

dx
dx+

Z z+✏

z�✏

a0(x)dx =

Z z+✏

z�✏

�(x� z)dx. (13.181)

The second and third terms vanish as ✏ ! 0, as the integrands are finite. To see why the second
term vanishes we integrate by parts, so that

Z z+✏

z�✏

a1(x)
dG

dx
dx = a1G|

z+✏
z�✏ �

Z z+✏

z�✏

G
da1

dx
dx = 0,

because a1, da1/dx and G are continuous functions. The right-hand side integrates to 1, so

dG

dx

����
z+✏

�
dG

dx

����
z�✏

= 1. (13.182)

13.3.1 Example

Consider the di↵erential equation
d
2
y

dx2
+ y = x (13.183)

with boundary conditions y(0) = y(⇡/2) = 0.

The Green’s function is continuous at x = z, has a discontinuous derivative there, and satisfies the
same boundary conditions as y. From the properties of the Dirac delta function, except at x = z,
the Green’s function satisfies

d
2
G(x, z)

dx2
+G(x, z) = 0. (13.184)

(Strictly, we might want to make this a partial derivative, at fixed z. It is written this way so it
looks like the equation for y). This is a harmonic equation, with solution

G(x, z) =

⇢
A(z) sin x+B(z) cosx x < z

C(z) sin x+D(z) cosx x > z.
(13.185)

We now have to adjust the four unknowns A,B,C,D to match the boundary conditions.

The boundary condition y = 0 at x = 0 means that B(z) = 0, and y = 0 at x = ⇡/2 implies that
C(z) = 0. Hence

G(x, z) =

⇢
A(z) sin x x < z

D(z) cosx x > z.
(13.186)

Continuity of G implies that A(z) sin z = D(z) cos z and a discontinuity of 1 in the derivative implies
that �D(z) sin z�A(z) cos z = 1. We have 2 equations in two unknowns, so we can eliminate A or
D:

� A(z)
sin2

z

cos z
� A(z) cos z = 1 ) A(z) =

� cos z

sin2
z + cos2 z

= � cos z (13.187)
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and consequently D(z) = � sin z. Hence the Green’s function is

G(x, z) =

⇢
� cos z sin x x < z

� sin z cos x x > z
(13.188)

The solution for a driving term x on the r.h.s. is therefore (be careful here with which solution for
G to use: the first integral on the r.h.s. has x > z)

y(x) =

Z ⇡/2

0

z G(x, z) dz = � cos x

Z x

0

z sin z dz � sin x

Z ⇡/2

x

z cos z dz. (13.189)

Integrating by parts,

y(x) = (x cos x� sin x) cosx�
1

2
(⇡ � 2 cosx� 2x sin x) sin x = x�

⇡

2
sin x. (13.190)

13.4 Summary

So to recap, the procedure is to find the Green’s function by

• replacing the driving term by a Dirac delta function

• solving the homogeneous equation either side of the impulse, with the same boundary condi-
tions e.g. G = 0 at two boundaries, or G = @G/@x = 0 at one boundary.

• Note the form of the solution will be the same for (e.g.) x < z and x > z, but the coe�cients
(strictly, they are not constant coe�cients, but rather functions of z) will di↵er either side of
x = z).

• matching the solutions at x = z (so G(x, z) is continuous).

• introducing a discontinuity of 1 in the first derivative @G(x, z)/@x at x = z

• integrating the Green’s function with the actual driving term to get the full solution.
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FOURIER ANALYSIS: LECTURE 16

13.5 Boundary conditions at the same place/time

The boundary conditions strongly influence the nature of the Green’s function. We can demonstrate
this with the case where the boundary conditions act at a single point, rather than two points as
above.

Of course, the number of boundary conditions depends on the order of the equation. The simplest
case is a first-order equation, where only one condition is required. Suppose we want to solve

dy

dt
� g(t)y = f(t), (13.191)

subject to y = 0 at t = 0. The homogeneous solution is easily obtained by direct integration:

y = A exp

Z t

0

g(t0) dt0.

�
(13.192)

Thus G = 0 in the region of time containing the origin (t < T if T > 0 and t > T if T < 0). Now
our matching condition is just that G = 1 on the other side of the spike. Thus if T > 0 then

G(t, T ) = exp

Z t

T

g(t0) dt0
�
. (13.193)

13.5.1 Second-order example

Now for a second-order example. Consider a frictionless particle acted on by an exponentially
declining force that is switched on at t = 0, at which point the particle is at rest:

d
2
z

dt2
= e

�t; (13.194)

z = 0;
dz

dt
= 0 at t = 0. (13.195)

We can, of course, solve this equation very easily simply by integrating twice, and applying the
boundary conditions. As an exercise, we are going to solve it with Green’s functions. This also
makes the point that there is often more than one way to solve a problem.

For an impulse at T , the Green’s function satisfies

@G(t, T )

@t2
= �(t� T ) (13.196)

so for t < T and t > T the equation to be solved is @2G/@t
2 = 0, which has solution

G(t, T ) =

⇢
A(T )t+B(T ) t < T

C(T )t+D(T ) t > T
(13.197)
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Now, we apply the same boundary conditions. G(t = 0) = 0 ) B = 0. The derivative G
0(t = 0) =

0 ) A = 0, so G(t, T ) = 0 for t < T .

Continuity of G at t = T implies
C(T )T +D(T ) = 0, (13.198)

and a discontinuity of 1 in the derivative at T implies that

C(T )� A(T ) = 1. (13.199)

Hence C = 1 and D = �T and the Green’s function is

G(t, T ) =

⇢
0 t < T

t� T t > T
(13.200)

The full solution is then

z(t) =

Z 1

0

G(t, T )f(T )dT (13.201)

where f(T ) = e
�T . Hence

z(t) =

Z t

0

G(t, T )f(T )dT +

Z 1

t

G(t, T )f(T )dT. (13.202)

The second integral vanishes, because G = 0 for t < T , so

z(t) =

Z t

0

(t� T )e�T
dT = t

⇥
�e

�T
⇤t
0
�

⇢⇥
�Te

�T
⇤t
0
+

Z t

0

e
�T

dT

�
(13.203)

which gives the motion as
z(t) = t� 1 + e

�t
. (13.204)

We can check that z(0) = 0, that z0(0) = 0, and that z00(t) = e
�t. The final speed is z0(t ! 1) = 1.

13.6 Causality

The above examples showed how the boundary conditions influence the Green’s function. Boundary
conditions at the single point t = 0 have enforced the causal behaviour

G(t, T ) = 0 (t < T ); (13.205)

i.e. nothing happens before the impulse is applied. This seems physically reasonable. On the other
hand, this result only applies for T > 0: if T < 0 then the Green’s function is anti-causal and
vanishes for t > T . What’s going on?

