Thu. If (x, d) is a compact metric space, then the metric space $\left(C(x), d_{L^{\infty}}\right)$ is complete.
Pf. Let $\left(f_{n}\right)_{n \in N}$ be a Cauchy sequeme in $C(x)$, ie. $\forall \varepsilon>0, \exists N \in \mathbb{N}$, $\forall m, n>N$, such that

$$
\underbrace{d_{\infty}\left(f_{n}, f_{m}\right)}<\varepsilon
$$

Sine $d_{\infty}\left(f_{m}, f_{m}\right)=\sup _{x \in x}\left|f_{n}(x)-f_{m}(x)\right|$, we have for any $x \in X$,

$$
\left|f_{n}(x)-f_{m}\right| x \mid<\varepsilon .
$$

Then $\left.\alpha f_{n}(x)\right\}_{n G N}$ is also a cauchy sequence of $\left(\mathbb{R}, d_{C^{c}}\right)$. If completances, we know for any fired $x \in X$, there exists a function $f: x \rightarrow \mathbb{R}$ satisting

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) . \quad \text { (pointuise). }
$$

Sims if\} ~ i s ~ c a u c h y , ~ i e , ~ $\forall \varepsilon>0, \exists N G \mathbb{N}, \forall m, n>N$, there is

$$
\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon, \quad \forall x \in x .
$$

Let $m \rightarrow \infty$, there is

$$
\mid f(n(x)-f(x) \mid \leq \varepsilon, \quad \forall x \in x,
$$

ie.

$$
\sup _{x \rightarrow x}\left|f_{n}(x)-f(x)\right| \leq \varepsilon .
$$

ie.

$$
d_{L}\left(f_{n}, f\right) \leq \varepsilon
$$

It suffices to show f is continuous. Indeed, since $\left\{f_{n}\right\}$ converges uniformly to f in $x, \forall \varepsilon>0 \exists N \in N, \forall n \geqslant N$, there is

$$
\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{3}, \quad \forall x \in x .
$$

Specially, choosing $n=N$, there is

$$
\left|f_{N}(x)-f(x)\right|<\frac{6}{5}
$$

Sine $f_{N}(x)$ is a contimous function at any point $x_{0} \in X$, then (18>0), $\forall x \in B_{\delta}\left(x_{0}\right)$, there

$$
\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|<\frac{\varepsilon}{3} .
$$

Therefore, there is

$$
\begin{align*}
&|f(x)-f(x,)| \leqslant \underbrace{\left|f(x)-f_{N}(x)\right|}+\left|f_{N}(x)-f_{N}\left(x_{0}\right)\right|+\left|f_{N}(x)-f_{(x, x)}\right| \\
& \text { (8) } \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \in \varepsilon .
\end{align*}
$$

venue f is continuous at x_{0}, ie, f is continuous in x.

- $\left.(C \overline{0} 0,1], d L_{\infty}\right)$ is complete.

$$
f_{n}(x)=x^{n}, x \in[0,17
$$

has no convergence subsequence.

Thy Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ define a sequence of continuous functions. Assume $\left\{f_{n}\right\}$ converges uniformly to $f:[a, b] \rightarrow \mathbb{R}$. Then for all $x_{1}, x_{2} \in[a, b]$, there is

$$
\lim _{n \rightarrow \infty} \int_{x_{1}}^{x_{2}} f_{n}(x) d x=\int_{x_{1}}^{x_{2}} \lim _{n \rightarrow \infty} f_{n}(x) d x .
$$

Remark.

$$
f_{n}(x)= \begin{cases}0, & x \geq \frac{1}{n} \text { or } x=0 \\ n-n^{2} x, & 0<x<\frac{1}{n}\end{cases}
$$

Pf. I: $\left(C\left[x_{1}, x_{2}\right], d_{L^{*}}\right) \rightarrow\left(\mathbb{k}, d_{1}\right)$.

