
5CCM232A

Groups and Symmetries Lecture Notes

Authors: G. Papadopoulos, B. Doyon, P. P. Cook and many others over the years1.

(Notes typed by B. Doyon and P. P. Cook)

Department of Mathematics, King’s College London.

8th September 2022

1For comments on the lecture notes and for weeding out typos, thanks are due to to Frederick

Eidsnes Thogersen, Senan Sekhon, Jordan Hofman, Pol Van Hoften, Alexander Stokes, Paul Weinreb,

Dean Yates, Ana Dias Frias, Eylul Zorba, Loukas Grimanellis, Zhibo Liu, Seyed Ali Sadreddin Yasavol,

and Hao Wen.



0. Contents

1 Basics 3

2 The Cyclic Groups 5

2.1 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Symbols and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Maps and Permutation Groups 8

4 Homomorphisms and isomorphisms 12

5 Cosets and Lagrange’s Theorem 15

6 Groups of Low Order and Klein’s Four-Group 18

7 Direct products 21

8 Symmetry Transformations and Dihedral Groups 24

8.1 Symmetries and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8.2 Isometries of the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Conjugation, Normal Subgroups, Quotient Groups 30

9.1 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9.2 Normal subgroups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.3 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 Kernel, Image and the Homomorphism Theorem 35

10.1 The Homomorphism Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 Automorphisms 41

1



CONTENTS 2

12 Matrix groups 44

12.1 Basics of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

12.2 The Classical Groups as Matrix Groups . . . . . . . . . . . . . . . . . . . . . . . 46

12.2.1 The General Linear Group . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12.2.2 The Special Linear Group . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.2.3 The Unitary Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12.2.4 The Special Unitary Group . . . . . . . . . . . . . . . . . . . . . . . . . 49

12.2.5 The Orthogonal Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12.2.6 The Special Orthogonal Group . . . . . . . . . . . . . . . . . . . . . . . 50

13 The Structure of Some Matrix Groups 53

13.1 SO(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13.2 SU(2) and the Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.3 Invariant Inner Products: O(N) and U(N) . . . . . . . . . . . . . . . . . . . . . 57

13.3.1 The Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

13.3.2 O(N) and U(N) preserve vector length . . . . . . . . . . . . . . . . . . . 58

13.4 SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13.5 Relating SU(2) to SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14 The Semi-Direct Product 65

14.1 O(N) ∼= Z2 nψ SO(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

15 The Euclidean Group 73

16 G-Sets, Stabilisers and Orbits 79

17 The Sylow Theorems 87

18 Tutorial Exercises 93



1. Basics

Definition 1.1. A group is a set G and a mapping from the Cartesian product G×G into G

(a law of composition or multiplication law), which we will denote by juxtaposition

G×G→ G : (g1, g2) 7→ g1g2, (1.1)

with the following properties:

(i) Associativity: g1(g2g3) = (g1g2)g3 for all g1, g2, g3 ∈ G

(ii) Identity: there exists e ∈ G, called an identity, such that ge = eg = g for all g ∈ G

(iii) Inverse: for all g ∈ G there exists g−1 ∈ G, called an inverse of g, such that gg−1 =

g−1g = e, where e is an identity in G.

Comment(s). (On the definition of a group.)

1. The Cartesian product is the combination of two sets U and V such that its elements are

combined in pairs to form elements of U×V . The most common example is the Cartesian

coordinates used to denote elements of the Cartesian plane R2 = R×R where for x, y ∈ R
then (x, y) ∈ R× R is a single element in the Cartesian product of R with R.

2. The order of multiplication is normally important, typically (but not always) g1g2 6= g2g1.

3. It is commonplace to use a special notation (often a dot · or a circle ◦) to indicate group

multiplication, e.g. sometimes you might see g1◦g2 or g1 ·g2 for a group product. Through-

out this course we will use juxtaposition of group elements to denote group multiplication

i.e. g1 ◦ g2 = g1 · g2 = g1g2.

4. The identity e is unique (prove this).

5. Given any g ∈ G its inverse g−1 is unique (prove this).
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CHAPTER 1. BASICS 4

6. (g1g2)−1 = g−1
2 g−1

1 for all g1, g2 ∈ G (prove this).

7. (g−1)−1 = g for all g ∈ G (prove this).

Definition 1.2. The order of a group G is the number of elements of G, denoted |G|.

Definition 1.3. If g1g2 = g2g1 for all g1, g2 ∈ G, then G is a commutative, or abelian, group.

Definition 1.4. A subset H ⊂ G is a subgroup of G if it is a group under the law of composition

of G. That is, H is a subgroup if

(i) h1h2 ∈ H for all h1, h2 ∈ H and

(ii) h−1 ∈ H for all h ∈ H.

Example 1.1. Some examples of groups are

� R under addition;

� Z under addition (subgroup of R);

� Zp: the integers under addition modulo p ∈ N;

� R∗ := R \ {0} under multiplication;

� R+ := {x : x > 0} under multiplication (subgroup of R∗);

� {2n : n ∈ Z} under multiplication;

� the matrices

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc 6= 0

}
under matrix multiplication;

� the affine maps {{R→ R : x 7→ f(x) = ax+ b} : a ∈ R∗, b ∈ R} under map composition.



2. The Cyclic Groups

2.1 Cyclic groups

Let g ∈ G be an element of a group G which has identity e. The power notation for group

elements gn (n ∈ Z) is defined as follows: it is the n-times product of g with itself, gg . . . g (n

times), for n > 0; it is the |n|-time product of g−1 with itself for n < 0; and it is e if n = 0.

Consequently

gm+n = gmgn, (gm)n = gmn ∀ m,n ∈ Z. (2.1)

Let G be a group. The set generated by g ∈ G, denoted 〈g〉, is the set of all powers of g:

〈g〉 = {gn : n ∈ Z}. (2.2)

Observe that 〈g〉 is a subgroup of G. Indeed by (2.1), the inverse of gn is g−n for all n ∈ Z
and the set is closed under the composition law of G (the last two statements thanks to (2.1)).

Observe that the subgroup 〈g〉 is abelian: gmgn = gm+n = gn+m = gngm for all m,n ∈ Z. The

subgroup 〈g〉 is the intersection of all subgroups of G that contain the element g.

Definition 2.1. A group G is called cyclic if there exists a g ∈ G such that G = 〈g〉. Such an

element is called a generating element for G, and is, in general, not unique.

We note that a cyclic group is abelian.

Example 2.1. � Z under addition is a cyclic group. It has two generating elements: 1 and

−1, Z = 〈1〉 = 〈−1〉.

� The group {2n : n ∈ Z} under multiplications is a cyclic group, with generating elements

2 and 1/2.

� The group Zp is a cyclic group. For instance: Z2 = {0, 1} = 〈1〉. Z3 = {0, 1, 2} = 〈1〉 =

〈2〉. Z4 = {0, 1, 2, 3} = 〈1〉 = 〈3〉 , but Z4 6= 〈2〉. In general, if p is prime, then

Zp = 〈n〉 for all n ∈ {1, 2, . . . , p− 1} (show this!).
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CHAPTER 2. THE CYCLIC GROUPS 6

� Given a positive integer n, the group {e2πik/n : k = 0, 1, . . . , n− 1} under multiplications

is cyclic, and equal to 〈e2πi/n〉.

Let us consider for a while groups of finite order only, that is, |G| <∞. The next theorem

tells us more precisely about the structure of cyclic groups.

Theorem 2.1. Let G be a cyclic group generated by g0. Then

(a) gn0 , n = 0, 1, 2, . . . , |G| − 1 are all distinct elements, and

(b) g|G| = e for all g ∈ G.

Proof. We prove (a) by contradiction. Suppose there exists n1, n2 with 0 ≤ n2 < n1 ≤ |G| − 1

and gn1
0 = gn2

0 . Then gn1−n2
0 = e. Denote q = n1 − n2, note that 0 < q < |G|. Now we

may write any integer n as n = kq + r for k ∈ Z and (remainder) r = 0, . . . , q − 1. Hence

gn0 = gkq+r0 = (gq0)kgr0 = ekgr0 = gr0. Therefore in 〈g0〉 there are q elements (the number of

possible values of r), i.e. q = |G| which contradicts the statement q < |G| deduced from our

assumptions. Hence there is no pair of integers 0 ≤ n2 < n1 ≤ |G| − 1 such that gn1
0 = gn2

0 and

all elements of 〈g0〉 are distinct.

To prove (b), as all |G| elements are distinct (by part (a)) then g
|G|
0 = gm0 for some m ∈

{0, 1, 2, . . . , |G| − 1}. Hence g
|G|−m
0 = e, but now if m > 0, this contradicts (a), hence m = 0

and g
|G|
0 = e. Finally, as for every g ∈ G there exists n such that g = gn0 , we have g|G| =

(gn0 )|G| = g
n|G|
0 = (g

|G|
0 )n = en = e.

Theorem 2.2. Every subgroup of a cyclic group is cyclic.

Proof. Let H ⊂ G = 〈a〉 = {e, a, a2, . . . , a|G|−1} be a subgroup. Let q be the smallest non-zero,

positive integer such that aq ∈ H. Let c ∈ H. By cyclicity of G, there is a n ∈ Z such that

c = an. We have n = kq + r for unique k ∈ Z and r ∈ {0, . . . , q − 1}, hence c = (aq)kar. Since

H is a subgroup, a−kq ∈ H and a−kqc ∈ H, which implies that ar ∈ H. Hence r = 0 or r ≥ q

since q is the minimal integer such that aq ∈ H, which implies r = 0 by definition of r. Hence,

c = akq = (aq)k. This is true for every c ∈ H, so H = 〈aq〉, and H is cyclic.

2.2 Symbols and Relations

The notion of generating elements can be generalised to more than one element. Let a, b ∈ G.

The set 〈a, b〉 is the set of all powers of a and b and all products thereof with any number of

factors. It is a subgroup of G and it is the intersection of all subgroups that contain both a

and b. If G = 〈a, b〉, then we say that a, b generate the group G and the set 〈a, b〉 is frequently

called the ‘span’ of a and b. One can generalise this to more elements.
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We may understand the general principle using symbols and relations. Consider an alphabet

of two letters: {e, a}. Let us consider all words that we can form from these: e, a, ea, aa, a3e,

aea, etc. This is a set with a multiplication law: the concatenation of words, e.g. a multiplied

with ea gives aea. The multiplication law is automatically associative (easy to check). But this

does not yet form a group.

Let us now impose some relations. The “trivial” ones, that we will always impose implicitly

when looking at symbols and relations, are those having to do with the identity element: e2 = e

and ea = ae = a. That reduces the words we can form: ea = a, aea = a2, etc. It also guarantees

that we now have a set not only with an associative multiplication law, but also with an identity

element, the word e. But this does not yet form a group.

The words we have now are e, a, a2, a3, a4, etc. Let us impose one more relation: an = e for

some fixed positive integer n (e.g. for n = 4). This unique additional relation reduces further

the number of words we can make, and now we have a group. Take n = 4 for instance. We now

have e, a, a2, a3 and nothing else (any other word reduces to one of these four). This now forms

a group: we can check that every element has an inverse a−1 = a3, (a2)−1 = a2, and (a3)−1 = a.

It is a cyclic group, generated by a, so it is the group 〈a〉 (with the additional relation a4 = e

implied).

We could instead think of having two non-trivial symbols (three symbols with the identity

e): a, b. Let us impose, besides the trivial relations involving e, two additional relations:

ab = ba = e. Again, this is sufficient to make this into a group. We have a−1 = b, and the

group formed is again cyclic; it can be generated either by a or by b (it is the group 〈a〉 = 〈b〉).
It is always possible to describe groups by giving an alphabet and a set of relations. Non-

cyclic groups will be generated by more than one symbol; the tutorial problem gives an example.



3. Maps and Permutation Groups

Let us recall some fundamental ideas. Consider two sets X, Y and a map f : X → Y . As usual

we write y = f(x) for the value in Y that is mapped from x ∈ X.

Definition 3.1. y is the image of x under f .

Definition 3.2. f(X) = {f(x) : x ∈ X} ⊂ Y is the image of X under f .

Definition 3.3. The map f is onto (or surjective) if every y in Y is the image of at least one

x in X, i.e. if f(X) = Y (denoted f : X � Y ).

Definition 3.4. The map f is one-to-one (or injective) if for all y ∈ f(X) there exists a unique

x ∈ X such that y = f(x). That is, if the following proposition holds: f(x1) = f(x2)⇒ x1 = x2

(denoted f : X � Y ).

Definition 3.5. A map f that is one-to-one and onto is called bijective.

If f : X → Y is bijective, then there is a unique correspondence between X and Y : for

every y ∈ Y there is a unique x ∈ X such that y = f(x), and for every x ∈ X there is a

unique y ∈ Y such that y = f(x). We can define an inverse map f−1 : Y → X via this unique

correspondence such that

f(f−1(y)) = y, f−1(f(x)) = x ∀ y ∈ Y, x ∈ X. (3.1)

The inverse map is itself bijective (proofs omitted).

Given two maps f, g from X to X, we can form a third by composition: h = f ◦ g given by

h(x) = f(g(x)). Consider the set Map(X,X) all such maps. Then: 1) if f and g are such maps,

then f◦g also is; 2) given f, g, h ∈Map(X,X), we have that (f◦g)◦h = f◦(g◦h); 3) Map(X,X)

contains the identity which we will denote id; this is the map id : X → X, x 7→ id(x) = x. It

has the properties that f ◦ id = id ◦ f = f for all f ∈ Map(X,X). In order to have a group,

we thus need only one more property: the existence of inverses.

8



CHAPTER 3. MAPS AND PERMUTATION GROUPS 9

Theorem 3.1. The span of a set of bijective maps of a finite set X to itself forms a group

under composition of maps; this is called a permutation group, Perm(X).

Proof. We only need to check that inverses exist as we have already argued that the other

properties of a group are satisfied for Map(X,X). For every bijective map f , f−1 exists and is

bijective. Hence f−1 is an element of the group. It has the property that f−1 ◦f = f ◦f−1 = id

thanks to equation (3.1).

Comment(s). Note that in defining a permutation group on a set X, we have not needed to

consider all maps in Map(X,X) but just a subset that satisfy closure, which we have called the

span of a set of bijective maps in the theorem above.

Let X be a finite (or even countable) set. We may label its elements by positive integers

1, 2, . . .. Using this labelling, an element of Perm(X) can be seen as a map from the positive

integers to the positive integers, k 7→ ik for k = 1, 2, . . ., with the conditions that all integers ik

are distinct and that for every label k, there exists a k′ such that ik′ = k (so that the map is

bijective). If the set is finite, say k ∈ {1, 2, . . . , n}, then the requirements are that all integers

ik be distinct, and that ik ∈ {1, 2, . . . , n} for all k.

Definition 3.6. The set of all permutations of a finite set containing n elements is called the

symmetric group Sn.

Comment(s). On the symmetric group and permutations.

1. We can denote elements of Sn by

(
1 2 · · · n

i1 i2 · · · in

)
which denotes the map 1 7→ i1,

2 7→ i2, . . .n 7→ in.

2. |Sn| = n!

3. E.g. S3 is symmetric group of all permutations of three elements. It has 3! = 6 elements

and consists of the permutations:(
1 2 3

1 2 3

)
= e,

(
1 2 3

2 3 1

)
= a,

(
1 2 3

3 1 2

)
= a2,(

1 2 3

2 1 3

)
= b,

(
1 2 3

1 3 2

)
= a2b,

(
1 2 3

3 2 1

)
= ab.

4. One could define S3 in terms of symbols and relations as:

S3 = {〈a, b〉|a3 = e, b2 = e, ab = ba2}.

(Check that ab = ba2 for S3 as defined in point 3 above.) Note that as ab 6= ba so S3 is a

non-abelian group.
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5. Permutations can be presented in cycle notation where (i1i2i3 . . . in) denotes the permuta-

tion that maps i1 7→ i2, i2 7→ i3, . . . in−1 7→ in and in 7→ i1. Hence (123) and

(
1 2 3

2 3 1

)
denote the same permutation. (i1i2i3 . . . in) is called an n-cycle and (123) is a 3-cycle.

6. In general a single permutation may be written as multiple cycles on separate sets of

elements. For example

(
1 2 3 4 5

2 3 1 5 4

)
written in cycle notation consists of a 3-cycle

and a 2 cycle denoted, for example, by (123)(45).

7. To convert a permutation written in the form

(
1 2 3 . . . n

i1 i2 i3 . . . in

)
to cycle notation, one

can start with the label 1 and follow its mapping under repeated action of the permutation:

the cycle containing 1 is the list of elements that 1 is mapped to under the repeated action

of the permutation. This procedure for constructing the cycles is repeated until every

element in the set is contained in some cycle. For example consider

(
1 2 3 4 5

5 3 2 4 1

)
,

as 1 7→ 5 7→ 1, 2 7→ 3 7→ 2 and 4 7→ 4, the permutation is (15)(23)(4). In practise 1-cycles

are usually neglected when using cycle notation so (15)(23) denotes the permutation in

this example.

8. A 2-cycle such as (12) is called a transposition and every permutation can be re-written

as a product of transpositions e.g. (123) = (12)(23) (check this!).

9. Despite the convention of omitting one-cycles, sometimes it is mathematically interest to

take them into account. For example we need the one cycles in order to denote the identity

element in S3:

S3 = {(1)(2)(3), (123), (132), (12)(3), (1)(23), (13)(2)}.

Note that there is a relation between the permutations in S3 and the integer partitions of

three: S3 contains one 1 + 1 + 1-cycle, two 3-cycles and three 1 + 2-cycles (compare this

with the integer partitions of three: 3 = 1 + 1 + 1 = 1 + 2 = 3). In general a permutation

in Sn can be written as a product of nj j-cycles where n =
∑

j jnj, e.g. for (12)(3) we

have n1 = 1 and n2 = 1 so that
∑

j jnj = 1 + 2 = 3, so (12)(3) is a permutation in S3.

In fact the number of partitions of n with the same cycle structure is N = n!
Πjj

njnj !
, for

example in S3 we constructed three 1 + 2-cycles - each one has n1 = 1 and n2 = 1 so

N = 3!
11(1!)21(1!)

= 6
2

= 3.
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10. An even permutation is defined as one which can only be written as the product of an even

number of transpositions, while an odd permutation is one that can only be written using

an odd number of transpositions. For example (1)(2)(3) involves zero transpositions, so is

an even permutation; (123) = (12)(23) is an even permutation; and (1)(23) = (23) is an

odd permutation. In all S3 contains three even permutations and three odd permutations.

11. The alternating group An is a subgroup of Sn consisting of all the even permutations

in Sn. This is always half of the permutations in Sn, hence |An| = n!
2

. For example

A3 = {(1)(2)(3), (123), (132)} = {e, a, a2} ∼= Z3.



4. Homomorphisms and isomorphisms

Definition 4.1. Let G1 and G2 be groups. A map φ : G1 → G2 is a homomorphism if

φ(gh) = φ(g)φ(h) for all g, h ∈ G1.

Comment(s). (On the definition of a homomorphism.)

1. In other words φ preserves the structure of a group as gh is mapped to φ(g)φ(h).

2. Note that a homomorphism distributes over a product of group elements, but it is a map

from one group G1 to another G2 so that the group multiplication law is different on each

of the definition of the homorphism (on the left gh are multiplied using the group law of

G1 while on the right φ(g)φ(h) are multiplied using the multiplication law of G2).

Definition 4.2. An isomorphism is a homomorphism that is bijective.

Equivalently, a map φ : G1 → G2 is an isomorphism if it is bijective and if it satisfies

φ(gh) = φ(g)φ(h) for all g, h ∈ G1.

As a trivial example, the identity map id : G → G is always an isomorphism of a group

onto itself.

Theorem 4.1. Let φ be a homomorphism from G1 to G2 and e1, e2 be the identity elements in

G1 and G2 respectively, then,

(i) φ(e1) = e2 and

(ii) φ(g−1) = φ(g)−1 ∀ g ∈ G1.

Proof. (i) Since e1e1 = e1 then φ(e1) = φ(e1e1) = φ(e1)φ(e1). Multiplying by the inverse el-

ement φ(e1)−1 in G2 and we have φ(e1)φ(e1)−1 = φ(e1)φ(e1)φ(e1)−1, hence e2 = φ(e1). (ii)

Now consider e1 = gg−1 for g ∈ G1. Then using the previous result, we find e2 = φ(e1) =

φ(gg−1) = φ(g)φ(g−1), and pre-multiplying by the inverse element φ(g)−1 in G2 we have

φ(g)−1 = φ(g)−1φ(g)φ(g−1) = φ(g−1).

12
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Example 4.1. A homomorphism from S2 to S3:(
1 2

1 2

)
7→

(
1 2 3

1 2 3

)
,

(
1 2

2 1

)
7→

(
1 2 3

2 1 3

)
Note this is not an isomorphism. Could one construct an isomorphism from S2 to S3?

Definition 4.3. Two groups G1 and G2 are isomorphic if there exists an isomorphism

φ : G1 → G2.

Theorem 4.2. The “isomorphic” relation is an equivalence relation, which we will denote by
∼=.

Proof. We need to check that the relation is reflexive, symmetric and transitive.

Reflexive: a group is isomorphic to itself because the identity map id is an isomorphism.

� Reflexive: G ∼= G as the identity map is an isomorphism mapping G to itself.

� Symmetric: we must show that if φ : G1 � G2 is an isomorphism, than so is φ−1 : G2 �

G1. We know that φ−1 is a bijective map from G2 onto G1, so we must check that it is

a homomorphism. Let g = φ(h), g′ = φ(h′) ∈ G2 with h, h′ ∈ G1 (h and h′ always exist

because φ is a bijection). Then φ−1(gg′) = φ−1(φ(h)φ(h′)) = φ−1(φ(hh′)) = hh′ where in

the penultimate step we have used that φ preserves the multiplication law. This equals

hh′ = φ−1(g)φ−1(g′) by the definition of φ−1. Hence φ−1(gg′) = φ−1(g)φ−1(g′) so φ−1 is a

homomorphism.

� Transitive: let φ′ and φ be isomorphisms. We need to show that φ′ ◦φ is an isomorphism.

Certainly φ′ ◦ φ is bijective, so we need to shown that it is a homomorphism. We have

φ′ ◦ φ(gg′) = φ′(φ(gg′)) = φ′(φ(g)φ(g′)) = φ′(φ(g))φ′(φ(g′)) = φ′ ◦ φ(g)φ′ ◦ φ(g′) so φ′ ◦ φ
preserves the multiplication law.

If two groups are isomorphic, then they are structurally the same group. For instance, if

G1
∼= G2, then: |G1| = |G2|; G1 abelian⇔ G2 abelian; etc. Further, isomorphisms preserve the

order of elements:

Definition 4.4. The order of an element a in a group G is the smallest positive integer k such

that ak = e.