One answer is that there is nothing special about t = 0 for the boundary conditions. If we let the
point at which they are applied approach t ! �1 then all impulses will come later than the point
at which the boundary conditions are applied. This makes more physical sense: we put down our
system at rest and afterwards apply forces to it. So the causal Green’s function is always the case
of practical interest.

As one further example, consider the harmonic oscillator:

G̈(t, T ) + !
2
0G(t, T ) = �(t� T ). (13.206)

The causal Green’s function is particularly easy to find, because we only need to think about the
behaviour at t > T . Here, the solution of the homogeneous equation is A sin!0t+B cos!0t, which
must vanish at t = T . Therefore it can be written as G(t, T ) = A sin[!0(t � T )]. The derivative
must be unity at t = T , so the causal Green’s function for the undamped harmonic oscillator is

G(t, T ) =
1

!0
sin[!0(t� T )]. (13.207)
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13.6.1 Comparison with direct Fourier solution

As a further example, we can revisit again the di↵erential equation with the opposite sign from the
oscillator:

d
2
z

dt2
� !

2
0z = f(t). (13.208)

We solved this above by taking the Fourier transform of each side, to obtain

z(t) = �
1

2⇡

Z 1

�1

f̃(!)

!
2
0 + !2

e
i!t

d!. (13.209)

We then showed that this is in the form of a convolution:

z(t) = �
1

2!0

Z 1

�1
f(T )e�!0|t�T |

dT. (13.210)

This looks rather similar to the solution in terms of the Green’s function, so can we say that
G(t, T ) = � exp(�!0|t�T |)/2!0? Direct di↵erentiation gives Ġ = ± exp(�!0|t�T |)/2, with the +
sign for t > T and the � sign for t < T , so it has the correct jump in derivative and hence satisfies
the equation for the Green’s function.

But this is a rather strange expression, since it is symmetric in time: a response at t can precede
T . The problem is that we have imposed no boundary conditions. If we insist on causality, then
G = 0 for t < T and G = A exp[!0(t � T )] + B exp[�!0(t � T )] for t > T . Clearly A = �B, so
G = 2A sinh[!0(t� T )]. This now looks similar to the harmonic oscillator, and a unit step in Ġ at
t = T requires

G(t, T ) =
1

!0
sinh[!0(t� T )]. (13.211)

So the correct solution for this problem will be

z(t) =
1

!0

Z t

�1
f(T ) sinh[!0(t� T )] dT. (13.212)

Note the changed upper limit in the integral: forces applied in the future cannot a↵ect the solution
at time t. We see that the response, z(t), will diverge as t increases, which is physically reasonable:
the system has homogeneous modes that either grow or decline exponentially with time. Special
care with boundary conditions would be needed if we wanted to excite only the decaying solution
– in other words, this system is unstable. This can be seen by supposing that f(T ) vanishes for
time Tmax. When t is large enough, sinh[!0(t� T )] ' exp[!0(t� T )]/2 and the exp[!0t] behaviour
factorises out.
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FOURIER ANALYSIS: LECTURE 17

14 Partial Di↵erential Equations and Fourier methods

The final element of this course is a look at partial di↵erential equations. We will contrast the
Fourier point of view with other techniques that are commonly employed to solve these problems.

14.1 Examples of important PDEs

PDEs are very common and important in physics. Here, we will illustrate the methods under study
with four key examples:

Poisson0s equation : r
2
 = 4⇡G⇢ (14.213)

The wave equation : r
2
 =

1

c2

@
2
 

@t2
(14.214)

The di↵usion equation : r
2
 =

1

D

@ 

@t
(14.215)

Schrödinger’s equation :
�h̄

2

2m
r

2
 + V  = ih̄

@ 

@t
(14.216)

These are all examples in 3D, involving the ‘del’ vector operator

r ⌘ (@/@x, @/@y, @/@z) , (14.217)

and r
2 means r ·r. For simplicity, we will often consider the 1D analogue, in which  (r, t)

depends only on x and t, so that r2 is replaced by @2/@x2.

14.1.1 Poisson’s equation

This is the equation that relates the gravitational potential (usually written �) to the density of
matter, ⇢. The potential dictates the acceleration of a body via a = �r�. Thus, Poisson’s equation
says r · a = �4⇡G⇢. A very similar equation applies in electrostatics: r2� = �⇢/✏0, where ⇢ is the
charge density, and now a = �(q/m)r�. Note the sign di↵erence: gravity attracts, but like charges
repel. Poisson’s equation is derived by considering a point mass, ⇢ = M�(x), which we know gives
an inverse-square acceleration, a = �(GM/r

2) r̂ (pointing radially inwards). If we integrate both
sides over volume out to radius r, the rhs gives just 4⇡GM whereas the lhs gives (via the divergence
theorem) the area integral

R
a · dA. Since the total area is 4⇡r2, this integral is also 4⇡GM . So

Poisson’s equation is satisfied by a single particle, and by linearity it is satisfied by any system of
particles.

14.1.2 The wave equation

A simple way to see the form of the wave equation is to consider a single plane wave, represented
by  = exp[i(k · x � !t)]. We have r

2
 = �k

2
 , and (@2/@t2) = �!

2
 . Since !/|k| = c, this

one mode satisfies the wave equation. But a general  can be created by superposition of di↵erent
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waves (as in Fourier analysis), so  also satisfies the equation. Exactly the same reasoning is used
in deriving Schrödinger’s equation. Here we use de Broglie’s relations for momentum and energy:

p = h̄k; E = h̄!. (14.218)

Then the nonrelativistic energy-momentum relation, E = p
2
/2m+V becomes h̄! = (h̄2

/2m)k2+V .
A single wave therefore obeys Schrödinger’s equation, and by superposition and completeness, so
does a general  .

14.2 Solving PDEs with Fourier methods

The Fourier transform is a linear operation, which can be applied to transform a PDE (e.g. from x

to k) – often leading to simpler equations (algebraic or ODE typically) for the integral transform of
the unknown function. This is because spatial derivatives turn into factors of ik. Similar behaviour
is seen in higher numbers of dimensions. When  is a single Fourier mode, then

1D :
@

@x
 ! ik ;

@
2

@x2
 ! �k

2
 (14.219)

3D : r ! ik ; r
2
 ! �k

2
 . (14.220)

These simpler equations are then solved and the answer transformed back to give the required
solution. This is just the method we used to solve ordinary di↵erential equations, but with the
di↵erence that there is still a di↵erential equation to solve in the untransformed variable. Note
that we can choose whether to Fourier transform from x to k, resulting in equations that are still
functions of t, or we can transform from t to !, or we can transform both. Both routes should work,
but normally we would choose to transform away the higher derivative (e.g. the spatial derivative,
for the di↵usion equation).

