
 

Opensetsandclosedats

ftp.xareopen.xil
An arbitrary union of open sets is openiii

A finite intersectionof open sets is open
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Cod I d X are closed

in The arbitrary intersectionof closed sets is closed

Hit A finite union of closed sets is closed
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Introducetotopology

Def A topogy U on X is a collection of subsets ur ex
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Def A sequence in in a topological space converges to limit
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Equivalentdistances
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on Then we say that
d and d are equivalent whenever

the open setsof ix di coincide with those of ix d dd

CI IX di ix d's did

xn te es and e

Cod IX dx IX dit dx dx LY dy Y dit did

f Cx dxi Ydy is continuous f ixdi itdy's iscontinuous

Ex Ctu17 dal Lewitt de

an 4 o an o

lied Hedda



tem d d on X There exist c c u sit

days E Cdixy

and ding s c'day

Then did

EI I dp da are equivalent

dzidp giedgndix.gl

tem d d

d iEcdix.y
The me ix di is open implies that Mc ix di isopen

Ed Ceo.lt del Ca.lt Let

diitigi fittegldxemEitegulft

Idirlf.g



Examinassif
Homeomorphisms
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1 Completness and compactness

Cauchy convergence and completeness

Def Let ix di be a metric spaceand let hut be a sequence
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