Clearly by Theorem 2.1, |〈a〉| is equal to the order of a. Let φ : G1 → G2 be an isomorphism

onto G2, and let g1 ∈ G1. Now φ(〈g1〉) = 〈φ(g1)〉 as φ(gn+1
1 ) = φ(gn1 g1) = φ(gn1 )φ(g1) (as φ is a

homomorphism) for all n ≥ 0, and then by induction φ(gn1 ) = φ(g1)n.
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Theorem 4.3. Two cyclic groups of the same order are isomorphic.

Proof. Let G1 = 〈g1〉 and G2 = 〈g2〉, and N = |G1| = |G2| where N is finite. By Theorem

2.1, we have G1 = {g0
1, g

1
1, . . . , g

N−1
1 } and G2 = {g0

2, g
1
2, . . . , g

N−1
2 } as sets. Let us define the

map φ : G1 → G2 by φ(gn1 ) 7→ gn2 for all n ∈ Z. We will show that this is an isomorphism. It

is bijective by construction. To show it is a homomorphism, consider φ(gm1 g
n
1 ) = φ(gm+n

1 ) =

gm+n
2 = gm2 g

n
2 = φ(gm1 )φ(gn1 ).

Here we did the case of cyclic groups of finite orders; the case of infinite (countable) cyclic

groups can be done similarly.

Given the above theorem, when discussing cyclic groups, it is sufficient to discuss Zn (for

n = 2, 3, 4, . . .) and Z, as any cyclic group will be isomorphic to one of these.

Example 4.2. Let G1 = {1,−1} under multiplication of integers, and

G2 = S2 =

{(
1 2

1 2

)
,

(
1 2

2 1

)}
.

Consider the function

φ(1) =

(
1 2

1 2

)
and φ(−1) =

(
1 2

2 1

)
.

The map is clearly bijective. Also,

φ((−1) · (−1)) = φ(1) =

(
1 2

1 2

)
=

(
1 2

2 1

)
·

(
1 2

2 1

)
= φ(−1)φ(−1),

and φ(1) =

(
1 2

1 2

)
hence φ maps identity to identity. This is sufficient to conclude that φ

is an isomorphism.

Example 4.3. Let G1 = Zn and G2 = {e2πik/n : k = 0, 1, . . . , n − 1}. Consider the map

φ : G1 → G2 given by φ(k) = e2πik/n, k = 0, 1, 2, . . . , n− 1. It is well-defined: since we restrict

to k between 0 and n − 1, they are all different integers when taken mod n. It is surjective:

just by definition, we get all e2πik/n : k = 0, 1, . . . , n − 1. It is injective: if φ(k) = φ(k′) then

e2pii(k−k′)/n = 1 hence k − k′ = 0 mod n so that k = k′ mod n. Further, we have φ(k + k′

mod n) = e2πi(k+k′ mod n)/n = e2πi(k+k′)/n = e2πik/ne2πik′/n = φ(k)φ(k′).



5. Cosets and Lagrange’s Theorem

Let H be a subgroup of G. Now define a relation ∼ in G as follows: a is equivalent to b, i.e.

a ∼ b, iff ab−1 ∈ H. This is an equivalence relation.

Proof. We need to check reflexivity, symmetry, transitivity.

� Reflexive: a ∼ a. Indeed, aa−1 = e ∈ H as the identity is in any subgroup.

� Symmetric: a ∼ b⇒ b ∼ a. Indeed, ab−1 ∈ H implies that (ab−1)−1 ∈ H as every element

of a subgroup has an inverse in the subgroup, whence ba−1 ∈ H.

� Transitive: a ∼ b, b ∼ c ⇒ a ∼ c. Indeed if ab−1 ∈ H and bc−1 ∈ H then their product

is in H as a subgroup is closed, so ab−1bc−1 ∈ H implying ac−1 ∈ H.

The equivalence class of a is denoted [a] := {b ∈ G : a ∼ b}. Clearly, if a ∼ b then [a] = [b]:

if c ∼ a then c ∼ b by transitivity ([a] ⊂ [b]) and if c ∼ b then c ∼ a by transitivity ([b] ⊂ [a]).

Let us denote by Ha the set {ha : h ∈ H}, then, as will be shown, [a] = Ha.

Proof. If b ∼ a then ba−1 ∈ H hence there exists h = ba−1 ∈ H such that b = ha; this implies

[a] ⊂ Ha. While if c = ha ∈ Ha for some h ∈ H, then ca−1 = h ∈ H then c ∼ a for all c ∈ Ha
and therefore Ha ⊂ [a]. Together [a] ⊂ Ha and Ha ⊂ [a] imply [a] = Ha.

Definition 5.1. The set of equivalent classes {Ha : a ∈ G} is the set of right cosets of G with

respect to H, where G is a group and H ⊂ G is a subgroup of G.

Note that the element of G is to the right of the element of H, hence the name “right coset”.

We could have made a similar construction but using a different equivalence relation in G

defined by a ∼ b iff a−1b ∈ H. Under this equivalence relation, [a] = aH. The equivalence

classes are the left cosets:

15
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Definition 5.2. The set of equivalent classes {aH : a ∈ G} is the set of left cosets of G with

respect to H.

Hence we have two types of cosets (right and left), with two types of equivalence relations.

For now we will derive results for right cosets, but similar results hold for left cosets. Later on

we will concentrate on left cosets.

Theorem 5.1. Two right cosets of G with respect to H are either disjoint or identical.

In fact this is true for two equivalence classes of any given equivalence relation.

Proof. Let a, b ∈ G. If [a] and [b] have no element in common, then they are disjoint. If c ∈ [a]

and c ∈ [b], then a ∼ c and b ∼ c, hence a ∼ b by transitivity, and [a] = [b] by the statement

shown above.

Theorem 5.2. All right cosets of G with respect to H have the same number of elements.

Proof. Fix a ∈ G, and consider its right coset Ha. We will show that this has the same

number of elements as H itself. Since this holds independently of a, this will show the theorem.

Consider the map M : H → Ha, h 7→ ha. We just need to show that it is a bijection. Given

any b ∈ Ha, we have b = ha for some h ∈ H, hence b = M(h), so M is onto Ha. Further, if

M(h) = M(h′) then ha = h′a hence haa−1 = h′aa−1 ⇒ h = h′ so M is injective.

Definition 5.3. The number of cosets of G wrt H is called the index of H in G, which we will

denote i(H,G).

Theorem 5.3. (Lagrange’s Theorem) Let H be a subgroup of G. The order of H divides the

order of G i.e. |G| = |H| i(H,G).

Proof. We have to show that the right cosets of G w.r.t. H form an equipartition of G into

i(H,G) disjoint subsets all with exactly |H| elements. This follows from three facts: the union

of all right cosets, ∪a∈GHa, is G itself; two right cosets Ha and Ha′ are either disjoint or

identical; and each right coset has the same number of element |H|. The last two statements

are Theorems 5.1 and 5.2. So we just need to prove the first. Note that a ∈ Ha; indeed, e ∈ H,

hence a = ea ∈ Ha. This implies that ∪a∈GHa = G.

Definition 5.4. A proper subgroup of a group G is a subgroup H ⊂ G that is different from

the trivial group {e} and from G itself.

Corollary 5.0.1. If |G| is prime, then the group G has no proper subgroup.

Proof. If H is a proper subgroup of G, then |H| divides |G| and |H| is a number not equal to

1 or |G|. Contradiction.
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Corollary 5.0.2. Let a ∈ G and let k be the order of a. Then k divides |G|.

Proof. Let us look at the cyclic subgroup 〈a〉 of G generated by a. By Theorem 2.1 this has

order k. Hence k divides |G|.

Corollary 5.0.3. If |G| is prime then G is a cyclic group.

Proof. Given any a ∈ G, where a 6= e, consider the subgroup 〈a〉. Since |G| is prime, it has no

proper subgroup. Since the order of 〈a〉 is greater than 1, 〈a〉 must be G itself.

From the latter corollary, observe that any group of prime order is unique up to isomor-

phisms.

Example 5.1. Take the group G = S3 = {e, a, a2, b, ab, a2b} with the relations written pre-

viously, a3 = e, b2 = e, ab = ba2, a2b = ba. Take the subgroup H = {e, a, a2}. Let us

calculate all the right cosets associated to this subgroup. We have

He = H, Ha = {a, a2, a3 = e} = H, Ha2 = {a2, a3 = e, a4 = a} = H

and

Hb = {b, ab, a2b}, Hab = {ab, a2b, a3b = b} = Hb, Ha2b = {a2b, a3b = b, a4b = a2b} = Hb.

Hence we find that any two cosets Hg1 and Hg2 for g1, g2 ∈ G are either disjoint or identical.

We find that there are exactly 2 different cosets occurring, which are the sets H and Hb. This is

in agreement with Lagrange’s theorem, because |G| = 6, |H| = 3 so that the number of different

cosets should be i(H,G) = |G|/|H| = 2, which it is.

Example 5.2. Consider again G = S3 = {e, a, a2, b, ab, a2b} with the relations as before.

Consider the subgroup H = {e, b} = 〈b〉. We have Ha = {a, a2b}, Ha2 = {a2, ab}. We

have 3 cosets, each containing 2 elements, giving a total of 6 elements.



6. Groups of Low Order and Klein’s

Four-Group

We will identify or construct all the groups of low order.

� |G| = 1: there is only one possibility because the identity must always be there, so

G = {e}.

� |G| = 2: G = {e, a} with a 6= e. Since 2 is prime, by corollary (iii) of Theorem 5.3 G

must be cyclic, and by Theorem 4.3, it must be isomorphic to Z2, hence we must have

a2 = e. Let us deduce that from first principles. The inverse of a must exist. It cannot

be e because ae = a 6= e, so we must have a−1 = a. Hence e = aa−1 = a2.

� |G| = 3: Again, since 3 is prime, G must be cyclic (hence isomorphic to Z3, so we can

always write G = {e, a, a2} with a3 = e. It could likewise be deduced from first principles.

� |G| = 4: G = {e, a, b, c} (all distinct). We know that 〈a〉, for instance, is a subgroup, so

its order divides 4. Hence there are 2 or 4 elements in 〈a〉. By Theorem 2.1, this means

that a2 = e or a4 = e. In the latter case, 〈a〉 = G, so G is cyclic (hence isomorphic to

Z4). Let us assume that G is not cyclic, in order to see what other group we can have. So

a2 = e. We can then do the same for b and c, and always assuming that G is not cyclic,

we have a2 = b2 = c2 = e. Then consider ab, and check, for the various possibilities, if

associativity holds.

1. ab = a: (a2)b = b and a(ab) = a2 = e, no.

2. ab = b: similarly, no.

3. ab = e: a(ab) = a and (a2)b = b, no.

Hence if the group exists, we must have ab = c. Similarly, we must have ba = c, bc =

cb = a and ca = ac = b. To show existence of the group, must check associativity in all

18
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possible triple products abc, a2b, etc. (left as exercise; it’s a consequence of the matrix

representation below).

The above arguments show:

Theorem 6.1. Every group of order 4 is either cyclic, or has the rules:

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

N.B. This is a Cayley table: the entry in row gr and column gc is grgc, it shows the results of

all multiplications in the group featuring two elements.

Definition 6.1. The group with the rules above is denoted V4, and called Klein four-group

(Vierergruppe).

Comment(s). (On the Klein four-group.)

1. Both the cyclic group and the group V4 are abelian. Hence there are no non-abelian groups

of order less then or equal to 4. By Corollary (iii) of Theorem 5.3, any group of order 5

is also cyclic hence abelian, so there are no non-abelian groups of order less then or equal

to 5.

2. The group V4 is the smallest non-cyclic group.

3. V4 is such that all elements different form e have order 2.

4. V4 has 5 subgroups: the trivial one and V4 itself, as well as the 3 proper subgroups 〈a〉,
〈b〉 and 〈c〉.

5. V4 can be seen as a subgroup of S4:{
e,

(
1 2 3 4

2 1 4 3

)
,

(
1 2 3 4

3 4 1 2

)
,

(
1 2 3 4

4 3 2 1

)}
.

6. V4 can also be described using symbols and relation. It is generated by the symbols a, b,

with the relations a2 = b2 = e and ab = ba. We have V4 = 〈a, b〉 = {e, a, b, ab}.
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Example 6.1. A matrix representation of V4: Consider the 2× 2 matrices

e =

(
1 0

0 1

)
, a =

(
1 0

0 −1

)
, b =

(
−1 0

0 1

)
, c =

(
−1 0

0 −1

)

and the product rules on these matrices given by the usual matrix multiplication. These form

the group V4.

Example 6.2. Cosets on V4: Take V4 = {e, a, b, ab} with the relations shown above. A (cyclic)

subgroup is of course H = {e, a} = 〈a〉. One coset is H = Ha, the other is Hb = {b, ab}. They

have no element in common, and have the same number of elements. Lagrange’s theorem holds.



7. Direct products

Definition 7.1. Let G1 and G2 be two groups. Then G = G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈
G2} is a group, with the multiplication law (g1, g2)(g′1, g

′
2) = (g1g

′
1, g2g

′
2). G1 ×G2 is called the

direct product of G1 and G2

Exercise 7.1. Confirm that the axioms of a group are satisfied by the direct product.

Observe that if G1 and G2 are abelian, then so is G1 × G2. Also, G1 × {e2} = {(g1, e2) :

g1 ∈ G1} (where e2 is the identity in G2) is a subgroup of G1 ×G2, which is isomorphic to G1.

Likewise, {e1} ×G2
∼= G2 is a subgroup of G1 ×G2. Finally note that |G1 ×G2| = |G1| |G2|.

Exercise 7.2. Prove that G1 × {e2} ∼= G1 where G1 × {e2} ⊂ G1 × G2 and e2 is the identity

element in G2.

Consider G1 = {e1, a1} with a2
1 = e1 and G2 = {e2, a2} with a2

2 = e2. That is, G1
∼= Z2 and

G2
∼= Z2. Then G1×G2 has order 4. Hence it must be isomorphic to Z4 or to V4. Which one is

it? Since all elements of G1×G2 different from (e1, e2) are of order 2, this cannot be Z4, which

has at least one element of order 4. Hence it must be V4. That is, we have found

Z2 × Z2
∼= V4.

Exercise 7.3. Prove that (g1, g2) ∈ Z2×Z2 where (g1, g2) 6= (e1, e2) is an element of order two.

Lemma 7.1. All groups of even order contain at least one non-identity element whose order

is two.

Proof. Consider a finite group of even order where G = {e, g1, g2, . . . g2n−1} for n ∈ Z. Suppose

that G does not contain any non-identity element of order two and note that such an element

is its own inverse element. We may pair up each element and its unique inverse element. But

e is its own inverse element which means that we have an odd number of remaining elements

to be ordered into distinct pairs - which cannot be done. Hence the assumption is contradicted

and G contains at least one non-identity element of order two.

21
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Theorem 7.1. A group of order 6 is isomorphic either to Z6 (the cyclic group of order 6) or

to S3.

Proof. Let |G| = 6 then the orders of its elements are 1, 2, 3 or 6. If G contains an element,

a, of order 6 then G = 〈a〉 ∼= Z6. Otherwise if G does not contain any element of order 6,

then we know by the previous lemma that it must contain at least one element of order 2. Is

it possible that G can consist of just elements of order 2 (besides the identity)? Suppose that

a, b, ab ∈ G are three elements each of order 2, then ab = (ab)−1 = b−1a−1 = ba in which case

〈a, b〉 with a2 = e, b2 = e and (ab)2 = e form a subgroup of order 4, the Klein four-group V4 in

G. However by Lagrange’s theorem G with |G| = 6 does not have any subgroups of order 4.

Hence if G is not isomorphic to Z6 then it must contain elements of both orders 2 and 3. Let

a3 = e and b2 = e and construction of the Cayley table leads to two possibilities either ab = ba

or ab = ba2. If ab = ba then ab is an element of order 6, which cannot be if G is not isomorphic

to Z6. The other possibility gives G = 〈a, b〉 with a3 = e, b2 = e and ab = ba2, meaning that

G ∼= S3.

Let us use this theorem in order to study the group Z2 × Z3. This has order 6. Is it

isomorphic to Z6 or to S3? We note that Z2 × Z3 is abelian and so is Z6 however S3 is not

abelian hence we must have

Z2 × Z3
∼= Z6.

Note how this differs in form from the earlier example (where we found Z2 × Z2
∼= V4 i.e.

Z2 × Z2 6∼= Z4). In which situations do we have Zp × Zq ∼= Zpq? The answer is:

Theorem 7.2. Zp×Zq ∼= Zpq if and only if p and q are relatively prime (i.e. they do not have

prime factors in common).

Proof. Let Zp = 〈a〉 and Zq = 〈b〉. That is, ap = e and bq = e, and there are no smaller positive

integers such that these are true (here by abuse of language we use the same identity symbol e

for both groups).

Consider (a, b) ∈ Zp × Zq. We will first show that if p and q are relatively prime then (a, b)

has order pq. This will imply that the subgroup 〈(a, b)〉 of Zp × Zq has order pq = |Zp × Zq|,
whence that Zp × Zq = 〈(a, b)〉: it is cyclic. By Theorem 4.3, this will imply that Zp × Zq is

isomorphic to Zpq.
Let n be the order of the element (a, b) ∈ Zp × Zq, i.e. n is the minimal integer such that

(a, b)n = (e, e) (the identity element in Zp × Zq). Then we must have both an = e and bn = e.

Hence, n = rp = tq where r and t are positive integers. Hence r/t = q/p, and since p and q are

relatively prime, we must have r = q and t = p. Hence n = pq.
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For the proof in the opposite direction we must show that if p and q are not relatively prime,

then Zp×Zq is not isomorphic to Zpq. Let u ∈ Zp and v ∈ Zq be generating elements for Zp and

Zq respectively, and let n be the order of (u, v) ∈ Zp × Zq. As above, this implies n = rp = tq

with r/t = q/p. Since p and q are not relatively prime, they have a factor in common, say

s > 1. Then we may take r = q/s and t = p/s, and we find n = pq/s < pq. Therefore the

order of the element (u, v) (which have the largest order of any element in Zp×Zq) is less than

pq while Zpq always has an element of order pq (the generating element). Hence, there is no

isomorphism between Zp×Zq and Zpq when p and q are not relatively prime (as isomorphisms

preserve the order of elements).



8. Symmetry Transformations and Dihedral

Groups

8.1 Symmetries and Groups

Symmetries are one of the most intuitive ideas in mathematics, from the moment we look in

a mirror or first draw a square we are aware of patterns in an image. Even before giving a

formal definition of a symmetry we can answer some questions about symmetries and even

begin counting them. For example which object is more symmetrical: a circle or a square? Our

intuition is that the circle is the more symmetrical. But how does our intuition serve us if we

ask whether the triangle or the square is the more symmetrical object? To answer this question

we should give a formal definition of a symmetry and also find a way to count the symmetries

of these geometric objects.

Definition 8.1. A symmetry transformation is an action on a set that leaves the set as a whole

unaltered.

Comment(s). (On symmetry transformations.)

1. An even function f(x) has the property that f(x) = f(−x), it is symmetric under the map

x→ −x. In R2 the curve y = f(x) is symmetric under a reflection in the y-axis. An odd

function satisfies g(x) = −g(−x) and in R2 the curve y = g(x) is not symmetric under

reflection in the y-axis, on the other hand it is symmetric under another transformation

of R2 (which one?)

2. Any geometric shape may be considered as a set of points, e.g. a unit square can be

described as the set of points {(0, y), (x, 0), (1, y), (x, 1) : x, y ∈ [0, 1]}, the unit circle at

the origin is the set of points (x, y) satisfying x2 + y2 = 1 and so on.

24
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3. Suppose we were to define a square by its four vertices {A,B,C,D}, then a symmetry

transformation may move these vertices around e.g. A→ B, B → C, C → D and D → A

(and hence move all the points on the square about) but {A,B,C,D} → {B,C,D,A} =

{A,B,C,D} as there is no order on a set. A non-trivial symmetry transformation is a

map of set to itself.

4. Every group is a set G together with a map that maps the set G to itself, hence every

group action encodes a symmetry transformation of G. Equivalently we can commence

with a set and by identifying its symmetry transformations we can construct the associated

group.

5. By encoding symmetry transformations as a group G we have a natural way to count the

number of symmetries, it is just the order of the group |G|, so we have a canonical way

to answer the question of whether the triangle or the square is the more symmetric object

and further we will be able to say that the circle has an infinite number of symmetry

transformations.

8.2 Isometries of the Euclidean Plane

Let us consider the natural transformations of the Euclidean plane: translations, rotations and

reflections. Each of these transformations is a symmetry of the Euclidean plane, but they

are also special symmetries as they are the symmetry transformations which preserve distance

between pairs of points on the plane.

Definition 8.2. Let X and Y be two vector spaces equipped with distance functions DX and

DY . An isometry between X and Y is a distance preserving map f : X → Y i.e.

DX(x1, x2) = DY (y1, y2)

where f(x1) = y1 and f(x2) = y2.

We will be interested in the Euclidean plane and so will consider the isometries when

X = Y = R2 and the distance function is the Euclidean inner product: DR2(xxx,yyy) = |yyy − xxx|.
The isometries of the Euclidean plane are also called the Euclidean transformations. The

reflections and rotations are the only Euclidean transformations of the Euclidean plane, we will

prove this statement later in the course when we construct the Euclidean group. Now we will

investigate the Euclidean transformations of simple geometric objects.

Consider the subset of the plane formed by a circle centred at the origin and of radius 1:

{(x, y) : x2 + y2 = 1}. (8.1)
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What are its isometries? The only Euclidean transformations that preserve this circle are

the rotations with respect to the origin, and the reflections with respect to any axis passing

through the origin. We can describe these by matrices, acting on the coordinates

(
x

y

)
simply

by matrix multiplication. Rotations are

A(θ) =

(
cos θ − sin θ

sin θ cos θ

)
.

We can also find a matrix representation for the reflections. There are many reflections and

one of them is the reflection in the x-axis (i.e. mapping x→ x and y → −y):

B =

(
1 0

0 −1

)
.

Reflections through another axis, at angle θ to the x-axis, denoted B(θ) can be obtained by

combining A(θ) and B. Geometrically, if we want to construct a reflection through the axis

that is at angle θ, we just need to first rotate the angle-θ axis to the x axis by a rotation A−θ,

then do a reflection, then rotate back by an angle θ. That is,

B(θ) := A(θ)BA(−θ).

Of course, here we only need to take θ ∈ [0, π), because if we rotate an axis by π we get again

the same axis. Hence the set of all symmetry transformations is {A(θ) : θ ∈ [0, 2π)} ∪ {B(θ) :

θ ∈ [0, π)}.
Combinations of these transformation also give a Euclidean transformation that preserves

the circle, hence under matrix multiplication this set satisfies the closure axiom of a group. The

identity transformation is A(0) (rotation by angle 0) is one of the symmetry transformations

of the circle. Further all inverse transformations are included in this set. Hence the set of

symmetry transformations of the circle form a group. It is, in general, very natural to interpret

group elements as transformations, and the study of symmetries, transformations that preserve

sets, equations, etc., is the study of the groups (and their representations) formed by such

transformations.