The FT method works best for infinite systems. In subsequent lectures, we will see how Fourier
series are better able to incorporate boundary conditions.

14.2.1 Example: Poisson’s equation

This equation is particularly simple to solve in Fourier space as it is independent of time. Even
though it is a partial di↵erential equation, we can solve it in a single operation by taking the
multidimensional Fourier transform:

r
2� = 4⇡G⇢) �|k|2�̃ = 4⇡G⇢̃. (14.221)

This is the basis of a simple general algorithm for finding gravitational fields: sample the density on
a mesh and apply the discrete Fourier transform; divide the mode amplitudes by k

2 and invert the
transform. Better still, the same approach works in converting from the potential to accelerations:
a = �r� ) ãx = ikx�̃. Thus the three components of the acceleration are derived by performing
three inverse Fourier transforms.

14.2.2 Example: the wave equation

One is used to thinking of solutions to the wave equation being sinusoidal, but they don’t have to
be. We can use Fourier Transforms to show this rather elegantly, applying a partial FT (x ! k,
but keeping t as is).
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The wave equation is

c
2@

2
u(x, t)

@x2
=
@
2
u(x, t)

@t2
(14.222)

where c is the wave speed. We Fourier Transform w.r.t. x to get ũ(k, t) (note the arguments),
remembering that the FT of @2/@x2 is �k

2:

� c
2
k
2
ũ(k, t) =

@
2
ũ(k, t)

@t2
. (14.223)

This is a harmonic equation for ũ(k, t), with solution

ũ(k, t) = Ae
�ikct +Be

ikct (14.224)

However, because the derivatives are partial derivatives, the ‘constants’ A and B can be functions
of k. Let us write these arbitrary functions as f̃(k) and g̃(k), i.e.

ũ(k, t) = f̃(k)e�ikct + g̃(k)eikct. (14.225)

We now invert the transform, to give

u(x, t) =

Z 1

�1

dk

2⇡

h
f̃(k)e�ikct + g̃(k)eikct

i
e
ikx

=

Z 1

�1

dk

2⇡
f̃(k)eik(x�ct) +

Z 1

�1

dk

2⇡
g̃(k)eik(x+ct)

= f(x� ct) + g(x+ ct)

and f and g are arbitrary functions.

14.2.3 Example: the di↵usion equation

Now consider using Fourier methods to solve the di↵usion equation for an infinite system.

D
@
2
n(x, t)

@x2
=
@n(x, t)

@t
. (14.226)

The di↵usion coe�cient D is assumed to be independent of position. This is important, otherwise
the FT method is not so useful. The procedure is as follows:

• FT each side: Multiply by e
�ikx and integrate over �1 < x < 1

• Write the (spatial) FT of n(x, t) as ñ(k, t)

• Pull the temporal derivative outside the integral over x

• Take the second derivivative of the left-hand side to get:

(ik)2Dñ(k, t) =
@ñ(k, t)

@t
(14.227)

• This is true for each value of k (k is a continuous variable). This is a partial di↵erential
equation, but let us for now fix k, so we have a simple ODE involving a time derivative, and
we note that d(ln ñ) = dñ/ñ, so we need to solve

d ln ñ

dt
= �k

2
D. (14.228)
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Its solution is ln ñ(k, t) = �k
2
Dt + constant. Note that the constant can be di↵erent for

di↵erent values of k, so the general solution is

ñ(k, t) = ñ0(k) e
�Dk2t

. (14.229)

where ñ0(k) ⌘ ñ(k, t = 0), to be determined by the initial conditions.

• The answer (i.e. general solution) comes via an inverse FT:

n(x, t) =

Z 1

�1

dk

2⇡
ñ(k, t) eikx =

Z 1

�1

dk

2⇡
ñ0(k) e

ikx�Dk2t
. (14.230)

SPECIFIC EXAMPLE: BROWNIAN MOTION In 1827 the botanist Robert Brown ob-
served that pollen grains suspended on a fluid tend to “jitter” around in a random fashion. Much
work went into investigating possible mechanisms that cause the jittering, such as microscopic ani-
mals, unknown properties of the fluid, etc. It was not until 1905 when Eisntein provided a natural
solution to the Brownian motion which involved “molecules”, whose reality was much debated at
the time. Not only did he show that the repeated impact of fluid molecules against the pollen grains
could explain the observed motion of the latter, he was also able to measure the Avogadro number
(number of molecules per unit mol) with remarkable accuracy!

Given that Einstein did not know what type of interactions take place between the molecules and
the pollen, describing the motion of a grain of pollen deterministically was clearly impossible. What
he did instead was to measure the probability that the pollen grain moves by a certain amount, �,
from an initial location x0 = 0 at t = t0. And he came up with a way to do so without knowing
anything about the microscopic interactions.

The first step was to define two probability functions: (i) n(x, t) as the probability to find the pollen
grain at the location x at the time t = t0 + ⌧ , where ⌧ is a small time interval, and (ii) '(�) as
the probability that the location of the pollen gran changes by an amount �. Both probability
(densities) are normalized such that

R
n(x, t)dx =

R
'(�)d� = 1. Next, he imposed a conservation

of probability

dN = n(x, t0 + ⌧)dx = dx

Z +1

�1
n(x��, t0)'(�)d� (14.231)

which is known as Einstein’s master equation. If ⌧ ⌧ t0 and |�| ⌧ |x| we can Taylor expand both
sides of the equation

n(x, t0) +
@n

@t
⌧ =

Z +1

�1


n(x, t0)�

✓
@n

@x

◆
�+

1

2

✓
@
2
n

@x2

◆
�2

�
'(�)d�. (14.232)

The functions of p and its derivatives do not depend on �, so they can be taken out of the integrals
on the right-hand side

n(x, t0) +
@n

@t
⌧ = n(x, t0)�

✓
@n

@x

◆Z +1

�1
�'(�)d�+

1

2

✓
@
2
n

@x2

◆Z +1

�1
�2
'(�)d�, (14.233)

where we have taken into account that
R
'(�)d� = 1.

Now, � can be positive or negative depending on the direction of the collision. If the fluid is
isotropic

R
�'(�)d� = 0. If we also define the di↵usion coe�cient

D =
1

2⌧

Z +1

�1
�2
'(�)d�, (14.234)
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Figure 14.15: Variation of concentration with distance x at various di↵usion times.

then Equation (14.233) becomes
@n

@t
= D

@
2
n

@x2
, (14.235)

which is a di↵usion equation.