$$
f \quad \rightarrow \quad \int_{x_{1}}^{x_{2}} f(x) d x
$$

$\forall \varepsilon>0$, Choosing $\delta=\frac{\varepsilon}{\left(x_{2}-x_{1}\right)}, \forall \quad d_{L} w(f, g)<\delta$, there is

$$
\begin{aligned}
|I(f)-I(g)| \mid & =\iint_{x_{1}}^{x_{2}} f(x)-g(x) d x \mid \\
& \leq \int_{x_{1}}^{x_{2}} f^{|f(x)-g(x)| d x} . \\
& \leq \underbrace{d_{(\infty}(f, g)}\left(x_{2}-x_{2}\right)<\varepsilon .
\end{aligned}
$$

$$
\Rightarrow 1 \text { is continuous. } \Rightarrow \lim _{n \rightarrow 2} I\left(f_{n}\right)=I\left(\lim _{n \rightarrow \infty} f_{n}\right) \quad \# .
$$

Thy. Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of continuous functions and assume $\left\{f_{n}\right\}$ converges uniformly to $f:[a, b] \rightarrow \mathbb{R}$, and that $\left\{f_{n}^{\prime}(x)\right\}$ is
continuous and comerges uniformly to a function $g:[a, b] \rightarrow \mathbb{R}$. Then f is differentiable and $g=f^{\prime}$.

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime \prime}(x)=\left(\lim _{n \rightarrow \infty} f_{n}(x)\right)^{\prime} .
$$

Power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n} x^{n}=\lim _{N \rightarrow \infty} S_{N}(x)
$$

Def. Let $\left(a_{n}\right)_{n \in N}$ be a sequeme of real numbers. The radius of convergeme of the corresponding power series $\sum_{n=3}^{\infty} a_{n} x^{n}$ is

$$
R=\frac{1}{\left(\operatorname{limsip}_{n \rightarrow \infty} \sqrt[n]{\left|a_{n 1}\right|}\right.}
$$

The . Assume that $R>0$, then $0<\delta<R,\left\{S_{N}\right\}_{N \in \mathbb{N}}$ is a Cauchy sequeme in ($C[-\delta . \delta], d \infty)$.

Cor Assume $R>0$. The power series defines a cintimuors function $S:(-R, R) \rightarrow \mathbb{R}$.

$$
x \mapsto \lim _{n \rightarrow \infty} S_{N}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Cor. $S(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad x \in(-R, R)$. Then
(1) S is differentiable, and

$$
S^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad x G(-R, R)
$$

(2) $F^{\prime}(x)=\delta(x)$, then

$$
F(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}+c
$$

Ex. Compute $\sum_{n=1}^{\infty} n x^{n-1}$.

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} n x^{n-1}= & \sum_{n=1}^{\infty}\left(\frac{d}{d x}\right)\left(x^{n}\right)\left(\frac{?}{-} \frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right)\right. \\
& =\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}
\end{aligned}
$$

Compute $\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}$.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}=\sum_{n=0}^{\infty} \int_{0}^{x} t^{n} d t=\int_{0}^{x} \sum_{n=1}^{\infty} t^{n} d t \\
&=\int_{0}^{x} \frac{1}{1-t} d t \\
&=-\ln |1-x|+C \\
& \sum_{n=1}^{10} n(n+1) x^{n-1} \quad \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^{n+2}
\end{aligned}
$$

Differential equations.

$$
x=2 \quad, \quad x^{2}=4
$$

Ex

Consider

$$
\begin{array}{ll}
& \left\{\begin{array}{l}
y^{\prime}(x)=f(x) \\
y\left(x_{0}\right)=y_{0}
\end{array}\right. \\
\Leftrightarrow \quad & y(x)=y_{0}+\int_{x_{0}}^{x} f(t) d t
\end{array}
$$

Def. A cauchy Problem $(C P)$ is the data of a point $\left(x_{0}, y_{0}\right) \in \mathbb{K}^{2}$, of a pair $a, b \in \mathbb{R} \geq 0 \cup\{+\infty\}$ and of a continuous function

$$
f:\left[x_{0}-\alpha, x_{0}+\alpha\right] \times\left[y_{0}-b, y_{0}+b\right] \rightarrow \mathbb{R} .
$$