Closure, identity and inverses can be verified explicitly here using the matrices and matrix

multiplication. In general, a multiple rotation is equivalent to a single rotation by the sum of

the angles defining the multiple rotations, and two reflections give the identity:

A(θ)A(θ′) = A(θ + θ′), A(2π) = I, B2 = I (8.2)

Exercise 8.1. Check these statement by carrying out the matrix multiplications.
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Further one can confirm the relation

A(θ)B = BA(−θ). (8.3)

(Observe how similar these are to the relations in S3: a3 = e, b2 = e and ab = ba2 = ba−1.)

Hence, we may express B(θ) as

B(θ) = A(2θ)B. (8.4)

Using (8.2), (8.3) and (8.4), the product of any two transformations can be re-written as another

transformation confirming that we have closure.

In order to check explicitly that some matrix multiplication gives rise to a symmetry of

the subset (8.1), we may proceed by starting with the expression for the transformed subset,

and then make a change of variable in order to recover the original subset. Notice that A(θ),

B(θ) all are orthogonal matrices, i.e. matrices M satisfying MTM = MMT = I. Let us then

consider such an orthogonal matrix for the transformation:{
M

(
x

y

)
: x2 + y2 = 1

}
=

M
(
x

y

)
:

(
x

y

)T (
x

y

)
= 1


=


(
x′

y′

)
:

(
MT

(
x′

y′

))T (
MT

(
x′

y′

))
= 1


=


(
x′

y′

)
:

(
x′

y′

)T

MMT

(
x′

y′

)
= 1


=


(
x′

y′

)
:

(
x′

y′

)T (
x′

y′

)
= 1


=

{(
x′

y′

)
: (x′)2 + (y′)2 = 1

}

Hence we get back to the set (8.1). The group we have been considering is called the special

orthogonal group SO(2) - we will discuss this group in detail in later chapter. It is a complicated

group, it contains an infinite number of group elements (there are elements A(θ) and B(θ) for

every θ ∈ R). It is an example of a Lie group. It is sensible for us to consider objects which have

less symmetry than the circle and construct their symmetry groups. Let us consider, instead

of the circle, the polygons.

Definition 8.3. Let n ≥ 2 be an integer. The set of rotations and reflections that preserve the
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regular polygon Pn, formed by successively joining the points cos

(
2πk

n

)
sin

(
2πk

n

)
 , k = 0, 1, 2 . . . , n− 1

straight lines, is called the dihedral group Dn.

Comment(s). (On the dihedral group and polygons)

1. Dn is the symmetry group of the regular polygon Pn.

2. Note that the case n = 2 does not quite form a polygon - P2 is just a line segment.

However it fits into the considerations below very well.

We will consider the cases n = 2, n = 3 and the class n ≥ 4 and in each case we will identify

the symmetries of Pn in terms of rotations and reflections of the Euclidean plane.

� n = 2. From geometric considerations, the symmetries of the segment are the rotations

by angle 0 (the identity) and π, as well as the reflections with respect to axes at angles 0

and π/2, i.e. the x and y axes. These are the matrices, in the notation A(θ) (rotation by

an angle θ) and B(θ) (reflection with respect to the axis at angle θ from the x axis, with

B(0) = B) introduced above:

A(0) = I =

(
1 0

0 1

)
, A(π) =

(
−1 0

0 −1

)

B(0) = B =

(
1 0

0 −1

)
, B(π/2) =

(
−1 0

0 1

)
To show that, e.g., A(π) is a symmetry, we may proceed as follows: the segment is

described by {(x, y) : y = 0, −1 < x < 1}, and the transformed segment is{
A(π)

(
x

y

)
: y = 0, −1 < x < 1

}
=

{(
−x
−y

)
: y = 0, −1 < x < 1

}

=

{(
x′

y′

)
: −y′ = 0, −1 < −x′ < 1

}

=

{(
x′

y′

)
: y′ = 0, −1 < x′ < 1

}
where we have made the change of variable x′ = −x and y′ = −y, and have used −x′ <
1⇒ x′ > −1 and −1 < x′ ⇒ x′ < 1. We notice that these are the same matrices as those
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of the Klein four-group V4, so we have D2
∼= V4. We know that V4

∼= Z2 × Z2. Can we

interpret the Z2 factors in the symmetry transformations of P2? Yes. Consider Aπ and

B. They satisfy A(π)2 = A(2π) = I and B2 = I. Also, A(π)B = BA(π). These are

the relations describing the group V4: the set {I, A(π), B,A(π)B} have the multiplication

law of the group V4. Also, there are at least two Z2 subgroups: {I, A(π)} (identity and

rotation by π) and {I, B} (the identity and the reflection with respect to the x-axis). The

direct product Z2 × Z2 is a way of putting these two subgroups together into one whole

symmetry group of a single mathematical object.

� n = 3. From geometric considerations, the symmetries are the identity, the rotations

A(2π/3), A(4π/3), and the reflections B, B(π/3) and B(2π/3). Note that the angles the

axes of reflection make to the x-axis are half of those of the rotation symmetries. This is a

general fact for the dihedral groups. Note also that there are 3 rotations and 3 reflections

in D3, a pattern which will also generalise to other dihedral groups. Hence |D3| = 6. We

know by Theorem 7.1 the group can only be S3 or Z6
∼= Z2 × Z3. Which group is it?

A simple check is that the matrices don’t all commute; for instance, a rotation followed

by a reflection gives something different than the same reflection followed by the same

rotation. So we must have S3. More precisely, we have A(2π/3)3 = I and B2 = I, as

well as A(2π/3)B = BA(2π/3)2 and A(2π/3)2B = BA(2π/3). These are indeed the

relations describing the group S3. Hence, we have D3
∼= S3. We note that P3 is an

equilateral triangle, and that the rotations just cyclically permute the three vertices, and

the reflection B exchanges two vertices. These are indeed what the elements of S3 do to

the 3 elements 1, 2, 3 and one can formally construct the isomorphism between S3 and D3

to show that D3
∼= S3.

Exercise 8.2. Prove that D3
∼= S3.

� In general, for n ≥ 3, we can set e = I, a = A(2π/n) and b = B, and we have an = e,

b2 = e and akb = ba−k for k = 1, 2, . . . , n − 1 (the cases k = 1 and k = n − 1 are the

same, etc.). The set of group elements generated by these symbols under these relations

is {e, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b}. This is the group Dn, and it has order 2n.

Exercise 8.3. Is Dn isomorphic to Sn for n > 3?



9. Conjugation, Normal Subgroups, Quotient

Groups

9.1 Conjugation

Definition: Given a group G, we say that a is conjugate to b if there exists a g ∈ G such that

a = gbg−1 for a, b ∈ G.

Conjugation is a way of relating similar transformations. Consider the permutation (123)

in the symmetric group S3. If we swapped the labels of the elements 2 ↔ 3 we would find

another 3-cycle permutation: (132). The two permutations are both 3-cycles and in this sense

are similar transformations. We can carry out the swap 2↔ 3 using elements of S3 as follows:

(23)(123)(32) =

(
1 2 3

1 3 2

)(
1 2 3

2 3 1

)(
1 2 3

1 3 2

)
=

(
1 2 3

3 1 2

)
= (132).

The operation (23)(123)(32) is conjugation of (123) with g = (23). As every finite group G

is made up of some set of permutations in the symmetric group S|G| then the usefulness of

conjugation within the symmetric group is inherited by its subgroup G. The bottom line is

that conjugation is a means of relating similar group elements.

Theorem 9.1. The conjugacy relation is an equivalence relation.

Proof. We check the properties of an equivalence relation for conjugation.

� Reflexivity: a is conjugate to itself as a = eae−1 and e ∈ G.

� Symmetry: If a is conjugate to b, then a = gbg−1 (for some g ∈ G) ⇒ b = g−1ag =

g−1a(g−1)−1 hence b is conjugate to a.

� Transitivity: If a is conjugate to b and b is conjugate to c, then a = gbg−1 and b = g′c(g′)−1

(for some g, g′ ∈ G), hence a = gg′c(g′)−1g−1 = gg′c(gg′)−1 and so a is conjugate to c.

30
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Hence, the group G is divided into conjugacy classes, [a]C = {gag−1 : g ∈ G}. By Theorem

5.1 (applied to general equivalence classes), two such conjugacy classes are either disjoint or

identical. The conjugacy classes cover the whole group because a ∈ [a]C for every a ∈ G, i.e.

∪a∈G[a]C ⊂ ∪a∈G{a} = G. Hence conjugacy classes form a partition of G. Contrary to cosets,

however, this is not an equipartition.

Comment(s). (On conjugacy classes.)

� [e]C = {e}. Hence no other class is a subgroup (because e 6∈ [a]C for any a 6= e).

� All elements of a conjugacy class have the same order. Indeed let b be an element of [a]C.

Then b = gag−1 for some g ∈ G. Hence, bn = (gag−1)n = gag−1 gag−1 · · · gag−1 (n

factors) = gang−1 (using g−1g = e). Now if k is the order of b then bk = e and so ak = e.

Further suppose there exists k′ < k such that ak
′

= e, then bk
′

= gak
′
g−1 = geg−1 = e

contradicting the assumption that the order of b is k (as k′ < k) hence no such k′ exists.

A similar argument holds in the other direction (i.e. assuming the order of a is k to show

that it implies the same order for b). Hence a and b have the same order.

� If G is abelian, then [a]C = {a} for all a ∈ G.

Theorem 9.2. On any subset H ⊂ G, the conjugation map M : H 7→ gHg−1, h 7→ ghg−1

associated to g ∈ G is bijective.

Proof. Injective: if ghg−1 = gh′g−1 then, by pre/post-multiplying by g−1 / g, we have h = h′;

surjective: any b ∈ gHg−1 can be written as b = ghg−1 for some h ∈ H, so b = M(h).

9.2 Normal subgroups.

Definition 9.1. A subgroup H is called normal or invariant if gHg−1 ⊂ H for all g ∈ G.

Comment(s). (On normal subgroups.)

1. Notation: gHg−1 = {ghg−1 : h ∈ H}). That is, H is normal if for every h ∈ H and

every g ∈ G, we have ghg−1 ∈ H.

2. An immediate consequence is that if H is normal, then gHg−1 = H for all g ∈ G. This

follows from Theorem 9.2. Let M be the conjugation map of Theorem 9.2, by normality

of H, we have M(H) ⊂ H, and by bijectivity of M , we have |M(H)| = |H|, hence

M(H) = H.
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3. Let H be a normal subgroup. If h ∈ H then [h] ⊂ H. That is, H is composed of entire

conjugacy classes. In fact: a subgroup is normal if and only if the subgroup is the union

of conjugacy classes.

4. {e} is a (trivial) normal subgroup.

5. Every subgroup of an abelian group is normal.

Exercise 9.1. Prove that every subgroup of an abelian group is indeed normal.

Definition 9.2. A group is simple if it has no proper normal subgroup. A group is semi-simple

if it has no proper abelian normal subgroup.

Definition 9.3. The centre Z(G) of a group G is the set of all elements which commute with

all elements of G:

Z(G) = {a ∈ G : ag = ga ∀ g ∈ G}

Theorem 9.3. The centre Z(G) of a group is a normal subgroup.

Proof. We must first show that Z(G) is a subgroup and second that it is a normal subgroup.

It is a subgroup as it satisfies the group axioms:

� Closure: let a, b ∈ Z(G) and g ∈ G then abg = agb = gab hence ab ∈ Z(G).

� Identity: e ∈ Z(G).

� Inverse elements: let a ∈ Z(G) and g ∈ G then ag−1 = g−1a hence ga−1 = a−1g hence

a−1 ∈ Z(G).

� Associativity: Z(G) has the same group multiplication rule as G, which is associative as

G is a group by construction.

It is normal as it is abelian, i.e. for a ∈ Z(G) and g ∈ G then gag−1 = gg−1a = a ∈ Z(G).

Observe that, by the above definitions and by Theorem 9.2, if G is simple, then Z(G) = {e}
or Z(G) = G.

9.3 Quotients

Let G be a group and H a subgroup of G.

Definition 9.4. The quotient G/H = {aH : a ∈ G} is the set of all left-cosets. The quotient

H\G = {Ha : a ∈ G} is the set of all right-cosets.
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We will focus our discussion on G/H (the set of left-cosets), but a similar discussion holds

for H\G.

We will first define a multiplication law on subsets of a group:

Definition 9.5. Given two subsets A and B of G, the multiplication of set A by set B is defined

by element-wise multiplication, AB := {ab : a ∈ A, b ∈ B}.

Theorem 9.4. If H is normal, then the quotient G/H, with the above multiplication law on

subsets, is a group.

Proof. We need to check the axioms of a group:

� Closure: We have (g1H)(g2H) = g1Hg2H = g1g2g
−1
2 Hg2H = g1g2HH where we used

g−1
2 Hg2 = H, which holds because H is a normal subgroup. Since H is a subgroup, we

have HH ⊂ H. But also since e ∈ H, we have that HH ⊃ H. Hence HH = H, and we

find (g1H)(g2H) = g1g2H. That is, we have closure with the multiplication law

(g1H)(g2H) = g1g2H. (9.1)

� Associativity: This follows immediately from associativity of G and the relation (9.1).

� Identity: Similarly it follows that eH = H is an identity.

� Inverse: Similarly it follows that g−1H is the inverse of gH under the multiplication law

(9.1).

We call G/H the left-quotient group of G with respect to H.

Example 9.1. Take S3 = {e, a, a2, b, ab, a2b} with a3 = e, b2 = e and a2b = ba. Now H =

{e, a, a2} is a normal subgroup as since as H = 〈a〉 it is a subgroup, and it is normal gag−1 ∈ H
for g ∈ S3. We must explicitly check the statement that it is normal: it is evident that for g = e,

g = a, and g = a2 we have geg−1 ∈ H, gag−1 ∈ H, ga2g−1 ∈ H but it is less obvious for g = b,

g = ab and g = a2b and we now check these explicitly (using ab = ba2 as well as the defining

relations for S3)

� For g = b, g−1 = b so that gag−1 = bab = a2b2 = a2 ∈ H and ga2g−1 = ba2b = ab2 = a ∈
H.

� For g = ab, g−1 = (ab)−1 = b−1a−1 = ba2 so that gag−1 = (ab)a(ba2) = a(a2b)(ba2) =

a3b2a2 = a2 ∈ H and ga2g−1 = (ab)a2(ba2) = a2b2a2 = a ∈ H.
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� For g = a2b, g−1 = (a2b)−1 = b−1(a2)−1 = ba so that gag−1 = (a2b)a(ba) = (a2b)(ba2)a =

a2b2a3 = a2 ∈ H and ga2g−1 = (a2b)a2(ba) = a3b2a = a ∈ H.

Hence H is normal.

Interestingly, we also obtain from these calculations the conjugacy classes of a and a2. We

have found [a]C = {a, a2} and [a2]C = {a, a2}. Along with [e]C = {e}, we see indeed that

H = [e]C ∪ [a]C so it contains whole conjugacy classes.

By previous examples and by Lagrange’s theorem we know that there are two left-cosets with

respect to H: these are H and bH = {b, ab, a2b}. Hence, S3/H has two elements, H and bH.

Explicitly multiplying these subsets we find:

HH = H, H bH = bH H = bH, bH bH = H.

Indeed this forms a group and is in agreement with the relation (9.1) (using b2 = e). In the

end, we find that the multiplication law is that of Z2, i.e.

S3/H ∼= Z2 (9.2)

Explicitly, the isomorphism that maps S3/H onto Z2 = {0, 1} is φ(H) = 0, φ(bH) = 1.



10. Kernel, Image and the Homomorphism

Theorem

Definition 10.1. Let φ be a homomorphism of G1 onto G2. Then the kernel of φ1 is

kerφ1 = {g ∈ G1 : φ(g) = e2}

where e2 is the identity element of G2.

Observe that e1 ∈ kerφ1 due to part (i) of Theorem 4.1.

Theorem 10.1. A homomorphism φ : G→ G′ is an isomorphism if and only if it is onto and

kerφ = {e}.

Proof. We must prove the theorem in two directions: (In one direction φ is an isomorphism ⇒
φ is onto and kerφ = {e}): If φ is an isomorphism, then φ is bijective, in particular injective.

We know that φ(e) = e′ (by Theorem 4.1). If g ∈ kerφ then also φ(g) = e′. Injectivity implies

g = e. Hence kerφ = {e}.
(In the other direction φ is onto and kerφ = {e} ⇒ φ is an isomorphism): if kerφ = {e} and φ

is onto, then we only need to prove injectivity. If φ(g1) = φ(g2) then φ(g1)φ(g2)−1 = e′ hence

φ(g1)φ(g−1
2 ) = e′ using part (ii) of Theorem 4.1. Therefore φ(g1g

−1
2 ) = e′ (using homomorphism

property) hence g1g
−1
2 = e (using kerφ = {e}). Hence g1 = g2, and we have injectivity.

In the following, we will often use Theorem 4.1 without mentioning it.

Theorem 10.2. The kernel is a normal subgroup.

Proof. Let φ : G→ G′ and H = kerφ ⊂ G. We first show that H is a subgroup:

� Closure: if h1, h2 ∈ H then φ(h1h2) = φ(h1)φ(h2) = e′e′ = e′ hence h1h2 ∈ H;

35
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� Associativity: derived from the associativity of G;

� Identity: φ(e) = e′ hence e ∈ H;

� Inverses: if h ∈ H then φ(h−1) = φ(h)−1 = e−1 = e hence h−1 ∈ H.

Hence H is a subgroup. Now we show that the kernel is a normal subgroup: if h ∈ H and

g ∈ G then φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g)φ(g−1) = φ(gg−1) = φ(e) = e′ hence ghg−1 ∈ H.

Therefore H is a normal subgroup.

Theorem 10.3. The image Imφ of a homomorphism φ : G1 → G2 is a subgroup of G2.

Proof. Let g2, g
′
2 ∈ Imφ ⊂ G2. That is, g2 = φ(g1), g′2 = φ(g′1) with g1, g

′
1 ∈ G1.

� Closure: g2g
′
2 = φ(g1)φ(g′1) = φ(g1g

′
1) ∈ Imφ.

� Associativity: is derived from the associativity of G2 as Imφ ⊂ G2;

� Identity: φ(e1) = e2, hence e2 ∈ Imφ.

� Inverses: g−1
2 = φ(g1)−1 = φ(g−1

1 ) ∈ Imφ.

10.1 The Homomorphism Theorem

We will illustrate the theorem first through two examples.

Example 10.1. Let R∗ be the nonzero reals. This is a group under multiplication of real

numbers (e = 1, x−1 = 1/x). The subgroup {1,−1} ∈ R∗ is isomorphic to Z2. Let R+ be the

group of positive real numbers (it is a normal subgroup of R∗, but this doesn’t matter). Define

φ : R∗ → R+, φ(x) = |x|. (10.1)

This is a homomorphism onto R+: φ(xx′) = |xx′| = |x| |x′| = φ(x)φ(x′). Its kernel is kerφ =

{x ∈ R∗ : |x| = 1} = {1,−1} = Z2. Hence Z2 is a normal subgroup of R∗. Further, let us

calculate R∗/Z2. This is the set of all cosets of the form xZ2 for x ∈ R∗. This can be simplified:

{xZ2 : x ∈ R∗} = {{x,−x} : x ∈ R∗} = {{x,−x} : x ∈ R+}. That is, it is the set of pairs of

number and its negative, and each pair can be completely characterised by a positive real number.

As we know these pairs form a group, the quotient group, under element-wise multiplication of

sets: {x,−x} {x′,−x′} = {xx′,−xx′}. What is this group isomorphic to, whose elements are

parameterised by R+?
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There is an isomorphism between R∗/Z2 and the group R+ itself. Indeed, define ψ :

R∗/Z2 → R+ as the bijective map ψ({x,−x}) = x (for x ∈ R+). It is clearly onto, and it

is injective because given a value of x > 0, there is a unique pair {x,−x}. Also, it is a ho-

momorphism: for any x, x′ ∈ R+, we have ψ({x,−x} {x′,−x′}) = ψ({xx′,−xx′}) = xx′ =

ψ({x,−x})ψ({x′,−x′}). Hence, we have found that R∗/Z2
∼= R+, that is,

R∗/kerφ ∼= Imφ.

Example 10.2. Consider the example of S3 and H = {e, a, a2} discussed at the end of Section

9. We have the following homomorphism: φ : S3 = {e, a, a2, b, ab, a2b} → Z2 = {e, b} given

by φ(an) = e and φ(anb) = b. This is a homomorphism on to Z2, which we check explicitly:

φ(anam) = φ(an+m) = e = φ(an)φ(am), φ(anb amb) = φ(an−mb2) = φ(an−m) = e = b2 =

φ(anb)φ(amb), φ(anb am) = φ(an−mb) = b = be = φ(anb)φ(am), φ(anamb) = φ(an+mb) = b =

φ(an)φ(amb). Also, it is clear from the definition of φ that kerφ = H. Recall equation (9.2).

This is then re-written as S3/kerφ ∼= Imφ.

Theorem 10.4. (The homomorphism theorem) Let G and G′ be groups, and φ : G→ G′ be a

homomorphism. Then, G/kerφ ∼= Imφ.

Proof. Let H = kerφ (this is a normal subgroup of G) and G̃ = G/H. Let us first find a

homomorphism φ̃ : G̃ → Imφ. We define the map φ̃ as φ̃(gH) = φ(gH) = {φ(gh) : h ∈ H}.
This seems a priori multi-valued, but let us show that it is in fact single-valued. Indeed,

φ(gh) = φ(g)φ(h) = φ(g) for all h ∈ H because H is the kernel of φ. Hence φ̃(gH) = φ(g),

which is single valued. We then show that φ̃ is a homomorphism: φ̃(gHg′H) = φ̃(gg′H) =

φ(gg′) = φ(g)φ(g′) = φ̃(gH)φ̃(g′H).

Second, we show that φ̃ is bijective. It is clearly surjective as Imφ̃ = {φ̃(gH) : g ∈ G} =

{φ(g) : g ∈ G} = Imφ. Hence we only need to show injectivity. Suppose φ̃(gH) = φ̃(g′H).

Then φ(g) = φ(g′). Hence e = φ(g)−1φ(g′) = φ(g−1)φ(g′) = φ(g−1g′), and therefore g−1g′ ∈ H,

so that g′ = gh for some h ∈ H. That is, g ∼ g′ under the left-coset equivalence relation, so

that gH = g′H.