Recall that the initial conditions of the problem are x = 0 at t0 = 0, which can be written as

n(x, t = 0) = �(x) (14.236)

implying (using the sifting property of the Dirac delta function),

ñ0(k) ⌘ ñ(k, 0) =

Z 1

�1
dx n(x, t = 0) e�ikx =

Z 1

�1
dx �(x) e�ikx = 1. (14.237)

Putting this into Eqn. (14.230) we get:

n(x, t) =

Z 1

�1

dk

2⇡
ñ(k, t) eikx =

Z 1

�1

dk

2⇡
ñ0(k) e

ikx�Dk2t

=

Z 1

�1

dk

2⇡
e
ikx�Dk2t =

1
p
2⇡

p
2Dt

e
�x2/(4Dt)

. (14.238)

(we used the ‘completing the square’ trick that we previously used to FT the Gaussian). Compare
this with the usual expression for a Gaussian,

1
p
2⇡�

exp

✓
�

x
2

2�2

◆
(14.239)

and identify the width � with
p
2Dt.

So, the motion of the pollen grain can be described by a normalized Gaussian centred on the origin
with width � =

p
2Dt. The important features are:

• normalized: the probability function obeyes
R
n(x, t)dx = 1 at every value of t
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• centred on the origin: the mean location of the pollen grain is centred at the initial location
x0 = 0

• width � =
p
2Dt: gets broader as time increases

– � /
p
t: characteristic of random walk (‘stochastic’) process

– � /
p
D: if we increase the di↵usion coe�cient D, the pollen grain spreads out more

quickly and the amplitued of the “jittering” increases.

The solution n(x, t) is sketched for various t in Fig. 14.15.

The di↵usion coe�cient The di↵usion coe�cient D can be measured relatively easily by com-
puting the dispersion of the displacement of the pollen grain as a function of time < x

2
>= 2Dt.

To obtain the Avogrado number NA we need to relate D to the microscopic properties of the fluid.
Einstein used very simple thermodynamical concepts to do it.

He first applied Stoke’s law, which states that the velocity of a pollen grain with mass m and radius
r falling through a fluid due to gravity is vgrain = �µmg, where g is the gravitational acceleration
and µ = 1/(6⇡⌘r) is the mobility parameter, with ⌘ being the viscosity coe�cient.

The pollen grain will reach equilibrium with the medium if the gravity attraction is counter-balanced
by the collisions of the particles. If there is a density gradient in the fluid, there will be a net flux
(J) of molecules coming from high to low density regions (toward positive z), which is known as
Fick’s law

J = �D
d⇢

dz
(14.240)

By definition, the flux can be written as J = ⇢v.

If the fluid is in thermal equilibrium

⇢ = ⇢0e
�mgz/(kBT ) (14.241)

where T is the temperature and kB is Boltzmann’s constant. The average velocity of the flux is

vflux =
J

⇢
= �D

1

⇢

d⇢

dz
= �D

d ln ⇢

dz
= +

Dmg

kBT
(14.242)

The pollen grain will be in equilibrium within the fluid when its (negative) velocity is counter-
balanced by the (positive) flux velocity of molecules, that is vgrain = �vflux, such that

mg

6⇡⌘r
=

Dmg

kBT
(14.243)

and the Avogadro number is simply

kB = R/NA = 6⇡⌘rD/T

where R is the universal gas constant and r, ⌘, D and T are macroscopic quantities that can be
measured in the lab.

Notice that Einstein was able to measure the number of molecules per unit mol in the fluid without
knowing anything about the nature of the molecules or how the interact with the pollen grain!
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FOURIER ANALYSIS: LECTURE 18

15 Separation of Variables

We now contrast the approach of Fourier transforming the equations with another standard tech-
nique. If we have a partial di↵erential equation for a function which depends on several variables,
e.g. u(x, y, z, t), then we can attempt to find a solution which is separable in the variables:

u(x, y, z, t) = X(x)Y (y)Z(z)T (t) (15.244)

where X, Y, Z, T are some functions of their arguments, and we try to work out what these functions
are. Examples of separable functions are xyz

2
e
�t, x2 sin(y)(1 + z

2)t, but not (x2 + y
2)zt. Not all

PDEs have separable solutions, but many physically important examples do.

15.1 Example of 1D wave equation

Let us consider the 1D wave equation (so we have only x and t as variables) as an example:

@
2
u

@x2
=

1

c2

@
2
u

@t2
. (15.245)

We try a solution u(x, t) = X(x)T (t):

@
2(XT )

@x2
=

1

c2

@
2(XT )

@t2
. (15.246)

Now notice that on the lhs, T is not a function of x, so can come outside the derivative, and also,
since X is a function of x only, the partial derivative with respect to x is the same as the ordinary
derivative. A similar argument holds on the rhs, where X is not a function of t, so

T
d
2
X

dx2
=

X

c2

d
2
T

dt2
. (15.247)

The trick here is to divide by XT , to get

1

X

d
2
X

dx2
=

1

c2T

d
2
T

dt2
. (15.248)

Now, the left hand side is not a function of t (only of x), whereas the right hand side is not a
function of x (only of t). The only way these two independent quantities can be equal for all t and
x is if they are both constant. The constant is called the separation constant, and let us call it �k

2

(if it turns out to be positive, we’ll come back and call it k2, or, alternatively, let k be imaginary).
Hence the equation for X is (multiplying by X)

d
2
X

dx2
= �k

2
X. (15.249)

You know the solution to this: X(x) = A exp(ikx) +B exp(�ikx), for constants A and B (alterna-
tively, we can write X as a sum of sines and cosines).
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The equation for T is
1

c2

d
2
T

dt2
= �k

2
T (15.250)

which has solution T (t) = C exp(i!t) + D exp(�i!t), where ! = ck. If we take in particular
B = C = 0 and A = D = 1, we have a solution

u(x, t) = exp[i(kx� !t)] (15.251)

which is as a sinusoidal wave travelling in the +x direction. In general, we will get a mixture of this
and exp[i(kx + !t)], which is a sinusoidal wave travelling in the negative x direction. We will also
get the same exponentials with the opposite sign in the exponent. These could be combined into

u(x, t) = A sin[(kx� !t) + ↵] + B sin[(kx� !t) + �], (15.252)

which is a mixture of waves travelling in the two directions, with di↵erent phases.