A local solution to the (CP) is a differentiable function

$$
y=\left[x_{0}-a, x_{0}+a\right] \rightarrow\left[y_{0}-b, y_{0}+b\right]
$$

satisfying

$$
\left\{\begin{array}{l}
y_{(x)}^{\prime}=f(x, y(x)) \text { in }\left[x_{0}-\alpha, x_{0}+\alpha\right] \\
y\left(x_{0}\right)=y_{0} .
\end{array}\right.
$$

Thu (Peano-Picard) Let $\left(x_{1}, y_{0}, a, b, f\right)$ be the defining data of (CP). If $\frac{\partial f}{\partial y}$ exists and continuous on some open set of \mathbb{R}^{2} contains $\left(x_{0}, y_{0}\right)$ then (CP)

$$
\left\{\begin{aligned}
y^{\prime}(x) & =f(x, y) \\
y(x) & =y_{1}
\end{aligned}\right.
$$

admits a unique local solution.
pf. $\left.(p) \Leftrightarrow y(x)=y_{0}+\int_{x_{0}}^{x} f(t) y(t)\right) d t, x \in\left[x_{0}-\alpha, x_{0}+\alpha\right]$
Let $X=\left\{y:\left[x_{0}-\alpha, x_{0}+\alpha\right] \rightarrow\left[y_{0}-b, y_{0}+b\right]\right.$ is continuous $\}, d_{[} \infty$
Define $F:\left(X, d_{\infty}\right) \rightarrow\left(X, d_{\infty}\right)$

$$
y \mapsto y^{y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t}
$$

We first show F is well-defined. It suffices to prove

$$
\left|\int_{x_{0}}^{x} f(t, y(t)) d t\right| \leq b .
$$

Since $\alpha \leq \frac{b}{M}$, where $M=\max _{\left(x, y b \in \leq \mathbb{R}^{2}\right.}|f(x, y)|$.

$$
\left|\int_{x_{0}}^{x} f(t, y(t)) d t\right| \leq \int_{x_{0}}^{x} \underline{|f(t, y(x))| d t \leq M\left(x-x_{0}\right) \leq M \alpha \leq b . ~}
$$

To show F is contraction $\forall y_{1}, y_{2} \in X$, we have

$$
d_{[\infty}\left(F\left(y_{1}\right), F\left(y_{2}\right)\right)=\max _{x \in\left[x_{2} \alpha, \alpha, x_{2} \alpha\right]} 1 \int_{x_{0}}^{x} f\left(t, y_{1}(t)-f\left(t, y_{2}(t)\right) d t \mid\right.
$$

$$
\begin{aligned}
& \leq \max _{x \in\left[x-\alpha, x_{x+\alpha}\right]} \int_{x_{0}}^{x} \mid f(t)\left(y_{1}(t)\right)-f\left(t,\left(y_{21}(t)\right) \mid d t\right. \\
& =\max _{x \in\left[x_{0}-\alpha, x_{0}+\alpha\right]} \int_{x_{0}}^{x}\left|\frac{\partial f}{\partial y}(t, \xi)\left(y_{1}(t)-y_{2}(t)\right)\right| d t \\
& \leq L \max _{x \in\left[x_{1}-\alpha, x_{0}+\alpha\right)} \int_{x_{0}}^{x}\left|y_{1}(t)-y_{2}(t)\right| d t . \\
& \leq \alpha L d_{L \infty}\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

where $L=\max _{(x, y) \in \cdot-\mathbb{R}^{2}}\left|\frac{\partial f}{\partial y}(x, y)\right|$. It suffices to choose $\alpha<\frac{1}{L}$, then

$$
d_{L}\left(F\left(y_{1}\right), F\left(y_{2}\right)\right) \leq \alpha<d_{c}-\left(y_{1}, y_{2}\right) \text {, where } \alpha \ll 1 \text {, }
$$

i.e. F is contraction.
$\alpha<\min \alpha a, \frac{b}{M}, \frac{1}{L}, 3$. By CMT, there exists unique $y \in x$, set. $F(y)=y$, ins.