Example 10.3. Let G be the group of N-by-N matrices with non-zero determinant and real

entries (denoted GL(N,R)) and let φ = det, the determinant, so φ : GL(N,R) → R∗ and is

a homomorphism (as for A,B ∈ GL(N,R) we have φ(AB) = det(AB) = det(A) det(B) =

φ(A)φ(B)) then kerφ := {M ∈ GL(N,R) : detM = 1} = SL(N,R) the special linear transfor-

mations, the group of N-by-N matrices with real entries and unit determinant. The homomor-

phism theorem then implies that GL(N,R)/SL(N,R) ∼= R∗.

Theorem 10.5. Given a group G and a normal subgroup H, there exists a homomorphism

φ : G→ G/H (onto) such that kerφ = H.
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Proof. If g ∈ G, let φ(g) = gH. This is a homomorphism: φ(gg′) = gg′H = gHg′H =

φ(g)φ(g′). Its kernel is kerφ = {g ∈ G : gH = H} = {g ∈ G : g ∼ e} = eH = H.

Corollary 10.1.1. Simple groups, having no non-trivial normal subgroups, admit only trivial

homomorphisms.

Example 10.4. Consider the groups

K2 =

{(
λ−1 0

µ λ

)
: µ ∈ C, λ ∈ C∗

}

L2 =

{(
1 0

µ 1

)
: µ ∈ C

}
We can check that K2 is a group, and that L2 is a normal subgroup of K2.

K2 is a group:

� Closure: (
λ−1 0

µ λ

)(
λ̃−1 0

µ̃ λ̃

)
=

(
(λλ̃)−1 0

µλ̃−1 + λµ̃ λλ̃

)
and λλ̃ ∈ C∗, µλ̃−1 + λµ̃ ∈ C.

� Associativity: immediate from matrix multiplication.

� Identity: choose λ = 1 ∈ C∗ and µ = 0 ∈ C.

� Inverse: using the formula for the inverse of a two-by-two matrix,(
λ−1 0

µ λ

)−1

=

(
λ 0

−µ λ−1

)

and λ−1 ∈ C∗ and −µ ∈ C.

L2 is a subgroup: Set λ = 1 in the considerations above for K2, this is a subset that

is preserved under multiplication (check multiplication law above), that contains the identity

(µ = 0) and that contains the inverse of every element (check from by setting λ = 1 in the

inverse above for K2).

L2 is a normal subgroup: under the multiplication rule, elements of the diagonal get multi-

plied directly. Hence, with element g =

(
λ−1 0

µ λ

)
∈ K2 and h =

(
1 0

µ̃ 1

)
∈ L2, we have
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that ghg−1 is a matrix with on the diagonal λ · 1 · λ−1 = 1 and λ−1 · 1 · λ = 1, hence matrix of

the form

(
1 0
˜̃µ 1

)
∈ L2.

So, we can form the quotient group K2/L2: this is the group of left-cosets, under element-

wise multiplication of left-cosets. The set of left cosets is

{gL2 : g ∈ K2} =

{(
λ−1 0

µ λ

){(
1 0

µ̃ 1

)
: µ̃ ∈ C

}
: µ, λ ∈ C;λ 6= 0

}

=

{{(
λ−1 0

µ+ λµ̃ λ

)
: µ̃ ∈ C

}
: µ, λ ∈ C;λ 6= 0

}

=

{{(
λ−1 0

µ̃′ λ

)
: µ̃′ ∈ C

}
: µ, λ ∈ C;λ 6= 0

}

=

{(
λ−1 0

C λ

)
: λ ∈ C;λ 6= 0

}

where in the third step, we changed variable to µ̃′ = µ + λµ̃ which preserves C because λ 6= 0,

i.e. {µ+ λµ̃ : µ̃ ∈ C} = C. That is, a left-coset is a subset

(
λ−1 0

C λ

)
.

The multiplication law is(
λ−1 0

C λ

)(
λ̃−1 0

C λ̃

)
=

(
(λλ̃)−1 0

Cλ̃−1 + λC λλ̃

)
=

(
(λλ̃)−1 0

C λλ̃

)
hence clearly the identity in the quotient group is(

1 0

C 1

)
= L2

There exists a bijective map φ : K2/L2 → C∗ = {λ ∈ C : λ 6= 0}, given by

φ

((
λ−1 0

C λ

))
= λ

This is bijective. Indeed, it is surjective: given λ ∈ C∗, there is the element

(
λ−1 0

C λ

)

that maps to it; and it is injective: if both

(
λ−1

1 0

C λ1

)
and

(
λ−1

2 0

C λ2

)
map to λ, then

λ1 = λ2 = λ, hence

(
λ−1

1 0

C λ1

)
=

(
λ−1

2 0

C λ2

)
.
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The map φ is also a homomorphism, hence it is an isomorphism. Indeed, using the multi-

plication law of the quotient group above, we see that

φ(

(
λ−1 0

C λ

)(
λ̃−1 0

C λ̃

)
) = φ(

(
(λλ̃)−1 0

C λλ̃

)
) = λλ̃ = φ(

(
λ−1 0

C λ

)
)φ(

(
λ−1 0

C λ

)
).

Hence, we have shown that K2/L2
∼= C∗ (we have found an isomorphism from K2/L2 onto

C∗).

Let us now consider the homomorphism Φ : K2 → C∗ given by

Φ(

(
λ−1 0

µ λ

)
) = λ

This is onto C∗ (clearly by similar arguments as above), and it is indeed a homomorphism

(clearly from the multiplication law above). Its kernel is

kerΦ =

{(
λ−1 0

µ λ

)
, λ ∈ C∗, µ ∈ C : Φ(

(
λ−1 0

µ λ

)
) = 1

}

=

{(
λ−1 0

µ λ

)
: λ = 1, µ ∈ C

}

=

{(
1 0

µ 1

)
: µ ∈ C

}
= L2 (10.2)

Hence by the homomorphism theorem we would expect that K2/L2
∼= C∗, which is indeed true

by the construction above.



11. Automorphisms

Definition 11.1. An automorphism is an isomorphism of G onto itself.

Example 11.1. Let a ∈ G. Define φa : G→ G by φa(g) = aga−1: this is the conjugation of g

by a. Then φa is an automorphism:

� Homomorphism: φa(g1g2) = ag1g2a
−1 = ag1a

−1ag2a
−1 = φa(g1)φa(g2).

� Onto: given g ∈ G, there exists g′ ∈ G such that φa(g
′) = g: indeed, take g′ = a−1ga.

� kerφa = {e}: indeed if φa(g) = e then aga−1 = e then g = a−1ea = e.

Example 11.2. Consider G = Z2 × Z2, with Z2 = {e, a}, a2 = e. Define φ : G →
G by φ((g1, g2)) = (g2, g1). This is an nontrivial (i.e. different from identity map) auto-

morphism. Indeed: 1) it is bijective from G onto G (simple to see), 2) it is nontrivial:

φ((e, a)) = (a, e) 6= (e, a), 3) it is a homomorphism: φ(g)φ(g′) = φ((g1, g2))φ((g′1, g
′
2)) =

(g2, g1)(g′2, g
′
1) = (g2g

′
2, g1g

′
1) = φ((g1g

′
1, g2g

′
2)) = φ(gg′). But there is no g ∈ Z2 × Z2 such that

φ = φg (that is, such that φ is a conjugation by g). Indeed, conjugation by g = (g1, g2) gives

φg((e, a)) = (g1, g2)(e, a)(g−1
1 , g−1

2 ) = (e, g2ag
−1
2 ) 6= (a, e) for any g2.

Definition 11.2. For every element a ∈ G, define the map φa : G→ G by φa(g) = aga−1 ∀ g ∈
G. An inner automorphism is an automorphism φ such that φ = φa for some a ∈ G. If φ is

not inner, it is called outer. The set of inner automorphisms of a group G is denoted Inn(G);

in symbol, it is simply Inn(G) = {φa : a ∈ G}.

Definition 11.3. The set of all automorphisms of a group G is denoted Aut(G).

Observe that if G is abelian, then every inner automorphism is the identity map.

Theorem 11.1. The set of all autmomorphisms Aut(G) is a group under composition. The

subset Inn(G) is a normal subgroup.

41
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Proof. Recall that we have shown in Theorem 3.1 that the set of bijective maps from G to

itself is a group, under composition of maps. We need to check that the subset Aut(G) is a

subgroup.

� Closure: Let φ1, φ2 ∈ Aut(G). Then φ1◦φ2 is bijective. Also (φ1◦φ2)(gg′) = φ1(φ2(gg′)) =

φ1(φ2(g)φ2(g′)) = φ1(φ2(g))φ1(φ2(g′)) = (φ1 ◦ φ2)(g)(φ1 ◦ φ2)(g′) so the composed map is

a homomorphism. Hence it is an automorphism.

� Associativity: derived from the associativity of the group of bijective maps.

� Identity: The identity map is obviously a homomorphism and bijective.

� Inverses: Let φ ∈ Aut(G). For g′1, g
′
2 ∈ G, let g1 and g2 be such that φ(g1) = g′1 and

φ(g2) = g′2 (they exist and are unique by bijectivity). Then, φ−1(g′1g
′
2) = φ−1(φ(g1)φ(g2)) =

φ−1(φ(g1g2)) = g1g2 = φ−1(g′1)φ−1(g′2) so that indeed φ−1 is homomorphism (hence, again,

automorphism).

Second, the subset of inner automorphisms is a subgroup of Aut(G).

� Closure: φa ◦ φb = φab: for all g ∈ G, we have φa(φb(g)) = abgb−1a−1 = (ab)g(ab)−1.

� Associativity: derived from the associativity of the group of bijective maps.

� Identity: φe is the identity map in Inn(G).

� Inverses: The inverse of φa is φa−1 .

Now we prove that the subgroup of inner automorphisms is normal. Let φ be any auto-

morphism. Then we show that φ ◦ φa ◦ φ−1 = φφ(a), so it is indeed an inner automorphism.

This is shown as follows: φ ◦ φa ◦ φ−1(g) = φ(φa(φ
−1(g))) = φ(aφ−1(g)a−1) = φ(a)gφ(a−1) =

φ(a)gφ(a)−1 = φφ(a)(g) for all g ∈ G.

Comment(s). (On notation and automorphisms.)

1. Be careful of the meaning of where we put the −1 in the exponent: in φ(g−1) = φ(g)−1,

on the r.h.s. we take the inverse of the element φ(g). But in φa−1(g) = φ−1
a (g), on the

r.h.s. we take the inverse φ−1 of the map φ, and then apply it to g.

2. Note the important formulae:

φ ◦ φa ◦ φ−1 = φφ(a), φa ◦ φb = φab. (11.1)

Theorem 11.2. Let G be a group. Then G/Z(G) ∼= Inn(G).
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Proof. We only have to realise that the map ψ : G → Aut(G) given by ψ(g) = φg is a

homomorphism. This holds because ψ(g1g2) = φg1g2 = φg1 ◦ φg2 = ψ(g1)ψ(g2). Hence, we can

use the homomorphism theorem, G/kerψ ∼= Imψ. Clearly, by definition, Imψ = Inn(G). Let

us calculate the kernel. We look for all g ∈ G such that ψ(g) = id. That is, all g such that

φg(h) = h ∀ h ∈ G. This is the set {g ∈ G : ghg−1 = h ∀ h ∈ G} = {g ∈ G : gh = hg ∀ h ∈
G} = Z(G), so that indeed kerψ = Z(G).



12. Matrix groups

12.1 Basics of matrices

Definition 12.1. The set of all N ×N matrices with elements in R and C are denoted MN(R)

and MN(C) respectively.

Comment(s). (On matrices.)

1. We may multiply matrices in MN(R) by elements of R to find a new matrix in MN(R),

for λ ∈ R and A ∈ MN(R) then λA ∈ MN(R). We can similarly multiply matrices in

MN(C) by elements of C to find another element of MN(C).

2. We can combine matrices A and B to find another matrix by

(i) addition: A+B = C where in components Cij = Aij +Bij and

(ii) matrix multiplication: AB = C where, in components, Cij =
∑N

k=1AikBkj.

3. Under matrix addition the identity element is the matrix of zeroes.

4. Under matrix multiplication the identity element is the identity matrix I, where Iij = δij.

5. Given any matrix A, we may

(i) Take its complex conjugate Ā : (Ā)jk = Ajk,

(ii) Take its transpose AT : (AT )jk = Akj

(iii) Take its adjoint A† = ĀT = AT .

Definition 12.2. A matrix A is invertible if there exists a matrix A−1 such that AA−1 =

A−1A = I.

Definition 12.3. A matrix A is

44
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� self-adjoint if A† = A

� symmetric if AT = A

� unitary if A† = A−1

� diagonal if Ajk = 0 for all j 6= k

Definition 12.4. The trace of a matrix is Tr(A) =
∑N

j=1Ajj.

Exercise 12.1. Let Ai be a set of matrices in MN(R). Prove that

Tr(A1A2 · · ·Ak) = Tr(AkA1 · · ·Ak−1)

Tr(I) = N.

Definition 12.5. The Levi-Civita symbol, denoted εi1i2i3···iN , is completely antisymmetric, mean-

ing that its value changes sign when any two neighbouring indices are interchanged, e.g. εi1i2i3···iN =

−εi2i1i3···iN . It is normalised such that ε123···N = 1.

Comment(s). (On the Levi-Civita symbol.)

1. In two dimensions (N=2), the Levi-Civita symbol has four components: ε12 = 1, ε21 = −1,

ε11 = ε22 = 0. Note that ε11 = −ε11 = 0 and similarly for ε22.

2. In three dimensions (N=3), the Levi-Civita symbol has six non-zero components ε123 =

ε231 = ε312 = 1, ε213 = ε132 = ε321 = −1.

3. In three dimensions the Levi-Civita symbol is useful for encoding the vector cross product

in components, e.g. if xxx× yyy = zzz then zi =
∑N

j,k=1 εijkxjyk.

4. The N-dimensional derivative is expressed in terms of the Levi-Civita symbol, as defined

below.

Definition 12.6. The determinant of a matrix is det(A) =
∑N

j1=1 · · ·
∑N

jN=1 εj1···jNA1j1 · · ·ANjN .

Comment(s). (On the determinant.)

1. For N = 2, we have det(A) =
∑2

j1=1

∑2
j2=1 εj1j2A1j1A2j2 = A11A22 − A12A21.

2. det(I) = 1.

3. det(AB) = det(A) det(B) (hence, in particular, if A−1 exists, then det(A−1) = 1/ det(A)).

4. det(A) 6= 0 if and only if A is invertible.
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5. det(Ā) = det(A).

6. det(AT ) = det(A).

7. det(λA) = λN det(A) (for A a N by N matrix).

8. If A is diagonal then det(A) =
∏N

j=1 Ajj (for A a N by N matrix).

Exercise 12.2. Prove that det(SAS−1) = det(A).

Exercise 12.3. Prove that Tr(SAS−1) = Tr(A).

12.2 The Classical Groups as Matrix Groups

These are groups where the group elements are matrices, and the multiplication law is matrix

multiplication.

12.2.1 The General Linear Group

GL(N,C) = {A ∈MN(C) : det(A) 6= 0}

The group axioms are satisfied:

� Closure: det(AB) = det(A) det(B) 6= 0 if det(A) 6= 0 and det(B) 6= 0.

� Associativity: matrix multiplication is associative.

� Identity: I ∈ GL(N,C) because det(I) = 1 6= 0.

� Inverses: for every A ∈ GL(N,C), A−1 exists as a matrix because det(A) 6= 0, and

det(A−1) = 1/ det(A) 6= 0 so that also A−1 ∈ GL(N,C).

Likewise,

GL(N,R) = {A ∈MN(R) : det(A) 6= 0}

and clearly GL(N,R) is a subgroup of GL(N,C).

Theorem 12.1. det : GL(N,C) → C∗ is a homomorphism onto C∗ := C \ {0}. Also, det :

GL(N,R)→ R∗ := R \ {0} is a homomorphism onto R∗.

Proof. The determinant is onto C∗ as for any λ ∈ C∗ we can always find a matrix A such that

det(A) = λ: just take A ∈ GL(N,C) with matrix entries A11 = λ and Ajj = 1 for j > 1 and

Ajk = 0 for j 6= k. It is a homomorphism because det(AB) = det(A) det(B). The proof for

det : GL(N,R)→ R∗ := R \ {0} is identical to the above with the replacement of C by R.
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12.2.2 The Special Linear Group

SL(N,C) = {A ∈MN(C) : det(A) = 1}

We will focus on SL(N,C) here but similar statements hold for SL(N,R).

Theorem 12.2. SL(N,C) is a normal subgroup of GL(N,C).

Proof. By definition we have SL(N,C) = ker det, where by det we mean the map det :

GL(N,C) → C∗. Hence, SL(N,C) is a normal subgroup of GL(N,C) (so in particular it

is a group.)

Theorem 12.3. GL(N,C)/SL(N,C) ∼= C∗.

Proof. Again consider the homomorphism det : GL(N,C)→ C∗, whose kernel is SL(N,C) and

which is onto C∗. By the homomorphism theorem the present theorem immediately follows.

The equivalent statement over the real numbers is GL(N,R)/SL(N,R) ∼= R∗ and is proved

in an identical way.

We can make statements about the centres of the general linear and the special linear groups.

Theorem 12.4. We have Z(GL(N,C)) ∼= C∗ and Z(GL(N,R)) ∼= R∗.

Proof. Let A ∈ Z(GL(N,C)) be such that AB = BA for all B ∈ GL(N,C). That is,∑
k

AikBkj =
∑
k

BikAkj.

Since this holds for all B, choose B diagonal with diagonal entries all different from each other.

There certainly exists such a B in GL(N,C). Then we have

AijBjj = BiiAij ⇒ (Bii −Bjj)Aij = 0

hence Aij = 0 for i 6= j. Hence, we find that A must be diagonal. Further consider another

matrix for B, now take

B =


0 1 0 · · · 0

−1 0 0 0

0 0 1 0
...

. . .

0 0 0 · · · 1

 (12.1)

This is in GL(N,C) because det(B) = 1. The equation with i = 1 and j = 2 then gives us

A11B12 = B12A22 hence A11 = A22. By choosing other matrices B where the 2× 2 sub-matrix
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0 1

−1 0

)
is at different positions along the diagonal, we conclude Ajj = Aj+1,j+1 for all j,

so that Ajj = A11 for all j. Hence A = λI for some λ ∈ C. Since A ∈ GL(N,C), we must

have det(A) 6= 0 hence λN 6= 0 hence λ 6= 0, i.e. λ ∈ C∗. The group of all diagonal matrices

{λI : λ ∈ C∗} is obviously isomorphic to C∗.
A similar proof holds for the real case.

Theorem 12.5. Z(SL(N,C)) ∼= ZN . Also Z(SL(N,R)) ∼= Z2 if N is even, and Z(SL(N,R)) ∼=
{1} if N is odd.

Proof. The first part of the proof for GL(N,C) above goes through in the present case, all the

way up to showing that the centres must be matrices proportional to the identity I, of the

form {λI : λ ∈ C∗}. However for SL(N,C) we require det(A) = λN = 1, which implies that λ

must be an N ’th root of unity which are isomorphic to ZN (as seen in the examples in chapter

2). Hence we have Z(SL(N,C)) ∼= ZN . For SL(N,R), we find that A ∈ Z(SL(N,R)) implies

that A = λI with λ ∈ R∗, which implies that detA = λN = 1, hence if N is even we have

λ ∈ {1,−1} ∼= Z2 and if N is odd we have λ = 1, i.e.

Z(SL(N,R)) ∼=

Z2 if N is even

{1} if N is odd.

12.2.3 The Unitary Group

U(N) = {A ∈MN(C) : A† = A−1}

Observe that the condition A† = A−1 automatically implies that A−1 exists, because of course

A† exists for any matrix A; hence it implies that det(A) 6= 0. The condition can also be written

A†A = AA† = I.

� Closure: if A1, A2 ∈ U(N) then (A1A2)† = A†2A
†
1 = A−1

2 A−1
1 = (A1A2)−1 hence A1A2 ∈

U(N).

� Associativity: matrix multiplication is associative.

� Identity: I† = I = I−1 hence I ∈ U(N).

� Inverses: if A† = A−1 then (A−1)† = (A†)† = A = (A−1)−1, hence that A−1 ∈ U(N).
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Hence U(N) is a group.

In the particular case N = 1 then

U(1) = {z ∈ C : zz̄ = 1}.

Writing z = eiθ we see that the condition zz̄ = 1 implies θ ∈ R; we may restrict to θ ∈ [0, 2π).

Hence U(1) is isomorphic to the group of addition on R modulo 2π.

Exercise 12.4. Construct an isomorphism from U(1) to R equipped with addition modulo 2π.

Theorem 12.6. The map det : U(N)→ U(1) is onto and is a group homomorphism.

Proof. Onto: for z ∈ C with |z| = 1, we can construct the diagonal matrix A ∈ U(N) with

A11 = z, Ajj = 1 for j > 1 and all other entries zero. We observe that A ∈ U(N). Homomor-

phism: due to the properties of the determinant i.e. det(AB) = detA detB.

12.2.4 The Special Unitary Group

SU(N) = {A ∈ U(N) : det(A) = 1}

As SU(N) = ker det, where det : U(N) → U(1), it is a normal subgroup of U(N). By the

homomorphism theorem (with φ = det we have:

U(N)/SU(N) ∼= U(1).

12.2.5 The Orthogonal Group

O(N) = {A ∈MN(R) : AT = A−1}

� Closure: if A,B ∈ O(N) then (AB)T = BTAT = B−1A−1 = (AB)−1 hence AB ∈ O(N).

� Associativity: matrix multiplication is associative.

� Identity: IT = I = I−1 hence I ∈ O(N).

� Inverses: if AT = A−1 then (A−1)T = (AT )T = A, so A−1 ∈ O(N).

This is the group of orthogonal matrices. Observe that O(N) consists of real matrices and is a

subgroup of U(N). Also, observe that if A ∈ O(N) then ATA = I so that det(A)2 = 1. Hence
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det(A) = ±1 ∼= Z2. In fact, there are A ∈ O(N) with det(A) = 1 (take A = I) and with

det(A) = −1 (take

A =


0 1 0 · · · 0

1 0 0 0

0 0 1 0
...

. . .

0 0 0 · · · 1


which satisfies ATA = I). Hence, det : O(N)→ Z2 is a homomorphism onto Z2.

12.2.6 The Special Orthogonal Group

SO(N) = {A ∈ O(N) : det(A) = 1}

As before SO(N) = ker det for det : O(N)→ Z2, hence SO(N) is a normal subgroup of O(N).

Hence by the homomorphism theorem we have

O(N)/SO(N) ∼= Z2.

Theorem 12.7. If N is odd, O(N) ∼= Z2 × SO(N).

Proof. Let us construct an isomorphism φ that does the job:

φ : O(N)→ Z2 × SO(N) given by φ(A) =

(
det(A),

A

det(A)

)
for A ∈ O(N). We have to show that this is well-defined (i.e. that φ maps into the specified

space - we must do this because it is not immediately obvious a priori), and then that it is

indeed an isomorphism.