IMPORTANT: Notice that we can add together any number of solutions with di↵erent values

of the separation constant �k
2
, and we will still satisfy the equation. This means that the

full solution can be a more complicated non-periodic function, and we saw above that the general
solution of the 1D wave equation is

u(x, t) = f(x� ct) + g(x+ ct), (15.253)

for any (twice-di↵erentiable) functions f and g.

15.2 Eigenvalues and boundary conditions

The separation equations have the form of an eigenvalue problem, whereX(x) must be an eigenfunc-
tion of the di↵erential operator d

2
/dx

2 with eigenvalue �k
2. This should be familiar terminology

from quantum mechanics. The exact form of the eigenfunctions is dictated by boundary conditions,
which need to be homogeneous, i.e. in the form u = 0 for some combination of time and space
(commonly as a function of space at t = 0). This is because we want to build a general solution by
superposition, and sums of terms only keep the boundary condition unchanged if it is zero. If the
condition is u = const, we can convert it to u = 0 by writing a PDE for u� const instead.

For example, consider the 1D wave equation as representing the transverse displacement of a plucked
string of length L. The boundary conditions are that the string is fixed at either end:

u(x = 0, t) = u(x = L, t) = 0 (15.254)

for all t. Because these BCs hold for all times at specific x, they a↵ect X(x) rather than T (t):

X(x) / sin kx; k = n⇡x/L , n = 0, 1, 2 . . . (15.255)

Here, BCs have restricted the allowed values of k and thus the allowed frequencies of oscillation.
Di↵erent boundary conditions will have di↵erent allowed values. Restriction of eigenvalues by
boundary conditions is a very general property in physics:

finite boundaries ) discrete (quantised) eigenvalue spectrum ) allowable separation constants.

Each n value corresponds to a normal mode of the string:

u(x, t) = An sin knx{Cn sin!nt+Dn cos!nt}. (15.256)

A normal mode is an excitation that obeys the BCs and oscillates with a single frequency. We
sometimes call these eigenmodes of the system, with associated eigenfrequencies !n = !kn .
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Figure 15.16: Contrasting the travelling-wave and standing-wave solutions to the wave equation.

15.2.1 Standing waves

Here is another example. If we require that u is zero at two boundaries x = (0, ⇡), and that at
t = 0 the solution is a sin wave, u(x, 0) = sin(3x), then the solution is u(x, t) = sin(3x) cos(3ct).
This is a standing wave, which does not propagate, just varies its amplitude with time.

Note that we can write the standing wave solution as a superposition of waves travelling in opposite
directions (with ck = !):

sin(kx) cos(!t) =
1

2i
(eikx � e

�ikx)
1

2
(ei!t + e

�i!t)

=
1

4i

⇥
e
i(kx+!t) + e

i(kx�!t)
� e

�i(kx�!t)
� e

�i(kx+!t)
⇤

=
1

2
[sin(kx+ !t) + sin(kx� !t)] . (15.257)

15.3 Solving the di↵usion equation via separation of variables

Let us now try to solve the di↵usion equation in 1D:

@
2
u

@x2
=

1



@u

@t
. (15.258)

We wish to find a solution with u ! 0 as t ! 1. We try separating variables, u(x, t) = X(x)T (t),
to find

1

X

d
2
X

dx2
=

1

T

dT

dt
= ��

2 (15.259)

where we have written the separation constant as ��2. The equation for X is the same as we had
before. This time, let us write the solution as sines and cosines:

X(x) = A sin(�x) + B cos(�x). (15.260)

The equation for T is
dT

dt
= ��

2
T, (15.261)
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or
d lnT

dt
= ��

2
 (15.262)

which has solution
T (t) = C exp(��2t) (15.263)

so we have a separable solution (absorbing the constant C into A and B)

u(x, t) = [A sin(�x) + B cos(�x)] exp(��2t), (15.264)

This tends to zero as t ! 1 provided �
2
> 0. With �

2
< 0, the spatial variation would be a

combination of sinh and cosh terms; these functions do not oscillate, so it is not possible to satisfy
homogeneous boundary conditions. Therefore we have to consider only �2 > 0. This is physically
reassuring, since the solution that diverges exponentially with time hardly feels intuitively correct,
and indeed it conflicts with our previous solution of the di↵usion equation by Fourier methods.

Note that we can add solutions with di↵erent �. At a given time, this will amount to writing the
spatial dependence as something resembling a Fourier series:

u(x, t) =
X

i

[A(t) sin(�ix) + B(t) cos(�ix)] . (15.265)

The allowed �i depend on the boundary conditions. Suppose these are u(x = a) = u(x = a+L) = 0
(for all t): then we have

�n = n⇡/L; n = 1, 2, · · · (15.266)

The easiest way to see this is choose our coordinates so that a = 0, in which case B = 0 and
sin(�L) = 0. This di↵ers from Fourier series as we have studied them in two ways. Firstly, the
allowed wavenumbers are as we would have written them for a periodic function with a fundamental
period of 2L, whereas here we are interested in a solution just in a range of length L. In reality, the
solution will be zero outside this range (imagine a system immersed in a heat bath that imposes
the boundary conditions at either end). But what happens outside x = a to x = a + L has no
impact on the solution inside: only the requirement for u = 0 at the boundary matters. Therefore
we can write down the Fourier series and use it inside the range of interest, even though it makes
an incorrect prediction outside.

Because this is not a normal Fourier series, we need care in using orthogonality to extract the
coe�cients: Z a+L

a

sin(�ix) sin(�jx) dx 6= (L/2)�ij (15.267)

etc. This is because the range L is only an integral multiple of half a wavelength, rather than
a multiple of a wavelength as before, with the result that the sine and cosine coe�cients are not
independent. But some sort of orthogonality relation still applies; again, this is most simply seen
by choosing a = 0, in which case only sine waves are used, and it is easy to see that these are
orthogonal.

The other distinction from a normal Fourier series is that there is no constant term. But what
if we wanted to impose some non-zero temperature at either end of the interval? The answer is
that we can always add a constant to any solution of the di↵usion equation; so when we speak of a
boundary condition involving u = 0, this really means the temperature is at some uniform average
value, which we do not need to specify. This is just as well, since the oscillating solution apparently
allows negative temperatures, which would be unphysical.
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FOURIER ANALYSIS: LECTURE 19

15.4 Separation of variables in 2D: the di↵usion equation

We now extend this analysis of the di↵usion equation to more than one spatial dimension. Consider
an infinite square column of side L which is initially at temperature T0, u(x, y, t = 0) = 0. At t = 0
it is immersed in a heat bath at temperature Tb. To achieve homogeneous boundary conditions, we
define u(x, y) as temperature minus Tb (no z dependence, by symmetry). The di↵usion equation
only applies inside the column, but the value of of u outside the column has no e↵ect on the solution
for the temperature inside, beyond the boundary condition of u = 0 at the edge, so we can ignore the
fact that our mathematical solution makes an (incorrect) prediction for the temperature variation
outside the column.

