Que sets and cloud cess.
Lem. Let
$$(x, d_k)$$
 be a metric quee.
i) ϕ . X are spen.
ii) An arbitrary union of open sets is open.
(iii) A finite intersection of open sets is open.
• $A_k = (-\frac{i}{k}, \frac{i}{k})$ in (lR, d_i)
 $\stackrel{R}{\underset{k=1}{\overset{k}{\longrightarrow}} A_k = qb_i^2$.
 $\forall k, \forall b (-\frac{i}{k}, \frac{i}{k}) \Rightarrow 0 \in A_k, \forall k, \Rightarrow 0 \in \overset{N}{\underset{k=1}{\overset{k}{\longrightarrow}} A_k$
 $\Rightarrow qB \subset \overset{R}{\underset{k=1}{\overset{k}{\longrightarrow}} A_k$.
($\psi = 0 \stackrel{N}{\underset{k=1}{\overset{k}{\longrightarrow}} A_k$.
($\psi = 0 \stackrel{N}{\underset{k=1}{\overset{k}{\longleftarrow} A_k}$.
($\psi = 0 \stackrel{N}{\underset{k=1}{\overset{$

Cor ii)
$$\phi$$
, χ are closed.
iii) The arbitrary intersection of closed sets is closed.
iii) A finite union of closed sets is closed.
Lem. The subset A is closed \Leftrightarrow For every sequence (x_{n}) of A .
if (x_{n}) converges to e , then $e \in A$.
EN. Let $p \cdot g$, $e^{e} \in e^{e}$ and e^{p} is not closed in (e^{e}, d_{e}) .
Taking $B = (B_{n}) = (\frac{4}{nP}) \subseteq e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$, but $B \notin e^{p}$.
 $A_{E,n} = \int \frac{4}{nP} \int G e^{e}$.
 $(e^{e} - e^{e}) \int G e^{e}$.

Introduce to topology.

- Def. A topogy I on X is a collection of subsets up c X, called the spen sets, satisfing
- (i) $\phi, X \in \mathcal{U}$ (ii) $2f \cup G \in \mathcal{U}$, $\bigcup_{i \in I} \cup_{i \in I} G \in \mathcal{U}$ (iii) $2f \cup_{i \in \mathcal{U}} \cup_{i \in \mathcal{U}} \cup_{i \in I} G \in \mathcal{U}$ (iii) $2f \cup_{i \in \mathcal{U}} \cup_{i \in \mathcal{U}} \cup_{i \in I} \cup_{i \in I}$
- (X, U) is topological space.

 $\frac{E_{\infty}}{U} = \frac{1}{4} A C \times is open in (\times, d_{\times}) \frac{1}{5}.$ $(\times, q_{*}) = \frac{1}{5} a \quad topological \quad space.$ $\frac{E_{\infty}}{E_{\infty}} = \frac{1}{4} \frac{1}{5}.$ $q_{1} = \frac{1}{4} \frac{1}{5}.$ $Trival \quad pogstogy$

Remark . PLXI = qA: ACX J.

Def. A sequence (Xn) in a topological space converges to limit lif for every open subset UCX with RGU, there exists NGM A function of topological space is continuous if the prime of every open set is open.

Équivalent distances

Det. Let X be a set. Let d, d' be two different distance on X. Then we say that I and I' are equivalent whenever the open sets of (X, d) coincide with those of (X, d'). dod' Cor. (X, d), (X, d'), d~d'. $\chi_n \xrightarrow{d} l \in \chi_n \xrightarrow{d'} l$ Cor (X, d_x) , (X, d'_x) , $d_x \sim d'_x$, (Y, d'_y) , (Y, d''_y) , d''_y , d''_y $f: (X, d_X) \rightarrow (Y, d_Y)$ is continuous $\Leftrightarrow f: (X, d_X') \rightarrow (Y, d_Y')$ is continuous. <u>En</u>, (Cw,12, dL'), (Cw,12, dL") and de o an de o (IR, d,), (IR, ddisor)

Lem d, d' on X. There exist
$$c, c' > 0$$
, s.t.
 $d(x,y) \in Cd'(x,y)$
and
 $d(x,y) \in c'd(x,y)$