$$
\left.y\left(x_{1}\right)=y_{0}+\int_{x_{0}}^{x} f(t) y(t)\right) d t .
$$

Ex. $\quad\left\{\begin{array}{l}\frac{y^{\prime}(x)}{}=3 y^{\frac{2}{3}(x)} \\ y\left(x_{0}\right)=y_{0}\end{array} \quad(c p)\right.$

(1) when $y_{0} \neq 0$, by Peans-Picard theorem, (cp) admits a unique Solution.

$$
\begin{aligned}
& \int_{x_{0}}^{x} \frac{y^{\prime}(t)}{3 y^{\frac{2}{3}}(t)} d t=\int_{x}^{x} 1 d t \\
& \Leftrightarrow \quad y^{\frac{1}{3}}(x)-y^{\frac{1}{3}}\left(x_{0}\right)=x-x_{0} \\
& \Rightarrow \quad y^{\frac{1}{3}}(x)=y^{\frac{1}{3}}\left(x_{0}\right)+x-x_{0} . \Leftrightarrow \quad y(x)=\left(x-x_{0}+y_{0}^{\frac{1}{3}}\right)^{3} .
\end{aligned}
$$

(2) when $y_{0}=0$

$$
y(x)=\left(x-x_{0}\right)^{3} \text {. or } y(x)=0 \quad \forall x \text {. }
$$

Exercise $5.3,13$.

$$
x=\left\{y \in c_{\left.i-\frac{1}{2}, \frac{1}{12}\right]} ; y(x) G[0,27\} c c \tau-\frac{1}{12}, \frac{1}{12}\right]
$$

1. $\left(x, d_{L^{\infty}}\right)$ is complete.
2. $\quad F: C\left[-\frac{1}{12}, \frac{1}{12}\right] \rightarrow C\left[-\frac{1}{12}, \frac{1}{12}\right]$

$$
y \rightarrow \quad 1+\int_{0}^{x}\left(\underline{\left.y^{2}(t)+y(t)+t\right)} d t\right.
$$

3. $F(y) \in[0,2], y \in x \quad(F: x \rightarrow x)$.
Q. $\quad F$ is contraction.
4. exists a ussigue solution. ($C M T$).

Introduction to multi-variable calculus.
linear algebra
Def. Let $f=\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function. We say f is linear if

1. $f(v+w)=f(v)+f(w)$

$$
\text { 2. } \quad f(\lambda v)=\lambda f(v) . \quad \Rightarrow \quad(f(v)=0)
$$

Remark. $\quad f \leftrightarrow$ matrix.

$$
f(x)=A x
$$

Ex. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad f\left(x_{1}, x_{n} x_{3}\right)=\left(2 x_{1}-x_{2}, x_{3}\right)$.
Def. Let: $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$

$$
A \mapsto \operatorname{det}(A)
$$

$$
\begin{aligned}
& \text { - } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
1 & 3 & 2
\end{array}\right) \quad \operatorname{det} A=\ldots \\
& I_{d}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \operatorname{det} I_{d}=1 \\
& \text { - } \quad \operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B) \text {. } \\
& \operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B .
\end{aligned}
$$

$$
V=\operatorname{det} A \quad, \quad A=\left(v_{1}, v_{2}, v_{3}\right)
$$

Lem. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear function. Then L is continuous.
Pf. Let A be the matrix corresponding to L, the i th component of $L\left(x_{1}, \ldots, x_{n}\right)$ is $\sum_{j=1}^{n} a_{i j} x_{j}$. Define

$$
M=\max _{1 \leq i \leq m}\left|\sum_{j=1}^{n} a_{i j}\right|
$$

$\forall \varepsilon>0, \quad$ choosing $\delta=\frac{\varepsilon}{M}, \quad \max _{i \leq i \leq n}\left|y_{i}-x_{i}\right|<\delta$, there is

$$
\begin{aligned}
\max _{i \leq i \leq m}\left|\sum_{j=1}^{n} a_{i j}\left(x_{j}-y_{j}\right)\right| & \leq M \max _{i \leq i \leq m}\left|x_{i}-y_{i}\right| \\
& <M \delta \\
& =\varepsilon .
\end{aligned}
$$