We look for separable solutions of the heat equation:

r
2
u =

1



@u

@t
; u(x, y, t) = X(x)Y (y)T (t). (15.268)

With this substitution, the di↵erential equation becomes

Y T
d
2
X

d2x
+XT

d
2
Y

d2y
�

XY Z



dT

dt
= 0. (15.269)

Dividing by XY T , we get
1

X

d
2
X

d2x
+

1

Y

d
2
Y

d2y
�

1

T

dT

dt
= 0. (15.270)

Since each term depends on a single variable, they must all be constant, e.g.

1

T

dT

dt
= �� ) T (t) / e

��t
. (15.271)

We next find the equation for X, by isolating terms which depend on x only:

1

X

d
2
X

d2x
= �

1

Y

d
2
Y

d2y
� � = �k

2
x = constant. (15.272)

The X equation is easy to solve:

d
2
X

d2x
= �k

2
xX ) X(x) = Ae

ikxx +Be
�ikxx (15.273)

and similarly for Y – except that the equivalent wavenumber ky must satisfy k
2
x + k

2
y = �, from

equation (15.272).

Now, as stated above, the terms we calculate here must be zero on the boundaries at x = 0, L,
y = 0, L. Hence the solutions for X and Y must be sinusoidal, with the correct period, e.g.

X(x) / sin
⇣
m⇡x

L

⌘
(15.274)

for any integer m. Similarly for Y . So a separable solution is

u(x, y, t) = Cmn sin
⇣
m⇡x

L

⌘
sin

⇣
n⇡y

L

⌘
e
��mnt (15.275)
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Figure 15.17: Temperature at an early time t = 0.01, for T0 = 1,  = 1 and L = ⇡, and then at a
late time t = 1.

where

�mn =
⇡
2

L2
(m2 + n

2). (15.276)

Here we have identified the separation constants explicitly with the integers m,n, rewriting � =
k
2
x + k

2
y.

Now we can add the separable solutions:

u(x, y, t) =
1X

m,n=0

Cmn sin
⇣
m⇡x

L

⌘
sin

⇣
n⇡y

L

⌘
e
��mnt. (15.277)

All that remains is to determine the constants Cmn. We use the initial condition that inside the
volume u = T0 � Tb when t = 0 (when the exponential term is unity), so

1X

m,n=0

Cmn sin
⇣
m⇡x

L

⌘
sin

⇣
n⇡y

L

⌘
= T0 � Tb. (15.278)

This looks very much like a Fourier Series, and we can use the same trick of the orthogonality of the
sin functions. Multiply by sin(m0

⇡x/L) and integrate with respect to x, giving 0 unless m = m
0,
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and L/2 if m = m
0. Similarly for y, so

Cmn

✓
L

2

◆2

= (T0 � Tb)

Z L

0

sin(m⇡x/L)dx

Z L

0

sin(n⇡y/L)dy

= (T0 � Tb)


�

L

m⇡
cos

⇣
m⇡x

L

⌘�L

0


�

L

n⇡
cos

⇣
n⇡y

L

⌘�L

0

. (15.279)

The cosines are zero if m,n are even. If m,n are both odd, the right hand side is 4L2
/(mn⇡

2), from
which we get

Cmn =

⇢
16(T0 � Tb)/(⇡2

mn) m,n all odd
0 otherwise

(15.280)

Finally the full solution is

u(x, y, t) = (T0 � Tb)

(
16

⇡2

X

m,n odd

1

mn
sin

⇣
m⇡x

L

⌘
sin

⇣
n⇡y

L

⌘
exp


�(m2 + n

2)
⇡

2

L2
t

�)
. (15.281)

15.5 Separation of variables in 2D: the Schrödinger equation

A similar problem arises when we consider the time-dependent Schrödinger equation in 2D, for a
particle trapped in a (zero) potential 2D square well with infinite potentials on walls at x = 0, L,
y = 0, L. The infinite potential forces the wave function to vanish on the walls. The equation with
potential V = 0 is valid inside the well, and again the mathematical solution outside the well with
V = 0 will incorrectly give  6= 0. But inside the well, the solution is independent of what happens
outside; only the conditions on the boundary have an influence.

The equation to be solved is

�
h̄
2

2m
r

2
 (x, t) = ih̄

@ (x, t)

@t
. (15.282)

This is just the di↵usion equation with an imaginary di↵usion coe�cient:

e↵ = i
h̄

2m
, (15.283)

so we can immediately copy from above the solution that would result from separation of variables:

 (x, y, t) =
1X

q,r=0

Cqr sin
⇣
m⇡x

L

⌘
sin

⇣
n⇡y

L

⌘
e
�i(h̄�q,r/2m)t; �qr =

⇡
2

L2
(q2 + r

2) (15.284)

(we avoid m as an integer index, since it denotes mass). As with the di↵usion equation, the Cqr

coe�cients are set by the form of the wave function at t = 0, which must always be normalised so
that

RR
| 

2
| dx dy = 1.

The time dependence of the modes is e�i!t, or, in terms of energy E = h̄!, e�iEt/h̄, where

E =
h̄
2
�qr

2m
=

h̄
2
⇡
2(q2 + r

2)

2mL2
q, r = 1, 2, 3, · · · (15.285)

For a square well, the energy levels are degenerate – di↵erent combinations of q and r give the same
energy level.

84



16 PDEs in curved coordinates

The final topics in these lectures is to give a taste of what happens when we move away from
Cartesian spatial coordinates. The alternative of greatest interest is polar coordinates.

There are two important cases that we frequently deal with:

Cylindridal polars: (x, y, z) = (r cos�, r sin�, z)

Spherical polars: (x, y, z) = (r sin ✓ cos�, r sin ✓ sin�, r cos ✓).
(16.286)

The radial coordinates r in these two systems are not the same; for this reason, it is common to
use ⇢ in cylindrical polars instead of r.

x

y

z

P

φ ρ φ

x

y

z

P

θ

r

Figure 16.18: Cylindrical and spherical polar coordinates.

We now derive the form of r2 in these coordinates. This derivation is for interest, and is not

examinable. But you may need to use the resulting expressions if you are given them.