Then
$$d_{n}d'$$

 $\underline{Ex} = IR^{n}$, $dp_{n}d_{q}$ are equivalent.
 $d_{\infty}(x,y) \in d_{p}(x,y) \in d_{q}(x,y) \in d_{1}(x,y) \in nd_{\infty}(x,y)$

$$\underbrace{\operatorname{Lem}}_{d(x,q)} = \operatorname{cd}_{(x,q)}$$

$$\operatorname{The} \quad \operatorname{uc}(x,d) \text{ is open implies that } \operatorname{uc}(x,d) \text{ is open.}$$

$$\underbrace{\operatorname{Ex}}_{d(x,q)} = \int_{0}^{d} |f(x)-g(x)| \, dx \in \max_{x \in [x,1]} |f(x)-g(x)| \int_{0}^{d} 1 \, dx$$

$$= d_{L^{p}}(f,q).$$

Exam 3.3,13 3.3,14

120meomorphisms Def Let (X, elx), (Y, ely) be two topological spaces. We say that f: X-> Y is a homeomorphism when (i) f is bijective and ii), both f and f are continuous. • UR^2 , d_2), UR^2 , d_∞) Ex. Let f: (X, dx) -> (Y, dy) is an isometry. prove f is homeonin. in f is bijertike. in, dy(f(x), f(x)) = $d_X(x, x_0) < \varepsilon$. Taking $S = \varepsilon$. $d_{x}(y, y_{0}) = d_{x}(f'(y), f'(y_{0}))$ En The interval (-1,1) and (IR, d,) are homeomorphism. $f: (-1, 4) \rightarrow IR$ $x \mapsto tam(Zx)$

See Completness and compactness.
Cauchy convergence and completness.
Def. Let (X,d) be a metric space and let 9% be a sequence
of X. We say that it is Cauchy (convergent) if for
$$\forall e_{22}$$
, $\exists n(e_{21})$
 $\forall m, n > N$, $d(x_{m}, x_{n}) = \varepsilon$.
Len. 14 $d(x_{n}, x_{n}) = \varepsilon$.
 $(x_{n}, x_{n}) \leq d(x_{n}, \varepsilon) + d(x_{n}, \varepsilon) \leq \varepsilon = \varepsilon$.
 $(x_{n}, x_{n}) \leq d(x_{n}, \varepsilon) + d(x_{n}, \varepsilon) \leq \varepsilon = \varepsilon$.
 $(x_{n}) \quad x_{n} \in Q$. $d(x_{n}, x_{n}) \leq \frac{2}{10^{N}} = \varepsilon$.
 $(x_{n}) \quad x_{n} \in Q$. $d(x_{n}, x_{n}) \leq \frac{2}{10^{N}} = \tau$.
 $(x_{n}) \quad x_{n} \in Q$. $d(x_{n}, x_{n}) \leq \frac{2}{10^{N}} = \tau$.
 $(x_{n}) \quad x_{n} \in Q$. $d(x_{n}, x_{n}) \leq \frac{2}{10^{N}} = \tau$.
 $(x_{n}) \quad x_{n} \in Q$. $d(x_{n}, x_{n}) \leq \frac{2}{10^{N}} = \tau$.
 $(x_{n}) \quad x_{n} \in Q$.
 $(x_{n}) \quad x_{n} = \frac{4}{m\epsilon} \Rightarrow 0 \notin (c_{n}, 1)$.
Def. A metric space (X, d) is complete if every Cauchy sequence
converges.
 $(x_{n}, (x_{n}), d_{p}) = p = s_{n} = \infty$.
 $(x_{n}, (x_{n}), d_{p})$ is not complete.
 (x_{n}, d_{12}, d_{12}) is complete. (x_{n}, d_{13}, d_{13}) is not complete.

Thm (X.d) metric space, ACX. da = d/a. 1. 2f (A, dA) is complete, then 10 is closed in (X, d) 2f (X, d) is complete, and to is closed, then (A, d) complete Э. <u>pf</u> 1. dxn 3 CA, <u>xn de in X</u> since 9xn 3 cauchy (d. ds) complete => 3xm3 converges in (d. da) => LGA.=> 12,3 closed_ 2. Remark $(\mathbf{R}, \mathbf{d}_{i})$ ((-1,1), d,) homeomorphism Complete Not complete.