First: that it maps into Z2 × SO(N) is shown as follows. 1) Clearly det(A) ∈ Z2 by the

discussion above. 2) Also (A/ det(A))T = AT/ det(A) = A−1/ det(A) and (A/ det(A))−1 =

A−1 det(A) = A−1/ det(A) where in the last step we used det(A)2 = 1. Hence these are equal,

so that A/ det(A) ∈ O(N). 3) Further, det(A/ det(A)) = det(A)/ det(A)N = det(A)1−N =

(±1)1−N . If N is odd, then N − 1 is even, so (±1)1−N = 1. Hence indeed det(A/ det(A)) = 1

so A/ det(A) ∈ SO(N).
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Second: that it is a homomorphism:

φ(AB) =

(
det(AB),

AB

det(AB)

)
=

(
det(A) det(B),

A

det(A)

B

det(B)

)
=

(
det(A),

A

det(A)

)(
det(B),

B

det(B)

)
= φ(A)φ(B)

Third: that it is bijective. Injectivity: if φ(A1) = φ(A2) then det(A1) = det(A2) and

A1/ det(A1) = A2/ det(A2), hence combining these, A1 = A2, so indeed it is injective. Sur-

jectivity: take a ∈ Z2
∼= {−1, 1} and B ∈ SO(N). We can always find a matrix A ∈ O(N)

such that φ(A) = (a,B). Indeed, just take A = aB. This is indeed in O(N): we have

AT = (aB)T = aBT and A−1 = (aB)−1 = a−1B−1 = aBT , so both are equal (we used a−1 = a

for a ∈ Z2 and B−1 = BT for B ∈ SO(N)). Also A has determinant det(A) = det(aB) =

aN det(B) = a det(B) (since N is odd and a = ±1), so that det(A) = a (since B ∈ SO(N)).

Hence, φ(A) = (a,A/a) = (a,B), which shows surjectivity.

The proof above only works for odd N , for even N we will need to develop the semi-direct

product, which we will do in the following chapter of this course.

Each matrix group has infinite order (due to the matrix entries being real or complex

numbers), so instead of order it is useful to consider the number of real parameters needed to

specify a general matrix in each matrix group. This is the real dimension of the matrix group.

The (real) dimensions for some of the matrix groups we have met are

� GL(N,R): N2 dimensions.

� SL(N,R): N2 − 1 dimensions due to the one condition det(A) = 1.

� SO(N): N(N − 1)/2 dimensions. Indeed: there are N ×N real matrices so there are N2

parameters. There is the condition ATA = I. This is a condition on the matrix ATA,

which contains N2 elements. But this matrix is symmetric no matter what A is, because

(ATA)T = ATA. Hence, the constraint ATA = I in fact has 1 + 2 + ... + N constraints

only (looking at the top row with N elements, then the second row with N − 1 elements,

etc.). That is, N(N + 1)/2 constraints. These are independent constraints. Hence, the

dimension is N2 −N(N + 1)/2 = N(N − 1)/2.



CHAPTER 12. MATRIX GROUPS 52

The classical matrix groups are examples of Lie groups which are manifolds1 equipped with a

group structure. Lie groups are characterised by having a continuum of elements (rather than

the discrete elements we see in the case of finite groups) which can be labelled by a continuous

parameter. It is interesting to investigate the structure of the underlying shape (manifold) to

which each point in the space is associated an element of the matrix group. One of the simplest

examples to study is SO(2).

1For the purposes of this course, a manifold is a geometric object which locally is equivalent to Euclidean

space (and satisfies several technical properties which we do not state here). S2 is an example of a manifold: a

local coordinate chart is like the coordinates on a page in an atlas and there exist smooth maps between pages

in the atlas which tell the reader how to reconnect the pages of the atlas to cover S2. The manifold is the

fundamental object in the study of differential geometry.



13. The Structure of Some Matrix Groups

13.1 SO(2)

Let us explicitly construct the matrix group SO(2):

A =

(
a b

c d

)
, ATA = I, det(A) = 1.

Now

ATA = I ⇒ a2 + c2 = 1, b2 + d2 = 1, ab+ cd = 0

while

AAT = I ⇒ a2 + b2 = 1, c2 + d2 = 1, ac+ bd = 0.

The conditions imply, without loss of generality, that

a = ± cos θ = d, and c = ± sin θ = b.

The remaining conditions to be satisfied are ac = −bd and ab = −cd. Together with the

condition that detA = 1, i.e. ad − bc = 1 leads to the consistent choice of signs given by

a = d = cos θ and c = −b = sin θ, giving

A = A(θ) :=

(
cos θ − sin θ

sin θ cos θ

)
, θ ∈ [0, 2π).

Note that is of real dimension 1 as there is one real parameter θ needed to specify any matrix

A(θ) ∈ SO(2).

Explicit multiplication of matrices gives

A(θ)A(θ′) = A(θ + θ′), A(θ)−1 = A(−θ)

In particular, SO(2) is abelian.

53
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The group SO(2) is isomorphic with the circle S1, as it is parameterised by θ ∈ S1. Every

point on S1 corresponds to a unique group element θ 7→ A(θ), the group SO(2) is covered

in this way. N.B. Geometrically, the structure of SO(2) is indeed S1 rather than the interval

[0, 2π) because of periodicity, i.e. continuity from the endpoint 2π back to the starting point 0.

The matrices of SO(2) are the rotation matrices acting on the plane R2 and rotating it

about the origin as

v′ = Av, A ∈ SO(2), v =

(
x

y

)
, (x, y) ∈ R2.

This gives

x′ = x cos θ − y sin θ, y′ = x sin θ + y cos θ

We can also represent rotations of the plane about the origin by multiplications of eiθ on

the complex plane. Hence φ(A(θ)) = eiθ gives an isomorphism SO(2) ∼= U(1).

13.2 SU(2) and the Pauli Matrices

Let A ∈ SU(2) hence A† = A−1 and detA = 1. By applying these defining relations of a matrix

in SU(2) to

A =

(
α β

γ δ

)
we have from A† = A−1 i.e.(

α∗ γ∗

β∗ δ∗

)
=

1

αδ − βγ

(
δ −β
−γ α

)
.

Now det(A) = αδ − βγ = 1 hence we find that α∗ = δ and γ∗ = −β. Therefore any matrix

A ∈ SU(2) takes the form

A =

(
α β

−β∗ α∗

)
with |α|2 + |β|2 = 1.

Writing the complex numbers in terms of their real components with α = a + ibz and
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β = by + ibx we have

A =

(
a+ ibz by + ibx

−by + ibx a− ibz

)

= a

(
1 0

0 1

)
+ ibz

(
1 0

0 −1

)
+ iby

(
0 −i
i 0

)
+ ibx

(
0 1

1 0

)
≡ aI + ibxσx + ibyσy + ibzσz

= aI + ibbb · σσσ with a2 + b2
x + b2

y + b2
z = 1.

where we understand σσσ as a vector of matrices, with components

σx ≡

(
0 1

1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0

0 −1

)
.

so that bbb · σσσ = bxσx + byσy + bzσz. The matrices σx, σy and σz are called the Pauli matrices.

Comment(s). On the Pauli matrices...

1. Tr(σi) = 0.

2. σi = σ†i .

3. The Pauli matrices form a basis for the traceless 2 × 2, unitary (MM † = I), Hermitian

(M = M †) matrices. Note that a matrix M being both unitary and Hermitian implies

that M = M−1.

4. σ2
i = I.

5. σiσj = −σjσi for i 6= j.

6. σxσy = iσz, σyσz = iσx and σzσx = iσy. By writing σ1 ≡ σx, σ2 ≡ σy and σ3 ≡ σz we can

write these relations in a compact form as σiσj = i
∑

k εijkσk where εijk is the Levi-Civita

symbol, which is completely antisymmetric in its indices and normalised with ε123 = 1.

7. [σi, σj] = σiσj − σjσi = 2σiσj = 2i
∑

k εijkσk where σ1 ≡ σx, σ2 ≡ σy and σ3 ≡ σz.

These properties point to a nice analogy with the complex numbers. Note that as (iσi)
2 =

−I then iσx, iσy and iσz each act like a matrix version of an imaginary number. Unlike the

complex numbers where there is only one basis imaginary number i =
√
−1, here we have

three distinct matrix imaginary numbers. In fact these matrices give a natural extension of the

complex numbers to the quaternions.
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Definition 13.1. The division algebra H of quaternions is the non-commutative algebra of all

real linear combinations z = a + bz ı̂ + by ̂ + bxk̂ (a, bx, by, bz ∈ R), with the relations ı̂2 = ̂2 =

k̂2 = −1 and ı̂̂ = −̂̂ı = k̂ and cyclic permutations.

To compare with our matrix representation of the imaginary quaternions we write ı̂ = iσz,

̂ = iσy, k̂ = iσx. We pick this choice of association so that ı̂̂k̂ = (iσz)(iσy)(iσx) = (iσz)(iσz) =

−I2, an alternative defining relation for the quaternions, together with ı̂2 = ̂2 = k̂2 = −I. One

can show that this algebra is associative.

One defines the quaternion conjugate by

z̄ = a− bz ı̂− by ̂− bxk̂

and from the point of view of the two by two matrices this is z̄ = z† and, further, we have

zz̄ = z̄z = a2 + |bbb|2 ≥ 0, with equality iff z = 0. Hence we can define |z| =
√
zz̄ and also

z−1 = z̄/|z|2, as for the complex numbers. An important identity is |z1z2| = |z1| |z2| for any

z1, z2 ∈ H, which follows from |z1z2|2 = z1z2z̄2z̄1 = z2z̄2z1z̄1 where we used the fact that

z2z̄2 ∈ R ⊂ H hence commutes with everything. Any quaternion z has a unique inverse,

except for 0. This is what makes the quaternions a division algebra: we have addition and

multiplication (of H\{0}), with unique inverses and identity elements (0 is the additive identity

and 1 is the multiplicative identity). Note that there are no other associative division algebras

apart from R, C and H. There is another division algebra, the octonions, but it is not associative

(the octonians have 7 imaginary numbers).

In terms of quaternions, the above description of SU(2) is:

SU(2) = {z ∈ H : |z| = 1}.

Note the similarity with

U(1) = {z ∈ C : |z| = 1}

In both cases we have a group partly because in both cases |z1z2| = |z1| |z2|, so the condition

|z| = 1 is preserved under multiplication.

Geometrically the condition |z| = 1 for quaternions is the condition for a 3-sphere in R4.

This is the manifold of SU(2) i.e.

det

(
α β

−β∗ α∗

)
= |α|2 + |β|2 = a2 + b2

x + b2
y + b2

z = 1

which is the condition for a point (a, bx, by, bz) in R4 to lie on a three sphere S3.
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13.3 Invariant Inner Products: O(N) and U(N)

In this section the groups O(N) and U(N) will be understood as symmetry groups of an inner

product on a complex vector space.

13.3.1 The Inner Product

Let V be a finite-dimensional vector space over C. A map V ×V → C, xxx,yyy 7→ (xxx,yyy) is an inner

product if it has the properties:

(xxx,yyy)∗ = (yyy,xxx), (xxx, ayyy + bzzz) = a(xxx,yyy) + b(xxx,zzz), (xxx,xxx) ≥ 0, (xxx,xxx) = 0⇒ xxx = 0

(z∗ = z̄ is the complex conjugate). The existence of the inner product on V is sufficient for V

to be a Hilbert space. Note that the first and second property imply

(ayyy + bzzz,xxx) = a∗(yyy,xxx) + b∗(zzz,xxx).

This along with the second property is called sesquilinearity (a generalisation of bilinearity1).

The restriction over the real-vector space (real restriction: CN becomes RN ; “same” basis, but

only consider real coefficients) then gives

(xxx,yyy) = (yyy,xxx), (ayyy + bzzz,xxx) = a(yyy,xxx) + b(zzz,xxx).

This restriction is bilinear and symmetric. The only example we will use is:

(xxx,yyy) =
∑
i

x∗i yi.

In particular, using matrix and column vector notation, this is

(xxx,yyy) = xxx†yyy.

This implies that if A is a linear operator, then

(xxx,Ayyy) = (A†xxx,yyy).

The norm of a vector is defined by

||xxx|| =
√

(xxx,xxx)

(positive square-root). Note that on a Euclidean vector space it is commonplace to use |xxx|
to denote the length of a vector (the absolute value norm), while on a general vector space

equipped with an inner product the notation ||xxx|| is used, consequently it is not uncommon to

see only |xxx| used when there is an underlying Euclidean inner product in a vector space.

1If we were to restrict V to be a real vector space so that a, b ∈ R then as a∗ = a, b∗ = b we would have a

bilinear symmetric inner product from the conditions listed above.
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13.3.2 O(N) and U(N) preserve vector length

Theorem 13.1. A real, linear transformation A of RN is such that ||Axxx|| = ||xxx|| for all xxx ∈ RN

iff A ∈ O(N).

Proof. First direction: If A ∈ O(N), then AT = A−1 so that

||Axxx||2 = (Axxx,Axxx)

= (Axxx)TAxxx

= xxxTATAxxx

= xxxTxxx

= ||xxx||2 (13.1)

where in the second step we use reality, so that † =T .

Second direction: If ||Axxx|| = ||xxx||, then

||Axxx||2 =
∑
i

(
∑
j

Aijxj)
†)(
∑
k

Aikxk))

=
∑
i,j,k

xTj (Aij)
TAikxk

= ||xxx||2

in the last line we have used the assumption that ||Axxx|| = ||xxx||. In component notation

||xxx||2 =
∑
j

xTj xj =
∑
j,k

xTj δjkxk.

So we have ∑
i,j,k

xTj (Aij)
TAikxk =

∑
j,k

xTj δjkxk

and for this to hold for all xxx ∈ RN we must have∑
i

(Aij)
TAik = δjk

which in matrix notation is

ATA = I

which implies that A ∈ O(N).

Theorem 13.2. If xxx ∈ CN is an eigenvector of A ∈ O(N) with eigenvalue λ, then |λ| = 1.
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Proof. Axxx = λxxx with xxx 6= 0, hence (Axxx,Axxx) = (λxxx, λxxx) hence (xxx,xxx) = |λ|2(xxx,xxx) hence |λ|2 = 1

since xxx 6= 0.

If a complex, linear transformation preserves the length of a vector in CN then the trans-

formation is an element of the unitary group U(N):

Theorem 13.3. A complex, linear transformation A on CN preserves the norm, ||Axxx|| = ||xxx||
for all xxx ∈ CN , iff A ∈ U(N).

Proof. We must prove this in both directions.

1. If A ∈ U(N) then ||Axxx||2 = (Axxx,Axxx) = xxx†A†Axxx = xxx†xxx = (xxx,xxx) = ||xxx||2 hence ||Axxx|| =

||xxx||.

2. Let A denote any complex, linear transformation which preserves the norm. Then

||AXXX|| = ||xxx|| implies that (Axxx,Axxx) = (A†Axxx,xxx) = (xxx,xxx) which implies that A†A = I

hence A ∈ U(N).

13.4 SO(3)

Theorem 13.4. If A ∈ SO(3) then there exists a vector nnn ∈ R3 such that Annn = nnn.

Proof. Consider P (λ) = det(A − λI). We know that P (0) = 1 because A ∈ SO(3). Also,

P (λ) = −λ3 + . . .+ 1 because the only order-3 term in the determinant is from the −λI part.

Hence, P (λ) = −(λ− λ1)(λ− λ2)(λ− λ3) for some λ1,2,3 with λ1λ2λ3 = 1. Our aim is to show

that at least one of these eigenvalues must equal one. There are two possibilities:

1. If one of these eigenvalues, say λ1, is complex then as Theorem 13.2 holds (A ∈ SO(N) ⊂
O(N) then |λ1| = 1 so λ1 = eiα for α ∈ (0, 2π) − {π} (this set excludes λ1 = −1 as

λ1 is not real by assumption). If xxx is the associated eigenvector, it cannot be real and

Axxx = eiαxxx hence A∗xxx∗ = e−iαxxx∗ so that xxx∗ is a new eigenvector with a different eigenvalue,

say λ2 = e−iα. But since λ1λ2λ3 = 1, it must be that λ3 = 1.

2. If all λi are real, then λi = ±1. Since λ1λ2λ3 = 1, the option where all three are −1 is

ruled out, hence at least one is 1.

Finally we show that if xxx is the eigenvector with eigenvalue one (which may not be a real

eigenvector) then there exists a real eigenvector nnn with eigenvalue one. Given Axxx = xxx with
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xxx ∈ C3 such that xxx 6= xxx∗ then Axxx∗ = xxx∗ and so xxx∗ is another eigenvector with eigenvalue one.

We have λ1 = 1, λ2 = 1 then as λ1λ2λ3 = 1 so λ3 = 1 too). Hence all three eigenvectors have

eigenvalue one. Now A(xxx + xxx∗) = xxx + xxx∗ so nnn = xxx + xxx∗ is a real eigenvector with eigenvalue

one.

We may normalise to ||nnn|| = 1. Suppose nnn = ê̂êex (unit vector in x direction). Then Aê̂êex = ê̂êex

implies

A =

 1 ∗ ∗
0 ∗ ∗
0 ∗ ∗


Further, ATA = I implies

A =

 1 0 0

0 ∗ ∗
0 ∗ ∗


The 2 by 2 matrix in the bottom-right, which we denote a, has the property

aTa = I, det(a) = 1

hence it is an SO(2) matrix. Hence,

A =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 . (13.2)

That is, A is a rotation by θ around the x axis. In general, A will be a rotation about the

axis spanned by nnn, i.e. the axis {cnnn : c ∈ R}, if Annn = nnn. Hence, an SO(3) matrix is always

a rotation with respect to a certain axis. But also, any rotation is in SO(3). Clearly, if A

is a rotation, then (Axxx,Axxx) = (xxx,xxx) for any xxx ∈ R3, so A ∈ O(3). Also, if A is a rotation

with respect to an axis spanned by nnn, then Annn = nnn, and further in a right-handed orthonormal

basis that where nnn = ê̂êex, a rotation A always has the form shown in equation (13.2). Hence

A ∈ SO(3). That is:

SO(3) = {all rotations about all possible axes in R3}.

Geometrically, given a vector xxx in R3 we may use it to define a right-handed rotation about

the axis spanned by xxx. If we suppose that the length of the vector is used to denote the angle

of rotation about the axis then we can represent all rotations in R3 by the set of vectors which

form the ball of radius 2π. That is, each point in the ball represents a vector from the origin

to that point - it has length |xxx| ∈ [0, 2π] and defines an axis parallel to xxx about which the
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rotation occurs. However because both xxx and −xxx span the same axis and have the same length

they represent similar rotations: the only difference is that one rotates clockwise about the axis

and the other counter-clockwise - due to the xxx and −xxx pointing in opposite directions (and

applying the right-hand-rule to determine the direction of rotation). With some thought you

can see that the rotation represented by the vector xxx of length θ is equivalent to the vector

pointing in the opposite direction and with length 2π − θ (think of rotations in the plane

to convince yourself of this). Hence we would be overcounting the number of rotations. To

remove the repeated rotations we reduce the radius of the ball from 2π to π and note that

points which lie on the surface of the ball and lie on same axis through the origin correspond

to the same rotation. Hence these points must be identified in this geometric picture of SO(3).

To summarise, the manifold of SO(3) is the ball of radius π in R3 with diametrically opposed

points being identified.

13.5 Relating SU(2) to SO(3)

Recall that if A ∈ SU(2) then

A =

(
α β

−β∗ α∗

)
with |α|2 + |β|2 = 1

for α, β ∈ C. Writing α = u + iv and β = x + iy for u, v, x, y ∈ R gives 1 = |α|2 + |β|2 =

u2 + v2 + x2 + y2. This is the equation for S3 ∈ R4 and each point (u, v, x, y) ∈ S3 encodes

a matrix A ∈ SU(2). To picture S3, imagine taking cross-sectional slices of S3 ∈ R4 (each

cross-section of R4 is R3 which is three-dimensional, so the cross-sectional slices of S3 will be

two-dimensional or sometimes one-dimensional surfaces in R3). A slice at the pole gives only a

point, to see this consider the pole with coordinates u = 1 then we have

v2 + x2 + y2 = 0 =⇒ v = x = y = 0

hence a single point with coordinates (u, v, x, y) = (1, 0, 0, 0). Now move along the sphere

decreasing u from u = 1 towards u = 0: when 0 < u < 1 we have

v2 + x2 + y2 = 1− u2 > 0

for fixed u = u0 with 0 < u0 < 1 we find a set of v, x and y coordinates which satisfy

v2 + x2 + y2 = 1− u0
2

i.e. (v, x, y) are points on a sphere, S2, of radius
√

1− u0
2 in R3. For each fixed value of the

coordinate 0 < u < 1 we find a sphere S2 of radius
√

1− u2 as u varies from u = 1 towards
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u = 0. For −1 < u < 0 we find a similar set of S2’s. If we nest all these spheres together

(corresponding to −1 < u < 0 and 0 < u < 1) we can construct two copies of the open ball

in R3. From the cross-sections when u = ±1 we find two points, corresponding to spheres of

radius zero which form the central point of each open ball. We have only one cross-section to

consider when u = 0 when we have

v2 + x2 + y2 = 1

which is a sphere of unit radius. Now we may split this sphere into two hemispheres and place

one on each of the two open balls, to give two copies of a structure we have met earlier in

these lectures. Recall that SO(3) geometrically has the structure of a ball of radius π with

diametrically-opposed points on the surface being identified. From the cross-sections of SU(2)

we constructed two copies of this structure underlying SO(3). We might reasonably wonder if

SU(2) is the double-cover of SO(3).

Theorem 13.5. SU(2)/Z2
∼= SO(3).

Proof. This proof is not complete, but the main ingredients are there: it is a sketch of the

full proof. The idea of the proof is to use the homomorphism theorem, with a homomorphism

ϕ : SU(2)→ SO(3) that is onto, such that kerϕ ∼= Z2.

Proposition 13.5.1. There exists a linear bijective map Θ : Σ→ R3 where Σ is the real, linear

space of self-adjoint, traceless two-by-two matrices.

Proof. (Of the proposition.) The Pauli matrices σi are a basis for Σ. A general two-by-two

matrix can be written in the form A = aI + bbb · σσσ for a, bx, by, bz ∈ C. The condition of

tracelessness imposes a = 0. The condition of self-adjointness imposes bbb∗ = bbb hence bbb ∈ R3.

Hence, the real-linear space Σ of self-adjoint traceless two-by-two matrices is the space of real

linear combinations A = bbb · σσσ. Consider the map Θ given by

Θ(bbb · σσσ) = bbb

it is evidently bijective but it is also linear as

Θ(cA) = Θ(cbbb · σσσ) = cbbb = cΘ(bbb · σσσ) = cΘ(A)

Θ(A+ A′) = Θ(bbb · σσσ + bbb′ · σσσ) = Θ((bbb+ bbb′) · σσσ) = bbb+ bbb′ = Θ(A) + Θ(A′).