The operation of r in these coordinates is complicated by the fact that the basis vectors associated
with a small change in coordinates are not fixed. This is most easily seen in the 2D case of circular
polars (cylindrical polars where we drop the z dependence). If we imagine locally having coordinates
in the direction of increasing r or �, then

r = er
@

@r
+ e�

✓
1

r

◆
@

@�
. (16.287)

where er and e� are unit vectors in the directions of increasing r,�. But when we rotate the
coordinates, the basis vectors change. It is not too hard to be convinced of the following relations:

@

@�
er = e�

@

@�
e� = �er.

(16.288)

Evaluating r
2 = r ·r now gives an additional term from the di↵erentiation of the basis vectors:

r
2 =

@
2

@r2
+

1

r

@

@r
+

1

r2

@
2

@�2
. (16.289)
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For cylindrical polars, we just have this expression plus @2/@z2.

The result in spherical polars is a little more complicated, but follows the same approach:

r = er
@

@r
+ e✓

✓
1

r

◆
@

@✓
+ e�

✓
1

r sin ✓

◆
@

@�
. (16.290)

There are now more terms arising via di↵erentiation of the unit vectors, but most of these don’t
matter, because we always have to take the dot product at the end. For example, consider (er@/@r)·
T, where T is any term. This will only be non-zero if di↵erentiation of T yields a component in
the direction of er. The only chance of doing this is through di↵erentiating the basis vectors.

A little thought gives the following relations:

@

@✓
er = e✓

@

@✓
e✓ = �er

@

@�
er = sin ✓e�

@

@�
e✓ = cos ✓e�

@

@�
e� = �e⇢

(16.291)

where e⇢ is a unit vector perpendicular to the z axis, which satisfies

e⇢·er = sin ✓

e⇢·e✓ = cos ✓

e⇢·e� = 0

(16.292)

We can now take the full dot product r ·r. This gives the three obvious terms:

r
2 =

@
2

@r2
+

1

r2

@
2

@✓2
+

1

r2 sin2
✓

@
2

@�2
, (16.293)

plus extra terms from di↵erentiating basis vectors. Since only @/@✓ and @/@� have any e↵ect, we
only care about cases where @/@✓ gives a result proportional to e✓ or @/@� gives a result proportional
to e�. From the above, there are three such cases: (i) @er/@✓; (ii) @er/@�; (iii) @e✓/@�. These give
additional terms that are respectively (i) (1/r)@/@r; (ii) (1/r)@/@r; (iii) (cot ✓/r2)@/@✓.

Finally, then, r2 in spherical polars is

r
2
 =

1

r2

@

@r

✓
r
2@ 

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@ 

@✓

◆
+

1

r2 sin2
✓

@
2
 

@�2
. (16.294)

For a more general method of derivation, see section 8.10 of Riley, Hobson & Bence).
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FOURIER ANALYSIS: LECTURE 20

16.1 Wave equation in circular polars

As an example application, consider the wave equation for a circular drum whose surface has a
vertical displacement u:

r
2
u =

1

c2

@
2
u

@t2
. (16.295)

As before, we consider solutions of separated form: u(r,�, z, t) = R(r)�(�)T (t). Substitute into
the wave equation and divide through by u = R�T .

1

R

@
2
R

@r2
+

1

rR

@R

@r
+

1

r2�

@
2�

@�2
=

1

c2T

@
2
T

@t2
. (16.296)

First separation: time equation: LHS(r,�, z) = RHS(t) = constant

1

c2

1

T

d
2
T

dt2
= �k

2
. (16.297)

The solutions to this are of the form T (t) = Gk cos!kt+Hk sin!kt with !k ⌘ ck.

Second separation: Multiply through by r
2 and separate again:

LHS(r) = RHS(�) = another constant. (16.298)

For the angular dependence:
1

�

d
2�

d�2
= �n

2; (16.299)

The solution is � = C cosn� + D sinn�. We want the solution to the wave equation to be single
valued, so �(�+2⇡) = �(�), forcing n to be integer-valued: n = 0, 1, 2 · · · (we ignore negative n as
this sign can be absorbed in the coe�cient D – cf. Fourier series).

The equation describing the radial dependence is the only di�cult one to solve:

d
2
R

dr2
+

1

r

dR

dr
�

n
2

r2
R + k

2
R = 0 . (16.300)

Multiply across by r
2 and rewrite

r
2
R

00 + rR
0 + (k2

r
2
� n

2)R = 0 . (16.301)

This is known as Bessel’s equation of order n. The solutions are known as Bessel functions. Being
a quadratic ODE, there are two independent solutions called Jn(kr) and Yn(kr). Note we have
labelled the solutions with integer n.

16.1.1 Finding Bessel functions

We can solve Bessel’s equation by substituting a general Laurent series as a trial solution. This

derivation is not examinable. A Laurent series is a generalisation of a Taylor series to possibly
include negative powers:

R(r) =
1X

i=m

Cir
i
, (16.302)
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where ci are unknown coe�cients. We will suppose that there is a lowest power rm, so that ci = 0
for i < m. Di↵erentiating this, we get

R
0(r) =

1X

i=m

iCir
i�1 (16.303)

R
00(r) =

1X

i=m

(i)(i� 1)Cir
i�2 (16.304)

rR
0(r) =

1X

i=m

iCir
i (16.305)

r
2
R

00(r) =
1X

i=m

(i)(i� 1)Cir
i
. (16.306)

These combine to yield

1X

i=m

iCir
i + (i)(i� 1)Cir

i
� n

2
Cir

i + k
2
Ci�2r

i = 0 (16.307)

Since this must be true for all r, Bessel’s equation becomes a recurrence relation between coe�cients
and we have: ⇥

i+ i(i� 1)� n
2
⇤
Ci + k

2
Ci�2 = 0 (16.308)

and so ⇥
i
2
� n

2
⇤
Ci + k

2
Ci�2 = 0 (16.309)

The series switches on when Ci�2 = 0 and Ci = Cm 6= 0, at which point we must have

m
2
� n

2 = 0. (16.310)

This means that the lowest power rm has m = ±n, so there are two types of solution:

Jn : lowest power = r
n; Yn : lowest power = r

�n
. (16.311)

Here we seek solutions that are finite at r = 0, so the Jn functions are the ones we want; they can
be constructed using the recurrence relation. For example, for J0(r):

C0 = 1

C2 = �
k
2

4

C4 = +
k
4

4.16

C6 = �
k
6

4.16.36
. . . (16.312)

The series is

1�
(kr)2

4
+

(kr)4

4.16
�

(kr)6

4.16.36
. . . (16.313)

and is purely a function of (kr). As the sign oscillates we have many turning points. The first few
Jn and Yn functions are plotted in Fig. 16.19. The Jn(x) have a series of zeros (‘nodes’ or ‘roots’)
which we label ↵n1, ↵n2, ↵n3. Unlike trig functions, these are not equally spaced.
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Figure 16.19: The first three Bessel functions of integral order.

Our solution can now be written as

u(r,�, t) = Jn(kr) (C cosn�+D sinn�) (G cos!kt+H sin!kt) (16.314)

with !k = ck and currently no restriction on k. We now apply spatial boundary conditions. Recall
periodicity in � quantised n. In the radial direction we require that the drumskin does not move
at the rim:

u(r = a,�, t) = 0 for all � and t. (16.315)

We therefore want the edge of the drum to coincide with one of the nodes of the Bessel function.
The m

th node of the Bessel function of order n occurs when the argument of the Bessel function
takes value ↵nm, and we rescale the Bessel function so that one of these zeros coincides with r = a:

knm = ↵nm/a. (16.316)

Quantising k also quantises !k, giving the frequency spectrum of the drum.

16.1.2 Sturm–Liouville equations

Bessel functions are an example of an important general case of di↵erential equations: the Sturm–
Liouville form. The general SL equation is


d

dx

✓
P (x)

d

dx

◆
+Q(x)

�
�i(x) = ��i ⇢(x) �i(x) (16.317)

where �i(x) is the i-th solution with eigenvalue �i. The functions P (x), Q(x) and weight function
⇢(x) define di↵erent SL equations. For example:

Special function P (x) Q(x) ⇢(x)
Sinusoid 1 0 1
Bessel x �n

2
/r x

Legendre sin ✓ 0 sin ✓
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SL equations need boundary conditions for a solution. It is worth recording that these tend to be
of three distinct types:

1. Fixed BCs (a.k.a. Dirichlet BCs):
�i(x = a) = �i(x = b) = 0 for all modes labelled by di↵erent i.
e.g. a drumskin fixed at its edge

2. Open BCs (a.k.a. Neumann BCs):
d�i

dx

����
x=a

=
d�i

dx

����
x=b

= 0

e.g. no ink flows out of the edge of a water tank i.e. no concentration gradient.

3. Periodic BCs:

�i(x = b) = �i(x = a),
d�i

dx

����
x=b

=
d�i

dx

����
x=a

and P (x = a) = P (x = b).

e.g. where x is an angular variable and a = 0, b = 2⇡.

In these circumstances, and subject to a few further conditions, the set of solutions of SL equations
always constitute a complete set – i.e. any function can be expressed as a superposition of solutions
to the equation. This is the property we have assumed and exploited in Fourier series, but it is
much more general.

16.2 Spherical harmonics and all that

Finally, again for non-examinable interest, we consider the special functions that arise in the

context of r
2
in spherical polars. Consider Schrödinger’s equation in 3D:

✓
�h̄

2

2m
r

2 + V (r)

◆
 = E , (16.318)

and look for a factorised solution
 = R(r)⇥(✓)�(�). (16.319)

Looking at the structure of r2, we see that it can be written as

r
2 =

1

r2

@

@r

✓
r
2@ 

@r

◆
+

1

r2
A

2
, (16.320)

where the operator A involves only derivatives with respect to ✓ and �. Thus, in separation of
variables, the angular part of the solution will be an eigenfunction of A – the ‘angular part’ of r2

(it is actually proportional to the angular momentum operator). This equation is


1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2
✓

@
2

@�2

�
⇥(✓)�(�) = �`(`+ 1)⇥(✓)�(�). (16.321)

The quantity ` turns out to be an integer – hence the slightly unobvious separation constant.

Multiplying through by sin2 ✓/(⇥�) gives

�
1

�

@
2

@�2
� =

1

⇥


sin ✓

@

@✓

✓
sin ✓

@

@✓

◆�
⇥+ `(`+ 1) sin2

✓. (16.322)
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Yet again, we say that both sides must be constant, which we call m2. The solution for � is easy:

� / exp(im�) (16.323)

and we see that m must be an integer (positive or negative) in order that the solution is unchanged
under rotation by 2⇡.

This leaves one nasty equation for ⇥(✓):


1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+ `(`+ 1)�

m
2

sin2
✓

�
⇥(✓) = 0. (16.324)

It is normal to rewrite this in terms of z ⌘ cos ✓, to get

d

dz


(1� z

2)
d⇥

dz

�
+

✓
`(`+ 1)�

m
2

1� z2

◆
⇥ = 0. (16.325)

This is a standard equation, whose solutions are the associated Legendre functions, P
m
` . The

equation with m = 0 can be solved by the usual technique of power-law solution, since the nasty
1/(1� z

2) term is removed:

⇥(z) =
1X

k=0

akz
k
. (16.326)

The resulting recurrence relation is

(k + 1)(k + 2)ak+2 = [k(k + 1)� `(`+ 1)]ak, (16.327)

so the solution splits into two independent series, odd and even; one of these terminates at k = kmax

if ` is chosen to be an integer ` = kmax, and the other series is set to zero. If the series doesn’t
terminate, then it diverges at z = ±1, and this solution would never be required in order to represent
a finite wave function.

The solutions are then the Legendre polynomials, P`(z). These are specified up to an overall nor-
malization, which is taken to be P`(1) = 1. This means that the spatial wavefunctions are not
normalized. The first few Legendre polynomials are:

P0(x) = 1

P1(x) = x

P2(x) = (3x2
� 1)/2

P3(x) = (5x3
� 3x)/2

(16.328)

(see e.g. p453 of Riley, Hobson & Bence). For the full solution, it can be shown that the following
modifications of the Legendre polynomials work:

P
m
` (z) = (1� z

2)|m|/2 d
|m|

dz|m|P`(z), (16.329)

from which we see that |m|  `. This defines the associated Legendre polynomials.

In summary, the overall angular solutions are the spherical harmonics. With the correct normal-
ization, these are defined for m � 0 as

Y
m
` = (�1)m

s
(2`+ 1)(`�m)!

4⇡(`+m)!
P

m
` (cos ✓)eim�; (16.330)
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Figure 16.20: The low-order angular eigenfunctions of r2. The radius of these ‘polar-diagram’
patterns is proportional to |Y

m
` |

2.

For negative m, Y �|m|
` = (�1)|m|(Y m

` )⇤, so harmonics with positive and negative m are identical
apart from a (conventional) overall sign and the sign of the eim� term. No-one with any sense would
try to remember the exact coe�cient here. The main thing is that the spherical harmonics are
orthonormal over the unit sphere:

Z
Y

m
`

⇤
Y

m0

`0 d⌦ = �``0�mm0 (16.331)

(d⌦ being an element of solid angle), and so they give a complete description of the angular variation
of the wavefunction. They are the analogue of Fourier harmonics on the surface of a sphere.
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