Hence Θ is a linear map. This completes the proof of the proposition.

Armed with the proposition, we return to the outline of the proof of theorem 13.5.



CHAPTER 13. THE STRUCTURE OF SOME MATRIX GROUPS 63

Given any U ∈ SU(2), we can form a linear bijective map ΦU : Σ→ Σ as follows:

ΦU(A) = UAU †.

This maps into Σ because if A ∈ Σ, then 1) Tr(φU(A)) = Tr(UAU †) = Tr(U †UA) = Tr(A) = 0,

and 2) (UAU †)† = UA†U † = UAU †. Hence, ΦU(A) ∈ Σ. Moreover, it is bijective because 1)

injectivity: if UAU † = UA′U † then U †UAU †U = U †UA′U †U hence A = A′, and 2) surjectivity:

for any B ∈ Σ, we have that U †BU ∈ Σ (by the same arguments as above) and we have

ΦU(U †BU) = UU †BU †U = B so we have found a A = U †BU ∈ Σ that maps to B. Finally it

is evidently linear.

Together the maps θ : Σ → R3 and ΦU : Σ → Σ together induce a map on R3. We define

RU : R3 → R3 by

RU = Θ ◦ ΦU ◦Θ−1

for any U ∈ SU(2). By the properties of ΦU and of Θ derived above we have that RU is linear

and bijective.

We now want to show that RU ∈ SO(3).

1. From the properties of Pauli matrices, we know that det(bbb · σ) = −||bbb||2. Hence, we have

for any A ∈ Σ that det(A) = −||Θ(A)||2, or in other words det(Θ−1(bbb)) = −||bbb||2. Hence,

||RU(bbb)||2 = ||Θ(ΦU(Θ−1(bbb)))||2

= − det(ΦU(Θ−1(bbb)))

= − det(UΘ−1(bbb)U †)

= − det(Θ−1(bbb))

= ||bbb||2.

That is, RU is a real-linear map on R3 that preserves lengths of vectors. By the previous

theorems, it must be that RU ∈ O(3).

2. Further, the map g : SU(2) → R given by g(U) = det(RU) (where we see the linear

map RU as a 3 by 3 real orthogonal matrix). This is continuous as a function of the

matrix elements of U . Indeed, we can calculate any matrix element of RU by choosing

two basis vectors xxx and yyy in R3 and by computing xxx · RU(yyy). This is xxx · Θ(UΘ−1(yyy)U †).

The operation U 7→ U † and the operations of matrix multiplications are continuous in

the matrix elements, hence the map U 7→ UΘ−1(yyy)U † is, for any matrix element of the

resulting 2 by 2 matrix, continuous in the matrix elements of U . Since Θ is linear, it is

also continuous, and finally the dot-product operation is continuous. Hence, all matrix
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elements of RU are continuous functions of the matrix elements of U , so that det(RU) is

also a continuous function of the matrix elements of U . Moreover, we know that with

U = I, we find RU = I (the former: identity 2 by 2 matrix, the latter: identity 3 by

3 matrix). Hence, g(I) = 1. But since g(U) ∈ {1,−1} (because the determinant of an

O(3) matrix is ±1), it must be that g(U) = 1 for all U ∈ SU(2) that can be reached

by a continuous path from I (indeed, if γ : [0, 1] → SU(2) is such a continuous path,

γ(0) = I and γ(1) = U and γ(t) a continuous function of t, then g(γ(t)) is a continuous

function of t with g(γ(t)) ∈ {1,−1} and g(γ(0)) = 1; the only possibility is g(γ(1)) = 1 by

continuity). Since SU(2) is connected, then all U ∈ SU(2) can be reached by continuous

path from I, hence g(U) = 1 for all U ∈ SU(2), hence det(RU) = 1 for all U ∈ SU(2)

hence RU ∈ SO(3).

We have shown that RU ∈ SO(3). Hence, we have a map ϕ : SU(2)→ SO(3) given by

ϕ(U) = RU .

We now want to show that ϕ is a homomorphism. We have

Θ−1(RU1U2(bbb)) = ΦU1U2(Θ
−1(bbb)) = U1U2Θ−1(bbb)U †2U

†
1 = ΦU1(ΦU2(Θ

−1(bbb)))

hence

ϕ(U1U2) = RU1U2 = Θ◦Θ−1◦RU1U2 = Θ◦ΦU1◦ΦU2◦Θ−1 = Θ◦ΦU1◦Θ−1◦Θ◦ΦU2◦Θ−1 = RU1◦RU2

which is the homomorphism property.

Then, we would have to prove that ϕ is onto – this requires more precise calculation of what

ϕ is as function of the matrix elements of U . We will omit this step.

Finally, we can use the homomorphism theorem. We must calculate kerϕ. The identity in

O(3) is the identity matrix. We have ϕ(U) = I ∈ O(3) iff Θ(ΦU(Θ−1(bbb))) = bbb for all bbb ∈ R3,

which is true iff ΦU(bbb · σ) = bbb · σ for all bbb ∈ R3, which is true iff Ubbb · σU † = bbb · σ ⇔ Ubbb · σ =

bbb · σU ⇔ Uσi = σiU
† for i = 1, 2, 3. Since also UI = IU , we then have that ϕ(U) = I ∈ O(3)

iff U(aI + bbb · σ) = (aI + bbb · σ)U for all a, bx, by, bz ∈ C. Hence, iff UA = AU for all A ∈M2(C).

This only holds if U = cI for some c ∈ C. Since we must have U ∈ SU(2), then |c|2 = 1 and

det(U) = c2 = 1 so that c = ±1. Hence, kerϕ = {I,−I} ⊂ SU(2). Clearly, {I,−I} ∼= Z2.

This completes the sketch proof of the theorem.



14. The Semi-Direct Product

The semi-direct product is a generalisation of the direct product. Take two groups G and

H and consider the Cartesian product of these sets G × H = {(g, h) : g ∈ G, h ∈ H}.
This new set can be given the structure of a group simply by taking the multiplication law

(g, h)(g′, h′) = (gg′, hh′). But there is another way of defining a multiplication law on the same

set, leading to a (generically) different group structure.

Let’s recall some properties of the direct product J = G×H:

� Its elements are the Cartesian product of elements of G and H, i.e. (g, h) ∈ G × H for

g ∈ G and h ∈ H.

� The subset (G, e) = {(g, e) : ∀g ∈ G} is isomorphic to G, under the isomorphism

φ((g, e)) = g, and the subset (e,H) = {(e, h) : ∀h ∈ H} is isomorphic to H.

� G ∼= (G, e) is a normal subgroup of J = G×H as

(g′, h′)(g, e)((g′)−1, (h′)−1) = (g′g(g′)−1, e) ∈ (G, e).

Similarly H ∼= (e,H) is a normal subgroup of J . Both G and H are normal subgroups of

J .

� (g, e)(e, h) = (ge, eh) = (e, h)(g, e) i.e. (G, e)(e,H) = (e,H)(G, e) which is equivalent to

the statement GH = HG as sets. Expressing J = GH is called the inner direct product

while the method we have adopted of using the Cartesian product to express elements of

J is also known as the exterior direct product.

� Note that (G, e) ∩ (e,H) = (e, e), the identity element in J = G×H i.e. G ∩H = {e}.

65
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Example 14.1. � Z2×Z3. Consider Z2 with generating element a and Z3 with generating

element b, then

Z2 × Z3 = {(e, e) ≡ E, (a, e) ≡ A, (e, b) ≡ B, (a, b) ≡ AB, (e, b2) ≡ B2, (a, b2) ≡ AB2}.

Now as elements of the direct-product group we have

Z2 = {E,A} and Z3 = {E,B,B2}

so that the product of Z2 and Z3 as sets is

Z2Z3 = {EE,EB,EB2, AE,AB,AB2} = {E,B,B2, A,AB,AB2} = Z2 × Z3.

Further because of the normality of the subgroups Z2 and Z3 we have Z2 × Z3 = Z2Z3 =

Z3Z2.

� The direct product and quotient groups: For J = G × H consider the map φ : J →
H given by φ((g, h)) = h. It is a homomorphism as φ((g1, h1))φ((g2, h2)) = h1h2 and

φ((g1, h1)(g2, h2)) = φ((g1g2, h1h2)) = h1h2, so φ is a homomorphism. As ker(φ) =

(G, e) ∼= G then by the homomorphism theorem we have

J

kerφ
∼=
G×H
G

∼= H.

Via a similar homomorphism ψ : J → G as ψ((g, h)) = g we can also show that

G×H
H

∼= G.

Let us weaken the properties of the direct product slightly to construct the semi-direct

product: instead of both G and H being normal subgroups of J we will require only that H is

a normal subgroup.

Definition 14.1. A group J is a semi-direct product of a subgroup H by a subgroup G if the

following conditions are satisfied:

(i) J = HG,

(ii) H is a normal subgroup of J and

(iii) H ∩G = {e}.

The semi-direct product is denoted J = GnH.

Comment(s). (On the semi-direct product.)
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1. The direct product is a special case of the semi-direct product where both G and H are

normal subgroups of J .

2. Notation: J . H denotes that H is a normal subgroup of J , and the notation for a semi-

direct product (n) is a mixture of the symbol for a direct product (×) and the symbol for

a normal subgroup (.). Hence G n H encodes the fact that the semi-direct product can

act on the set G×H and further that H is a normal subgroup of GnH.

3. As H is normal then hg = (gg−1)hg = g((g−1)h(g−1)−1) = gh′. Therefore HG = GH as

sets.

4. For the semi-direct product J = HG we can construct the homomorphism φ(hg) = g as

φ(h1g1)φ(h2g2) = g1g2 while φ(h1g1h2g2) = φ(h1g1h2g
−1
1 g1g2) = φ(h1h

′
2g1g2) = g1g2. Via

the homomorphism theorem we then have J
H
∼= G. On the other hand ψ : J → H given

by ψ(hg) = h is not a homomorphism as ψ(h1g1)ψ(h2g2) = h1h2 while ψ(h1g1h2g2) =

ψ(h1g1h2g
−1
1 g1g2) = φ(h1h

′
2g1g2) = h1h

′
2.

5. J is called the extension of H by G.

6. Consider multiplying two elements in J = HG:

(h1g1)(h2g2) = h1g1h2g
−1
1 g1g2 = h1h

′
2g1g2 ∈ HG.

By using the fact that H is a normal subgroup in J we have a group product on J that

satisfies the closure axiom of a group. In the following definition we will write a general

element of J = HG as an element of the set G×H as hg → (g, h). In this notation the

product above is written

(g1, h1)(g2, h2) = (g1g2, h1h
′
2) = (g1g2, h1g1h2g

−1
1 ).

Example 14.2. Consider GL(N,R)
SL(N,R)

∼= R∗. This isomorphism indicates that we could take H =

SL(N,R) (a normal subgroup of GL(N,R)) and construct GL(N,R) as the extension of H =

SL(N,R) by G = R∗. However we will see that there are some obstructions to the naive

construction of the the whole of GL(N,R) in this example.

� N = 2: Let A ∈ SL(2,R) and λ ∈ R∗ then we can construct the matrix Aλ = λA by

multiplying all four entries of A by λ using multiplication on R. We find that det(λA) =

λ2 det(A) = λ2 ∈ R+. Hence by this method we have only constructed the subset of

matrices of GL(2,R) which have positive determinant.
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� N = 3: As above but now let A ∈ SL(3,R) and consider the matrix λA which satisfies

det(λA) = λ3 ∈ R∗. Hence λA ∈ GL(3,R) and further we can show that any matrix in

GL(3,R) can be expressed in the form λA where λ ∈ R∗ and A ∈ SL(3,R).

We will now construct the semi-direct product group via an explicit action on the set G×H,

which has been indicated in the comments above.

Definition 14.2. The semi-direct product GnH is the group whose elements are those of the

set G×H and whose multiplication law is

(g, h)(g′, h′) = (gg′, hφg(h
′)). (14.1)

where φg ∈ Aut(H).

Theorem 14.1. The multiplication law in equation (14.1) gives rise to a group structure on

the set G×H.

Proof. We check the axioms of a group:

� Closure: gg′ ∈ G by closure of G, and φg(h
′) ∈ H since φg is an automorphism of H, so

that hφg(h
′) ∈ H by closure of H.

� Associativity:

(g, h)((g′, h′)(g′′, h′′)) = (g, h)(g′g′′, h′φg′(h
′′)) = (gg′g′′, hφg(h

′φg′(h
′′))).

The second member in the last term can be written hφg(h
′)φg(φg′(h

′′)) (because φg is a

homomorphism of H) and then = hφg(h
′)φgg′(h

′′) (because φ is a homomorphism). On

the other hand,

((g, h)(g′, h′))(g′′, h′′) = (gg′, hφg(h
′))(g′′, h′′) = (gg′g′′, hφg(h

′)φgg′(h
′′))

which is in agreement with the previous result.

� Identity: (e, e) is the identity element as

(e, e)(g, h) = (eg, eφe(h)) = (g, ehe−1) = (g, h).

This follows as φe = id, the identity map in Inn(H). Also,

(g, h)(e, e) = (ge, hφg(e)) = (g, he) = (g, h)

as φg(e) = e for all g ∈ G (because φg is a homomorphism).
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� Inverses: The inverse element to (g, h) is given by

(g, h)−1 = (g−1, φg−1(h−1))

because we have

(g, h)−1(g, h) = (e, φg−1(h−1)φg−1(h)) = (e, φg−1(h−1h)) = (e, φg−1(e)) = (e, e)

and

(g, h)(g, h)−1 = (e, hφg(φg−1(h−1))) = (e, hφe(h
−1)) = (e, hh−1) = (e, e).

Comment(s). (On the GnH multiplication law.)

1. H ∼= (e,H) is a normal subgroup of J = GnH under this group multiplication law as

(g, h′)(e, h)(g, h′)−1 = (g, h′)(e, h)(g−1, φg−1(h′−1))

= (g, h′)(eg−1, hφe(φg−1(h′−1)))

= (g, h′)(g−1, hφg−1(h′−1))

= (e, h′φg(hφg−1(h′−1)))

∈ (e,H)

as φg ∈ Aut(H).

2. By mapping (g, e)→ g and (e, h)→ h we may reconstruct GnH as HG using the product

defined above:

(e, h)(g, e) = (g, hφe(e)) = (g, h)

for all g ∈ G, h ∈ H. Note that

(g, h) = (g, e)(e, h′) = (g, eφg(h
′)) = (g, gh′g−1)

hence h′ = φg−1(h). So we have (G, e)(e,H) = (e,H)(G, e).

3. Note that as G ∼= (G, e) and H ∼= (e,H) then G ∩ H = {(e, e)} the identity element in

GnH.

4. Due to the above comments we see that this construction of the semi-direct product on

the set G × H with the multiplication law given in equation (14.1), is equivalent to the

definition of the semi-direct product group in Definition 14.1.
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14.1 O(N) ∼= Z2 nψ SO(N)

Theorem 14.2.

O(N) ∼= Z2 nψ SO(N),

where the map ψ : Z2 → Aut(SO(N)) is defined by ψ(s) = ϕs with ϕs ∈ Aut(SO(N)) given by

ϕs(g) = sgs for all s ∈ Z2 and g ∈ SO(N).

Proof. It is helpful to write the elements of Z2 as N × N matrices. Explicitly we will use

Z2 = {I, R} where I is the N ×N identity matrix and R (for reflection) is the matrix

R ≡


−1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

0 0 0
. . .

...

0 0 0 . . . 1


Indeed R2 = I and you may check that {I, R} is a subgroup of O(N) isomorphic to Z2.

1. We first show that ψ : Z2 → Aut(SO(N)) is a homomorphism and is well-defined i.e.

that ψ really maps into automorphisms of SO(N): ϕs ∈ Aut(SO(N)) for all s ∈ Z2.

(a) We check that ϕs is an automorphism of SO(N) for any s. Let us fix s ∈ Z2. First ϕs

maps SO(N) into SO(N). Indeed, both I and R are in O(N), hence if g ∈ SO(N),

then ϕs(g) = sgs ∈ O(N) by closure in O(N); and further, still with g ∈ SO(N),

we have det(sgs) = det(s)2 det(g) = 1; so that ϕs(g) ∈ SO(N). Second, ϕs is onto

SO(N). Indeed, for every g ∈ SO(N), we have sgs ∈ SO(N) as said, and we find

ϕs(sgs) = s2gs2 = g. Third, ϕs is injective. Indeed ϕs(g) = ϕs(g
′)⇒ sgs = sg′s→

g = g′ by left and right multiplication by s. Finally, ϕs is a homomorphism. Indeed,

ϕs(gg
′) = sgg′s = sgssg′s = ϕs(g)ϕs(g

′) where we used s2 = I, which holds both for

s = I and s = R. Hence ϕs is a bijective automorphism of SO(N) onto SO(N): it

is in Aut(SO(N)).

(b) Then, we show that ψ is a homomorphism. Indeed, ψ(s)ψ(s′) = ϕs◦ϕs′ , and in order

to see what map this is we act on an arbitrary element g ∈ SO(N): (ϕs ◦ ϕs′)(g) =

ss′gs′s = ss′gss′ = ϕss′(g). Hence we find ϕs ◦ ϕs′ = ϕss′ = ψ(ss′).

2. Now we construct an isomorphism φ that maps O(N) onto Z2 nψ SO(N). Here, for

convenience, we use the following notation: we define ω : O(N)→ {I, R} as ω(A) = I if
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det(A) = 1 and ω(A) = R if det(A) = −1. It is easy to check that ω is a homomorphism:

ω(AB) = ω(A)ω(B). We then define φ as

φ : O(N)→ Z2 n SO(N)

A 7→ φ(A) = (ω(A), Aω(A))

Again all we have to show is that this maps into the right space as specified (because this

is not immediately obvious), and then that it is indeed an isomorphism.

First: that it maps into Z2 × SO(N) is shown as follows. a) Clearly ω(A) ∈ Z2.

b) Also ω(A) and A are in O(N) hence Aω(A) ∈ O(N). Further, det(Aω(A)) =

det(A) det(ω(A)) = det(A)2 = 1. Hence indeed Aω(A) ∈ SO(N).

Second: that it is a homomorphism:

φ(A)φ(B) = (ω(A), Aω(A)) (ω(B), Bω(B))

=
(
ω(A)ω(B), Aω(A)ϕω(A)(Bω(B))

)
= (ω(AB), Aω(A)ω(A)Bω(B)ω(A))

= (ω(AB), ABω(A)ω(B)))

= (ω(AB), ABω(AB))

= φ(AB)

Third: that it is bijective. Injectivity: if φ(A1) = φ(A2) then ω(A1) = ω(A2) and

A1ω(A1) = A2ω(A2), combining these we find A1 = A2 so indeed it is injective. Surjec-

tivity: take s ∈ Z2 and B ∈ SO(N). We can always find a matrix A ∈ O(N) such that

φ(A) = (s, B). Indeed, just take A = Bs. Since both B and s are in O(N), then also is

Bs. Also, we have ω(A) = ω(B)ω(s) = ω(B)s = s where we used that ω(s) = s for any

s ∈ {I, R}, and that ω(B) = I because det(B) = 1. Further, Aω(s) = Bs2 = B. Hence,

φ(A) = (ω(A), Aω(s)) = (s, B) as it should.

The semi-direct product decomposition makes very clear the structures involved in the

quotient, e.g. O(N)/SO(N) ∼= Z2. This is a general phenomenon:

Theorem 14.3. The subset {(e, h) : h ∈ H} ⊂ G × H is a subgroup of G nψ H that is

isomorphic to H and that is normal. The subset {(g, e) : g ∈ G} is a subgroup of Gnψ H that

is isomorphic to G.
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Proof. For the first statement: it is a subgroup because it contains the identity (e, e), it is

closed (e, h)(e, h′) = (e, hϕe(h
′)) = (e, hh′), and it contains the inverse, (e, h)−1 = (e, h−1) by

the multiplication rule just established. It is also clearly isomorphic to H, with (e, h) 7→ h,

thanks again to the multiplication rule. Further, it is normal:

(g, h)−1(e, h′)(g, h) = (g−1, ϕg−1(h−1h′))(g, h) = (e, ϕg−1(h−1h′h)).

For the second statement, the subset contains the identity, is closed (g, e)(g′, e) = (gg′, ϕg(e)) =

(gg′, e), and by this multiplication law, it contains the inverse. Clearly again, it is isomorphic

to G.

A special case of the semi-direct product is the direct product, where ϕg = id for all g ∈ G
(that is, ψ : G → Aut(H) is trivial, ψ(g) = id). In this case, both G and H are normal

subgroups.

Theorem 14.4. The left cosets of GnH with respect to the normal subgroup H are the subsets

{(g, h) : h ∈ H} for all g ∈ G. Also, (GnH)/H ∼= G.

Proof. For the first statement: the left cosets are (g, h)(e,H) = (g, hϕg(H)) = (g, hH) = (g,H).

In the second equality we used that ϕg is an automorphism, and in the third we used that

the left multiplication by h is a bijection of H (show this!). For the second statement: the

isomorphism is (g,H) 7→ g. This is clearly bijective, and it is a homomorphism, because

(g,H)(g′, H) = (gg′, Hϕg(H)) = (gg′, H).

Note also that the right cosets are the same: (e,H)(g, h) = (g,Hϕe(h)) = (g,Hh) = (g,H).

Hence we also have H\(GnH) ∼= G.

Coming back to our example: SO(N) is indeed a normal subgroup of O(N) ∼= Z2 nSO(N),

but the Z2 of this decomposition, although it is a subgroup, is not normal. The Z2 of this decom-

position can be obtained as an explicit subgroup of O(N) by the inverse map φ−1 of Theorem

14.2: φ−1((s, I)) = s (recall that s ∈ {I, R}). Hence the subgroup is {I, diag(−1, 1, . . . , 1)}.
Here, we indeed have that SO(N) is the kernel of det, and that {I, R} is a subgroup on which

det is an isomorphism.

Note: Clearly, there are many Z2 subgroups, for instance {I,−I}; this one is normal. But

for N even, it does not take part into any decomposition of O(N) into Z2 and SO(N).



15. The Euclidean Group

The Euclidean group is the group of transformations of the Euclidean plane, RN , which leaves

the distance between any two points invariant. The distance function on RN can be defined

explicitly using the Euclidean inner product:

D(xxx,yyy) = ||xxx− yyy|| =
√

(xxx− yyy,xxx− yyy).

In this chapter we will prove that all the transformations which preserve the Euclidean inner

product are formed of just the orthogonal transformations and the translations of RN . Fur-

thermore we will show that the Euclidean group is a semi-direct product group of O(N) and

RN the (abelian) group of real vectors in RN under addition.

Theorem 15.1. The set of all translations of RN forms a group which is isomorphic to RN .

Proof. The set of all translations of RN is the set of all maps xxx 7→ xxx+ bbb for bbb ∈ RN : maps that

take each point xxx to xxx+bbb in RN . Let us denote a translation by Tbbb, so that Tbbb(xxx) = xxx+bbb. The

composition law is obtained from

(Tbbb ◦ Tbbb′)xxx = Tbbb(Tbbb′)xxx = Tbbb(xxx+ bbb′) = xxx+ bbb+ bbb′ = Tbbb+bbb′(xxx).

Hence, Tbbb◦Tbbb′ = Tbbb+bbb′ , so that compositions of translations are translations. Further, there is an

identity translation that does nothing (choosing bbb = 0). An inverse translation always exists:

Tbbb ◦ T−bbb = T0 = id. Hence, the set of all translations, with multiplication law the composition

of maps, is a group. Note also that Tbbb 6= Tbbb′ if bbb 6= bbb′ and for any bbb ∈ RN there is a Tbbb. Clearly,

then, this is a group that is isomorphic to RN , by the map

Tbbb 7→ bbb.

Theorem 15.2. The set of transformations Q : RN → RN such that D(Q(xxx), Q(yyy)) = D(xxx,yyy)

consists of combinations of translations and orthogonal transformations.

73
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Proof. We have that Q : RN → RN and that D(Q(xxx), Q(yyy)) = D(xxx,yyy). Suppose, without loss

of generality, that Q(000) = bbb then Q′ ≡ T−bbb ◦Q is a transformation that leaves the origin 000 fixed

as Q′(000) = T−bbb ◦ Q(000) = T−bbbbbb = 000. We note that translations of RN by any vector −bbb ∈ RN

preserve the distance as D(xxx − bbb,yyy − bbb) = ||xxx − yyy|| = D(xxx,yyy). In particular Q′ also preserves

the inner product i.e. D(Q′(xxx), Q′(yyy)) = D(Q(xxx), Q(yyy)) = D(xxx,yyy) as Q preserves the inner

product by assumption.

Now let us show that not only does Q′ preserve the distance function it also preserves the

inner product by using D(Q′(xxx), Q′(yyy)) = D(xxx,yyy). Let us square this expression in terms of

inner products (to remove the square root for convenience) it becomes

(Q′(xxx)−Q′(yyy), Q′(xxx)−Q′(yyy)) = (xxx− yyy,xxx− yyy)

Using the bilinearity of the inner product we can expand this to

(Q′(xxx), Q′(xxx))− 2(Q′(xxx), Q′(yyy)) + (Q′(yyy), Q′(yyy)) = (xxx,xxx)− 2(xxx,yyy) + (yyy,yyy). (15.1)

Of course we are tempted to conclude that (Q′(xxx), Q′(yyy)) = (xxx,yyy), but we must take care to

prove this. We know that D(Q′(xxx),000) =
√

(Q′(xxx), Q′(xxx)) and we can write out the left-hand-

side of this expression in terms of Q:

D(Q′(xxx),000) = D(T−bbbQ(xxx),000)

= D(Q(xxx), Tbbb000)

= D(Q(xxx), bbb)

= D(Q(xxx), Q(000))

= D(xxx,000)

=
√

(xxx,xxx).

Hence we have that (Q′(xxx), Q′(xxx)) = (xxx,xxx) and so also (Q′(yyy), Q′(yyy)) = (yyy,yyy) which we may

substitute into equation (15.1) to obtain

(Q′(xxx), Q′(yyy)) = (xxx,yyy)

so we have shown that Q′ is a transformation that preserves the inner product.

Now we show that Q′ is a linear transformation. Let eeei, i = 1, 2, . . . , N be orthonormal

vectors in RN (this is the standard basis for RN as a vector space). Let eee′i := Q′(eeei) then since

Q′ preserves the inner product eee′i form another orthonormal basis of RN . Now let xxx =
∑

i xieeei

for xi ∈ R, then Q′(xxx) ≡
∑

i x
′
ieee
′
i (this can be done because eee′i form a basis). We can find x′i by



CHAPTER 15. THE EUCLIDEAN GROUP 75

taking inner products with eee′i:

x′i = (Q′(xxx), eee′i) as (eeei, eeej) = δij

= (Q′(xxx), Q′(eeei))

= (xxx,eeei)

= xi

Therefore Q′(xxx) =
∑

i xieee
′
i which implies that Q′ is a linear transformation (as the components

of xxx appear linearly in Q′(xxx)). Hence, we have found that Q′ is a linear transformation which

preserves length of vectors in RN , so it must be in O(N). Hence, Q = Tbbb◦Q′ ≡ Tbbb◦A where A ∈
O(N), so that Q is a map constructed from a translation and an orthogonal transformation.

We will now show that the Euclidean group is a semi-direct product group:

Definition 15.1. The Euclidean group is

EN = O(N) nψ RN

where ψ : O(N)→ Aut(RN) given by ψ(A) = ϕA is a homomorphism, with ϕA defined by

ϕA(bbb) = Abbb.

where A ∈ O(N) and bbb ∈ RN .

To confirm that the Euclidean group is well-defined we should show that ψ is a homomor-

phism and that ϕ is an automorphism.

First, we show that ϕ is an automorphism: ϕA is clearly bijective because the matrix A

is invertible. Further, it is a homomorphism because ϕA(xxx + yyy) = A(xxx + yyy) = Axxx + Ayyy =

ϕA(xxx) + ϕA(yyy). Second, we show that ψ is a homomorphism: as ϕAA′(bbb) = AA′bbb = A(A′bbb) =

ϕA(ϕA′(bbb)) = (ϕA ◦ ϕA′)(bbb) so that ψ(AA′) = ψ(A)ψ(A′) (the group multiplication law for

automorphisms is the composition of maps). Hence the semi-direct product in the definition of

the Euclidean group is well-defined.

A general element of the Euclidean group will consist of both an orthogonal transformation

A and a translation Tbbb which we will denote as (A, Tbbb) = Tbbb ◦ A i.e.

(A, Tbbb)(xxx) = Tbbb(A(xxx)) = Axxx+ bbb.

Then, let us see what happens when we compose such transformations. We have

((A, Tbbb) ◦ (A′, Tbbb′))(xxx) = A(A′xxx+ bbb′) + bbb = AA′xxx+ Abbb′ + bbb = (AA′, TAbbb′+bbb)(xxx).
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That is, we obtain a transformation that can be described by first an orthogonal transformation

AA′, then a translation by the vector Abbb′ + bbb. Combined with the definition of the Euclidean

group above and the fact that Tbbb 7→ bbb is an isomorphism, what we have just shown is that the

set of all transformations “orthogonal transformations followed by translation” is the same set

as the set EN . That is, the Euclidean group can be seen as the group of such transformations.

Furthermore the composition law for orthogonal transformations followed by a translation

is the same as that of O(N)nψRN , and the two groups of transformations are isomorphic. Note

how the semi-direct multiplication law occurs essentially because orthogonal transformations

and translations don’t commute:

A(Tbbb(xxx)) = A(xxx+ bbb) = Axxx+ Abbb, Tbbb(A(xxx)) = Axxx+ bbb

so that Tbbb◦A◦Tbbb′ ◦A′ 6= Tbbb◦Tbbb′ ◦A◦A′. We rather have Tbbb◦A◦Tbbb′ ◦A′ = Tbbb◦A◦Tbbb′ ◦A−1◦A◦A′,
and we find the conjugation law

A ◦ Tbbb′ ◦ A−1(xxx) = A(A−1xxx+ bbb′) = xxx+ Abbb′ = TAbbb′(xxx)

That is: the conjugation of a translation Tbbb′ by an orthogonal transformation A is again a

translation, but by the rotated/reflected vector, TAbbb′ and this is what gives rise to the semi-

direct product law. This is true generally: if two type of transformations don’t commute,

but the conjugation of one by another is again of the first type, then we have a semi-direct

product. Recall also examples of SO(2) and Z2 in their geometric interpretation as rotations

and reflections.

There is more. We could decide to try to do translations and orthogonal transformations

in any order – that is, we can look at all transformations of RN that are obtained by doing

orthogonal transformations and translations in any order and of any kind. A general trans-

formation will look like A1 ◦ A2 ◦ · · · ◦ Tbbb1 ◦ Tbbb2 ◦ · · · ◦ A′1 ◦ A′2 ◦ · · · etc. But since orthogonal

transformations and translations independently form groups, we can multiply successive or-

thogonal transformations to get a single one, and like wise for translations, so we get something

of the form A ◦ Tbbb ◦ A′ ◦ . . . etc. Further taking into account that we can always put the

identity orthogonal transformation at the beginning, and the identity translation at the end,

if need be, we always recover something of the form (A, Tbbb)(A
′, Tbbb′) · · · . Hence, we recover a

Euclidean transformation. Hence, the Euclidean group is the one generated by translations and

orthogonal transformations. We have proved:

Theorem 15.3. The Euclidean group EN is the group generated by translations and orthogonal

transformations of RN .
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Comment(s). (On the Poincaré group.) The Euclidean group arose from studying the trans-

formations which leave the Euclidean distance invariant. If we had considered the transforma-

tions which leave an alternative distance function unchanged we would find another group. The

Minkowski metric is important in physics and is used to measure distance in a four-dimensional

space-time R4. Let us work in four dimensions, and denote the components of a vector xxx by xµ

for µ = 0, 1, 2, 3 (standard notation in physics, from Einstein). Then the Minkowski metric on

R4 is

< xxx,yyy >M≡
3∑

µν=0

ηµ,νx
µyν , ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (15.2)

The quantity ηµν is called the Minkowski metric. Note that < xxx,xxx >M= −(x0)2 +(x1)2 +(x2)2 +

(x3)2 so that the length-squared of a vector could be negative, zero or positive.

Due to the many repeated sums appearing when using the Minkowski metric it is convenient

to adopt Einstein’s summation convention. There is no ambiguity over which indices are being

summed over as they are repeated, hence we do not need to write the summation symbol
∑3

µ,ν=0

as it a summation over an index is automatically implied whenever there is the index somewhere

at the bottom (like µ or ν in ηµν) and the same index somewhere else at the top (like µ in xµ) in

the same term. With this convention we would write < xxx,yyy >M= ηµνx
µyν with the summation

over the repeated indices being implied.

Definition 15.2. The Poincaré group is the group of transformations that keep invariant the

distance measured in R4 using the Minkowski inner product.

This is an invariance definition for the Poincaré group. In much the same way that we

showed that the invariance definition of the Euclidean group is equivalent to a semi-direct prod-

uct definition (O(N) n RN), there is also something similar for the Poincaré group. Except

now, instead of rotations and reflections O(N) we have Lorentz transformations L.

Definition 15.3. A Lorentz transformation Λ ∈ L is a linear map on R4 which preserves the

Minkowski inner product:

< Λxxx,Λyyy >M=< xxx,yyy >M . (15.3)

Let us rewrite this condition in components.

Λµ
κx

κΛν
λy

ληµν = xκyληκλ. (15.4)

where we are using the Einstein summation convention so that every repeated indices is summed

over. This implies

Λµ
κΛ

ν
ληµν = ηκλ. (15.5)
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An analysis of what the Lorentz transformations Λ are exactly as four-by-four matrices is be-

yond the scope of these lecture notes, but this equation above is the starting point for defining

them. We will note here the following theorem, whose proof (omitted) is similar to that of the

corresponding theorem for the Euclidean group.

Theorem 15.4. The Poincaré group is isomorphic to the semi-direct product LnΨ R4 with the

homomorphism Ψ : L → Aut(RN) given by ψ(Λ) = ϕΛ, and the automorphism ϕΛ : R4 → R4

given by ϕΛ(bbb) = Λbbb, where Λ ∈ L, the Lorentz group.



16. G-Sets, Stabilisers and Orbits

Groups have an intrinsic action on themselves as a set, but one can allow a group G to act on

another set X under certain conditions, e.g. one might allow Dn to act on the Euclidean plane

rather than just the n-sided regular polygon Pn. A G-set, X is defined by:

Definition 16.1. For a group G a G-set is a set X equipped with a rule assigning to each

element g ∈ G and each element x ∈ X an element g · x ∈ X satisfying:

(i) e · x = x for all x ∈ X where e ∈ G is the identity element of G, and

(ii) (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and x ∈ X.

Example 16.1. X = G, the group itself. A group G is a G-set, although there are several

standard ways to define the G-set action g · x:

(i) g · x = gx (left multiplication),

(ii) g · x = xg (right multiplication), and

(iii) g · x = gxg−1 (conjugation or the Adjoint action).

These actions define G-sets when X = G - this is trivial to see for (i) and (ii) and for (iii) we

have for g1, g2, x ∈ G

e · x = exe−1 = x

g1 · (g2 · x) = g1g2xg
−1
2 g−1

1 = (g1g2) · x.

Example 16.2. The set of all subsets of G Let X be the set of all subsets of elements of

a finite group G. For any subset S ⊂ G we define the G-set action by g · S = gS, i.e. if

S = {s1, s2, . . . sn} then g · S = gS = {gs1, gs2, . . . gsn} ∈ X. The action of left-multiplication

by g on a set S ∈ X produces another set gS ∈ X containing the same number of elements as

S. The axioms of a G-set are satisfied as:

79
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(i) e · S = S ∀S ∈ X, and

(ii) g1 · (g2 · S) = g1g2S = (g1g2) · S ∀ g1, g2 ∈ G,S ∈ X.

Consider the example when G = Z3 = 〈a〉 with a3 = e. The set of all subsets is

X = {{}, {e}, {a}, {a2}, {e, a}, {e, a2}, {a, a2}, {e, a, a2}}

where {} is the empty set ∅. Under the action of e all sets are unaltered but under the action

of a the sets are mapped as follows:

{} a−→ {}

{e} a−→ {a} a−→ {a2} a−→ {e}

{e, a} a−→ {a, a2} a−→ {e, a2} a−→ {e, a}

{e, a, a2} a−→ {e, a, a2}

and under the action of a2 the sets are mapped in the opposite direction compare to a. Note

that the action moves through all the sets containing the same number of elements. One can

modify this example of a G-set by changing the action of G on X while keeping X the set of all

subsets of G. Important examples of the G-set action are when g · S = Sg (to construct right

cosets of each subset S) or when g · S = gSg−1 (conjugation). One may further specialise to

consider the case where X is just those subsets which are also subgroups of G, and in this case

the G-set action of conjugation will preserve the subgroup structure. Conjugation of subgroups

of G is a G-set as, let H be a subgroup of G then for g1, g2 ∈ G we have

(i) e ·H = eHe−1 = H, and

(ii) g1 · (g2 ·H) = g1g2Hg
−1
2 g−1

1 = (g1g2) ·H.

Note that if H is a subgroup of G then so is gHg−1 for g ∈ G as for h1, h2 ∈ H we have

(gh1g
−1)(gh2g

−1) = gh1h2g
−1 ∈ gHg−1; the identity element e is in gHg−1 as e ∈ H and

so geg−1 = e ∈ gHg−1; as h−1 ∈ H then gh−1g−1 ∈ gHg−1 is the inverse element to

ghg−1 ∈ gHg−1; and associativity of the group multiplication law is inherited from the as-

sociative multiplication product of H ∈ G.

For example, consider the subgroups of the dihedral group D3 (〈a, b〉 with a3 = e, b2 = e and

ab = ba2), the subgroups are:

X = {{e}, {e, b}, {e, ab}, {e, a2b}, {e, a, a2}, {e, a, a2, b, ab, a2b}}.

Now under the conjugate action with a we find the subgroups are mapped as:

{e} a−→ {e}
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{e, b} a−→ {e, a2b} a−→ {e, ab} a−→ {e, b}

{e, a, a2} a−→ {e, a, a2}

{e, a, a2, b, ab, a2b} a−→ {e, a, a2, b, ab, a2b}

and under conjugation with b:

{e} b−→ {e}

{e, b} b−→ {e, b}

{e, ab} b−→ {e, a2b} b−→ {e, ab}

{e, a, a2} b−→ {e, a, a2}

{e, a, a2, b, ab, a2b} b−→ {e, a, a2, b, ab, a2b}

and conjugation with all other elements of D3 consists of successive conjugate actions of a and

b.

Definition 16.2. Given a G-set X, the stabiliser Gx of the element x ∈ X is the set of elements

g ∈ G such that g · x = x:

Gx = {g ∈ G | g · x = x}.

Theorem 16.1. Gx is a subgroup of G.

Proof. We check that Gx satisfies the defining axioms of a group:

� (Closure) Let g1, g2 ∈ Gx then (g1g2) · x = g1 · (g2 · x) = g1 · x = x so g1g2 ∈ Gx.

� (Identity) e ∈ G is in Gx as e · x = x.

� (Inverse) For each g ∈ Gx then g−1 · x = g−1 · (g · x) = (g−1g) · x = e · x = x therefore

g−1 ∈ Gx.

� (Associativity) Associativity is inherited from the product law of G.

Example 16.3. If X = G and g · x = gx then the stabilisers Gx of each element g ∈ X are all

{e}, the trivial subgroup.

Definition 16.3. Let X = G and g · x = gxg−1 then the stabiliser of each element g ∈ X is

called the centraliser of the element x ∈ G:

CG(x) = {g ∈ G | gxg−1 = x} = {g ∈ G | gx = xg}.
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Comment(s). The centre Z(G) = {z ∈ G | zg = gz ∀ g ∈ G} is different from the centraliser

of an element x ∈ G. Z(G) consists of all those elements in G which commute with all other

elements of G, while the centraliser is defined with respect to a single element x, and consists

of all those elements of G which commute with x.

Example 16.4. The centraliser of b ∈ D3:

CD3(b) = {g ∈ D3 | gbg−1 = b}.

As the centraliser is a subgroup of D3 its order is 1, 2, 3 or 6. But as D3 is not abelian (e.g.

ab = ba2) then |CD3(b)| 6= 6. CD3(b) contains 〈b〉 which is a group of order 2, which implies

that |CD3(b)| = 2 (as we have ruled out that |CD3(b)| = 6). Hence CD3(b) = 〈b〉.

Example 16.5. We will compute the centralisers of all the elements D4. As Z(D4) = {e, a2}
then CD4(e) = D4 = CD4(a

2). Now 〈a〉 ⊂ CD4(a) so |CD4(a)| is either 4 or 8, as D4 is not

abelian then CD4(a) = 〈a〉 = CD4(a
3). Similarly 〈b〉 ⊂ CD4(b) hence |CD4(b)| = 2, 4 however

since a2 ∈ Z(D4) then a2 ∈ CD4(b) hence |CD4(b)| = 4 and we find CD4(b) = {e, a2, b, a2b} =

CD4(a
2b). Similar arguments lead to CD4(ab) = {e, a2, ab, a3b} = CD4(a

3b).

Definition 16.4. Let X be the set of subgroups H ⊂ G with action g · H = gHg−1. The

stabiliser GH in this case is called the normaliser and denoted

NG(H) = {g ∈ G | gHg−1 = H }.

The normaliser NG(H) is a subgroup that always contains H.

Example 16.6. We will compute the normaliser of 〈b〉 ⊂ D3:

ND3(〈b〉) = {g ∈ G | g〈b〉g−1 = 〈b〉}.

Now |〈b〉| = 2 therefore |ND3(〈b〉)| is 2 or 6. If the normaliser has order 6 then it is the entire

group D3, but a /∈ ND3(〈b〉) as a〈b〉a−1 = {e, aba2} = {e, a2b} 6= 〈b〉. Hence ND3(〈b〉) = 〈b〉.
This observation is the same as noting that 〈b〉 is not a normal subgroup of D3. On the other

hand 〈a〉 is a normal subgroup of D3 (as it is the kernel of the homomorphism φ(anbm) = bm)

so ND3(〈a〉) = D3.

Definition 16.5. The orbit of x in a G-set X is given by

orb(x) = {g · x | ∀ g ∈ G }.

The orbit of an element x ∈ X is an equivalence class with the equivalence relation y ∼ x

if there exists g ∈ G such that y = g · x. This is an equivalence relation as it satisfies:
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- (Reflexivity) x ∼ x as the identity e ∈ G always exists satisfying e · x = x.

- (Symmetry) y ∼ x =⇒ x ∼ y as if y ∼ x then ∃g ∈ G such that y = g · x then

g−1 · y = g−1 · g · x = x therefore x ∼ y as x = g−1 · y and g−1 ∈ G.

- (Transitivity) x ∼ y and y ∼ z implies that x = g1 · y and y = g2 · z, hence x = g1 · y =

g1 · g2 · z = (g1g2) · z, hence x ∼ z.

As equivalence classes are either disjoint or identical, and every element of X is in some orbit,

then the orbits partition X. In particular |X| = |orb(x1)|+ |orb(x2)|+ . . .+ |orb(xn)| for some

choice of representative orbits elements xi ∈ X.

Example 16.7. If X = G and g · x = gx then orb(x) = G (while the stabiliser Gx = {e}).

Example 16.8. If X is the set of all subgroups of D3 with g · H = gH for H ∈ X then the

orbit of {e, a, a2} = 〈a〉 is

orb(〈a〉) = {〈a〉, {b, ab, a2b}}.

Comment(s).

1. Let X be the set of all subsets of G with g · S = gS, where S ⊂ G is a subset. Consider

H ⊂ G where H is a subgroup then orb(H) is the set of left cosets of H in G.

2. For X = G with g · x = gxg−1, then orb(x) is the conjugacy class of x.

Consider the rotational symmetries of the cube. Each symmetry maps the cube to itself

and we may count these symmetries in various ways. We might first argue that at each vertex

three faces meet and there are three rotations about the vertex which rotate the faces into each

other and a vertex has eight equivalent positions it can occupy on the cube giving 3× 8 = 24

rotational symmetries of the cube. Alternatively, we might consider a face of the cube which

has four rotational symmetries and a face can sit in any of six positions on the cube giving

4 × 6 = 24 rotational symmetries. There are other ways too. In the first case above the

stabiliser of a vertex is isomorphic to Z3, while the orbit of the vertex has eight elements. In

the second counting above, the stabiliser of a face is isomorphic to Z4 and the orbit of a face

has six elements in it. In general we are observing that the stabiliser Gx of an element s ∈ X
(which may be a subset) may be mapped to cosets gGx which cover the group G: the number

of cosets needed to cover G is the number of elements in the orbit of x.

Theorem 16.2. (The orbit-stabiliser theorem.) Let G be a group and X be a G-set. For each

x ∈ X,

|orb(x)| = |G|
|Gx|

.
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Proof. We will show that the number of left cosets of Gx required to cover G is |orb(x)|. We

will do this by constructing a bijection between elements of orb(x) and the cosets gGx given by

M(g · x) = gGx.

Note that this map is injective as suppose there exists h ∈ G such that h · x 6= g · x such that

M(g ·x) = M(h ·x) then gGx = hGx hence h−1gGx = Gx therefore h−1g ∈ Gx so h−1 · g ·x = x

implying that g · x = h · x. It is surjective by construction, i.e. the pre-image of gGx is g · x.

Hence M is a bijection between g ·x and the left-coset gGx ∈ G
Gx

. Therefore |orb(x)| = |G|
|Gx| .

Example 16.9. Let X be the set of left cosets of the subgroup H ⊂ G with the G-set action

g ·H = gH. Now |GH | = |H| and |orb(H)| = i(H,G), the number of distinct cosets covering

G. For this example the orbit-stabiliser theorem gives Lagrange’s theorem.

Example 16.10. Let G = D3 = X with action g ·x = gxg−1. The orbit orb(x) is the conjugacy

class of x. The orbit-stabiliser theorem gives a way to compute the size of the conjugacy classes.

For this action the stabiliser Gx is called the centraliser CG(x). Let us consider the stabilisers

of each element of D3:

� When x = e, CD3(e) = D3 then the orbit-stabiliser theorem gives us |orb(e)| = |D3|
|CD3

(e)| = 1,

and orb(e) = {e}.

� When x = a, the centraliser of a contains 〈a〉 so |CD3(a)| is 3 or 6, but as D3 is non-

abelian then CD3(a) = 〈a〉. Hence by the orbit stabiliser theorem |orb(a)| = |D3|
|CD3

(a)| = 2,

so there are only two elements in the conjugacy class of a, i.e. orb(a) = {a, a2}.

� when x = b, the centraliser of b contains 〈b〉 so |CD3(b)| = 2 (as it cannot be 6 because D3

is non-abelian). Hence, by the orbit-stabiliser theorem |orb(b)| = |D3|
|CD3

(b)| = 3 and since

conjugacy classes cover the group then the conjugacy class of b is orb(b) = {b, ab, a2b}.

Theorem 16.3. Let G be a finite group of order pn where p is prime. Then Z(G) contains

more than one element.

Proof. Let X = G with g · x = gxg−1. As the conjugacy classes cover G then

|G| = |orb(g1)|+ |orb(g2)|+ . . .+ |orb(gk)|.

Now at least one of the conjugacy classes is that of the identity element and so contains just a

single element, i.e. |orb(e)| = 1, so

|G| = |orb(g1)|+ |orb(g2)|+ . . .+ |orb(gk−1)|+ 1.
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As |G| = pn then the orbit-stabiliser theorem tells us that |orb(gi)| = |G|
|CG(gi)| = pn

pm
= pn−m,

where we have observed that since CG(gi) is a sub-group of G then |CG(gi)| = pm for some

integer m ≤ n. We now have:

pn = pm1 + pm2 + . . .+ pmk−1 + 1

and the left-hand-side of this equation is equal to 0 mod p, while the right-hand-side is equal

to 1 mod p. Therefore at least one more conjugacy class contains only one element. Suppose

|orb(h)| = 1 then ghg−1 = h for all g ∈ G implying that gh = hg so e, h ∈ Z(G) and

|Z(G)| > 1.

For example |D4| = 8 = 23 and Z(D4) = {e, a2}.

Theorem 16.4. Let G be a group such that G
Z(G)

is a cyclic group. Then G is abelian so

Z(G) = G.

Proof. Suppose that G
Z(G)

is a cyclic group generated by gZ(G), hence every element of G lies in

one of the cosets gnZ(G) for n ∈ Z. Therefore any pair of elements g1, g2 ∈ G may be written

as g1 = gn1z1 and g2 = gn2z2. Now

g1g2 = gn1z1g
n2z2 = gn1gn2z1z2 = gn1+n2z2z1 = gn2z2g

n1z1 = g2g1.

Therefore G is abelian.

Theorem 16.5. Any finite group G with |G| = p2 elements, where p is prime, is abelian.

Proof. As |G| = p2 then |Z(G)| > 1. As Z(G) is a sub-group then |Z(G)| is p or p2. If

|Z(G)| = p2 then Z(G) = G and G is abelian. If |Z(G)| = p then | G
Z(G)
| = p is isomorphic

to a cyclic group, and this implies Z(G) = G which is a contradiction, so |Z(G)| = p is not

allowed.

We need the following lemma in advance for our next theorem.

Lemma 16.1. Let G and H be two subgroups of a finite group J . Then

|GH| = |G||H|
|G ∩H|

.

Proof. Note that G∩H is a subgroup of G and of H and consider G
G∩H . Each element of G is in

one of the cosets g1(G∩H), g2(G∩H), . . . gn(G∩H) with gi 6= gj for i 6= j and g−1
i gj /∈ G∩H, so

that the cosets are distinct and cover G. Now suppose gh is an element of GH then gh = gig
′h

where g′ ∈ G ∩ H. As g′, h ∈ H then gh = gi(g
′h) ∈ giH. The cosets giH are disjoint (as
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otherwise suppose that giH = gjH then g−1
i gj ∈ H and since gi, gj ∈ G then g−1

i gj ∈ G ∩ H
which would contradict our earlier supposition.) Now we know that there are n cosets gi(G∩H)

covering G, and n cosets giH covering GH hence

n =
|G|
|G ∩H|

=
|GH|
|H|

.

Theorem 16.6. A group of order p2 is isomorphic to either Zp2 or Zp × Zp.

Proof. The order of each element in G must divide |G|, hence each element has order 1, p or

p2. If G has an element of order p2 then G ∼= Zp2 . If G has only (non-identity) elements of

order p then let g, h ∈ G be such elements such that 〈g〉 ∩ 〈h〉 = {e}. Using our lemma above

|〈g〉〈h〉| = |〈g〉||〈h〉|
|〈g〉 ∩ 〈h〉|

= p2.

Hence 〈g〉〈h〉 covers G and the distinct elements of G take the form gnhm for 0 ≤ n,m ≤ p− 1.

We can show that 〈g〉〈h〉 is isomorphic to Zp × Zp using φ(gnhm) = (gn, hm) ∈ Zp × Zp.

This last theorem is rather neat and means that, up to isomorphism, there are only two

distinct groups of each order 4, 9, 16, 25, . . . , both of which are abelian.



17. The Sylow Theorems

Lagrange’s theorem states that when H is a subgroup of G then |H| is a factor of |G|. The

converse statement that if |H| divides |G| then H is a subgroup of G is not always true. For

example, the group of even permutations of four objects A4 has |A4| = 12 but it does not have

a subgroup of order 6.1

Peter Ludwig Mejdell Sylow (1832-1918) was a Norwegian mathematician who proved a

partial converse result: if the divisor is any power of a prime p, i.e. the divisor is of the form pn

for n ∈ Z+, then a subgroup always exists. Sylow also showed that if the order of a subgroup

is the largest power of a prime that divides the order of a group then all such subgroups are

conjugate to each other. For example if |G| = 60 = 22.3.5 then G contains subgroups of order

3, 4 = 22 and 5, and all subgroups of order 4 are conjugate to each other, as are the subgroups

of orders 3 and 5.

Definition 17.1. Let p be a positive, prime integer. A p-group is a group in which every

element has order a power of p.

Comment(s).

1. The identity element has order 1 which is p0 for any prime, p.

2. Similarly, a p-subgroup is one in which every element is a power of p.

3. If G is a p-group then gi ∈ G satisfies gp
ni

i = e for ni ∈ Z+, then |G| = pk for some

k ∈ Z+.

Example 17.1. Any cyclic group of prime order is a p-group.

1Suppose H ⊂ A4 is a subgroup of order 6 then it is either Z6 or S3. Since S3 contains some odd permutations

e.g. (12), (23), (13) then A4 does not contain S3 as a subgroup. A4 contains an element of order 1, three of

order 2 and eight of order 3 (which can be checked by constructing A4 explicitly) hence there is no element of

order 6 so A4 does not have a Z6 subgroup either.

87
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Example 17.2. D3 = 〈a, b〉 with a3 = e, b2 = e and ab = ba2 is a group of order 6 = 2.3 so it

is not a p-group but it has a 3-subgroup 〈a〉 and three 2-subgroups {e, b}, {e, ab} and {e, a2b}.

Definition 17.2. Let G be a finite group with |G| = mpk where p is a prime which does not

divide m ∈ Z. A subgroup of order pk is called a Sylow p-subgroup.

Example 17.3. In any group of order 60 = 22.3.5 there are Sylow 2-subgroups (of order 4),

Sylow 3-subgroups (of order 3) and Sylow 5-subgroups (of order 5).

Theorem 17.1. (The Sylow Theorems.) Let G be a group of order mpk where p is prime and

does not divide m, then:

I. a Sylow p-subgroup (of order pk) exists,

II. for each prime p, the Sylow p-subgroups are conjugate to each other,

III. let np be the number of Sylow p-subgroups then

(i) np = 1 mod p,

(ii) np = |G|
|NG(P )| where NG(P ) is the normaliser of the Sylow p-subgroup P ⊂ G, and

(iii) np divides m which is the index of the Sylow p-subgroup in G.

Comment(s). Beware! The numbering and ordering of the Sylow theorems is not universally

agreed between mathematicians and texts.

Lemma 17.1. The number of ways to pick pk elements from a set of mpk elements (where p

does not divide m), which is of course equal to
(
mpk

pk

)
, is m mod p.

Proof.
(
mpk

pk

)
is the coefficient of xp

k
in the binomial expansion of (1 + x)mp

k
= ((1 + x)p

k
)m.

Now (1 + x)p
k

=
∑pk

j=0

(
pk

j

)
xj ∼= (1 + xp

k
) mod p. Hence

((1 + x)p
k

)m ∼= ((1 + xp
k

) mod p)m =
m∑
j=0

(
m

j

)
(xp

k

)j mod p = (1 +mxp
k

+ . . .) mod p.

Hence the coefficient of xp
k

is congruent to m mod p.

Proof. (Of Sylow I.) Recall that we have a group G such that |G| = mpk. Let S be the set of

all subsets of G containing pk elements. The number of elements (sets) in S is m mod p by

the lemma above. Now let S be a G-set with the action g · Si = gSi = {gs | s ∈ Si} where Si

is an element of S. The G-set action defines distinct orbits among the elements of S and each

orbit may be labelled by a representative set in the orbit, which we will denote Ŝ1, Ŝ2,. . . Ŝr.
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Note that the number of orbits r is generally distinct from the number of elements of S. The

orbits partition S:

S = orb(Ŝ1) ∪ orb(Ŝ2) ∪ . . . ∪ orb(Ŝr).

Our aim will be to show that the stabiliser subgroup of one of these orbits has order pk. As

|S| = m mod p then at least one of the orbits contains a number of elements which is not

divisible by p. Suppose that orb(Ŝ1) is such an orbit and let |orb(Ŝ1)| = l, then by the orbit-

stabiliser theorem,

|GŜ1
| = |G|
|orb(Ŝ1)|

=
mpk

l
= tpk

for some integer t = m
l

(as by construction l is not divisible by p). Now consider g ∈ GŜ1
then

g · Ŝ1 = Ŝ1 so that gs ∈ Ŝ1 for all s ∈ Ŝ1. Therefore the right-coset GŜ1
s ⊂ Ŝ1 and so

|GŜ1
| = |GŜ1

s| ≤ |Ŝ1| = pk

as Ŝ1 ∈ S and so is a set containing pk elements. As 1 ≤ |GŜ1
| ≤ pk and also |GŜ1

| = tpk for

t ∈ Z then we conclude that t = 1 and |GŜ1
| = pk as required.

Example 17.4. In D3, as |D3| = 6 = 2.3 there are Sylow 2-subgroups (when we take p = 2

and m = 3) containing two elements and Sylow 3-subgroups (when we take p = 3 and m = 2)

with three elements.

Example 17.5. |S4| = 24 = 23.3, so S4 contains a Sylow 3-subgroup containing three elements

and a Sylow 2-subgroup containing eight (= 23) elements.

Lemma 17.2. Let P be a Sylow p-subgroup of G, where |G| = mpk. Any p-subgroup of NG(P )

is contained in P and P is the unique Sylow p-subgroup in NG(P ).

Proof. Let P be a Sylow p-subgroup of G, hence |P | = pk. Evidently P ⊂ NG(P ) as for any

g ∈ P we have gPg−1 = P . Let Q be a p-subgroup contained in NG(P ) whose order is pj, where

j ≤ k. Now P / NG(P ) as, by definition, for n ∈ NG(P ) we have nPn−1 = P . In particular if

for x, y ∈ P we have nxn−1 = y then nx = yn. Now 〈P,Q〉 = PQ as Q ⊂ NG(P ) so qx = yq

for q ∈ Q (and one can show that PQ is a group). As |PQ| = |P ||Q|
|P∩Q| = pk+j−l where l = |P ∩Q|.

Since P is a Sylow p-subgroup then k is the highest power of p dividing |G| then l ≥ j. Further

as P ∩ Q ⊂ Q then l ≤ j. Hence l = j and so P ∩ Q = Q, therefore Q ⊂ P . Now if Q is a

Sylow p-subgroup then we must have j = k and hence Q = P . Therefore P is the unique Sylow

p-subgroup in NG(P ).

Proof. (Of Sylow II) Let P and Q be two Sylow p-subgroups of a finite group of order mpk

(where p is prime and does not divide m). Our aim is to show that P and Q are conjugate to
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each other. Consider the collection of sets conjugate to P under the action of G:

PC = {gPg−1 | g ∈ G} = {P1, P2, . . . , Pr}

N.B. PC = orb(P ). Under conjugation by elements of P (rather than all of G) P1, P2, . . .Pr

are collected into sub-orbits. Let us think about this with the example of D3 where we take

P = {e, b}, a Sylow 2-subgroup. In this example PC = {{e, b}, {e, a2b}, {e, ab}} the orbit of

P under conjugation by G gives all the Sylow 2-subgroups in D3. Now under conjugation by

elements of P = {e, b} we find the sub-orbits:

{e, b} b−→ {e, b}, {e, a2b} b−→ {e, ab} b−→ {e, a2b}.

We see in the above example that the sub-orbits defined by conjugation with elements of P

partition PC . Returning to the proof for the general case, we will consider the sub-orbits

formed by conjugating PC with elements of P . Evidently P ∈ PC , let P1 = P and its orbit

under conjugation with P is just P : it is an orbit of length one. We will now argue that there

are no other orbits (under conjugation with P ) of length one. Suppose, to the contrary, that

there exists P2 = gPg−1 whose orbit under P is also of length one, then for x ∈ P we have

x(gPg−1)x−1 = gPg−1 as there is only one element in the P -orbit of P2 by assumption. Then,

(g−1xg)P (g−1x−1g) = P hence g−1xg ∈ NG(P ). Furthermore each element conjugate to x has

order pk, for some k ∈ Z+, therefore g−1Pg is a Sylow p-subgroup in NG(P ). By the previous

lemma, such a subgroup is unique hence g−1Pg = P and so P2 = gPg−1 = P . Contradicting

our assumption that P2 was a second element of PC with P -orbit length of one. Now

PC = orb(P ) ∪ orb(P̂2) ∪ . . . ∪ orb(P̂s)

where P , P̂2, . . . P̂s are representatives in the orbits generated by conjugation with P . We note

that |orb(P )| = 1 while |orb(Pi)| > 1:

|PC | = 1 + |orb(P̂2)|+ . . .+ |orb(P̂s)|.

By the orbit-stabiliser theorem |orb(Pi)| = |P |
|NP (Pi)| and as |P | = pk then each |orb(Pi)| is a

power of p greater than zero, i.e. |orb(Pi)| mod p = 0. Therefore |PC | = 1 mod p. Recall that

Q is a second Sylow p-subgroup in G and now consider the orbits of elements of PC brought

about by conjugation with elements of Q. As Q ⊂ G then this is an automorphism of PC . The

orbits under Q all have length some power of p (as |Q| = pk), and since |PC | = 1 mod p then

there is one Q-orbit in PC which is of length one. Suppose that this orbit contains P2 then

for all w ∈ Q we have wP2w
−1 = w(gPg−1)w−1 = gPg−1. As argued earlier, g−1wg ∈ NG(P )

hence g−1Qg = P and therefore Q = gPg−1. Hence all Sylow p-subgroups are conjugate to

each other.
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Example 17.6. |D5| = 10 = 2.5, it has a Sylow 2-subgroup 〈b〉 = P . Under conjugation of P

with D5 we find

PC = {{e, b}, {e, a2b}, {e, a4b}, {e, ab}, {e, a3b}}.

Now under conjugation with elements of P these five sets have the P -orbits:

{e, b} b−→ {e, b}, {e, a2b} b←→ {e, a3b}, {e, a4b} b←→ {e, ab}.

So the number of Sylow 2-subgroups is 5 = 1+2+2 = 1 mod 2. D5 also has a Sylow 5-subgroup

〈a〉, which we will now take for P . Under conjugation of P with D5 we find

PC = {{e, a, a2, a3, a4}}

since 〈a〉 / D5. Hence there is just 1 = 1 mod 5 Sylow 5 subgroup.

Proof. (Of Sylow III).

(i) Consider PC = {gPg−1 | g ∈ G} we know that |PC | = 1 mod p and that each Sylow

p-subgroup is contained in PC . It only remains to show that every gPg−1 is a Sylow

p-subgroup. But as each gPg−1 is a p-group having the same number of elements as P

then every set in PC is a Sylow p-subgroup, therefore np = |PC | = 1 mod p.

(ii) As every Sylow p-subgroup is in the orbit of P under conjugation with elements of G, the

orbit-stabiliser theorem tells us that np = |orb(P )| = |G|
|NG(P )| .

(iii) As P ⊂ NG(P ) then |NG(P )| ≥ pk and np = |G|
|NG(P )| implies that |NG(P )| = |G|

np
= m

np
pk ≥

pk where we have used np = 1 mod p, so np does not divide pk. Consequently we have

np divides m.

Example 17.7. |D3| = 6 = 2.3

- n2 = 1 mod 2 = 1, 3, 5 . . . ; n2 divides 3 so n2 = 1 or 3; n2 = 6
|ND3

(P )| implies that

|ND3(P )| = 2 or 6. Consider the Sylow 2-subgroup 〈b〉 then as a〈b〉a−1 = {e, aba−1} =

{e, a2b} 6= 〈b〉 then |ND3(P )| 6= 6 so must equal 2. Hence n2 = 3.

- n3 = 1 mod 3 = 1, 4, . . .; n3 divides 2 hence n3 = 1.

Comment(s). 1. If a Sylow p-subgroup is a normal group then it is the only Sylow p-

subgroup as if P /G then gPg−1 = P hence there are no different conjugate groups. Also

if there is only one Sylow p-subgroup then it is a normal subgroup as np = 1 implies that

gPg−1 = P for all g ∈ G. E.g. 〈a〉 ∈ D3 is the only Sylow 3-subgroup hence it is normal.



CHAPTER 17. THE SYLOW THEOREMS 92

2. If G is abelian then all subgroups are normal. Hence abelian groups have unique Sylow

p-subgroups.

3. Sylow subgroups P and Q for different primes p and q can only have a trivial intersection

as P ∩ Q is a subgroup so its order divides both |P | and |Q| which is only possible if

P ∩Q = {e}.

Example 17.8. Any group of order 6 must have a Sylow 2-subgroup, P , and a Sylow 3-subgroup,

Q. Now n3 = 1, 4, . . . and n3 divides 2 so n3 = 1 therefore Q / G. Furthermore Q ∼= Z3 = 〈y〉
with y3 = e. Let P = 〈x〉 with x2 = e. As Q / G then xyx−1 ∈ Q = {e, y, y2}. If xyx−1 = e

then y = e so this case is not possible. Two cases remain:

(i) xyx−1 = y which implies that xy = yx so that the powers of xy are xy, (xy)2 = y2,

(xy)3 = x, (xy)4 = y, (xy)5 = y2x, (xy)6 = e. So in this case G ∼= Z6.

(ii) xyx−1 = y2 = y−1 so that xy = y−1x now G = 〈x, y〉 with x2 = e, y3 = e and xy = y−1x.

Hence G ∼= D3.

Example 17.9. All groups of order 15 are cyclic. As |G| = 15 = 3.5, there are Sylow 3-

subgroups and Sylow 5-subgroups. Now n3 = 1 mod 3 = 1, 4, 7, . . . and n3 divides 5 so that

n3 = 1; while n5 = 1 mod 5 = 1, 6, 11, . . . and n5 divides 3 therefore n5 = 1. Hence any group

of order 15 has a normal Sylow 3-subgroup P and a normal Sylow 5-subgroup Q. Now G has

an identity element of order 1, two elements of order 3 in P and four elements of order 5 in Q.

This leaves eight other elements. As the order of any element in G is 1, 3, 5 or 15 and there are

no more elements of orders 1, 3 or 5 in G, then the remaining eight elements all have order 15.

Hence G ∼= Z15 = 〈a〉 which contains {e} of order 1, {a5, a10} of order 3, and {a3, a6, a9, a12}
of order 5.
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TUTORIAL EXERCISES 0

In this tutorial you will work with the definition of a group. The work in this tutorial should

be studied during your first tutorial class during the second week of lectures. There is no

homework to be submitted for this tutorial.

0.1 Show that the set of all integers forms a group under the multiplication law given by

the usual addition of integer numbers. Show that it does not form a group under the

multiplication law given by the usual multiplication of integer numbers.

For the next two questions, let e, a, b be three different symbols with the relations ea =

ae = a, eb = be = b, e2 = e, a2 = e, b2 = e and aba = bab.

0.2 Show that set of different words that can be formed from these symbols, taking into

account the relations, is S = {e, a, b, ab, ba, aba}.

0.3 The set S is made into a group by the multiplication law of concatenation of words. To

show that the inverse always exist, calculate the inverse of all elements of S in terms of

elements of S.
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TUTORIAL EXERCISES I

In this tutorial you will work with finite groups of low order. The homework problem this

week contributes to your final grade on the module, it should be submitted in teaching week

3 via the link in the week 3 section of the course’s KEATS page. There are strict deadlines

for the submission of the homework problem which are detailed on the KEATS page (in the

Assessment section).

1.1 Show that the symmetric group Sn is of order n!

1.2 Show that all the matrices of the form (
1 µ

0 1

)
,

where µ is any real number, from a group if the law of composition is taken to be matrix

multiplication.

1.3 Establish the precise isomorphism between V4 and Z2 × Z2 (recall Z2 is the cyclic group

of order 2).

Homework

1.4 Show that the group D3 generated by the matrices E =

(
1 0

0 1

)
,

A =

(
−1

2
−
√

3
2√

3
2
−1

2

)
, B =

(
−1 0

0 1

)
form a group. Establish the isomorphism with S3,

seen as the set {e, a, a2, b, ab, a2b} under the relations a3 = e, b2 = e, ab = ba2.
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TUTORIAL EXERCISES II

In this tutorial you will work with subgroups, the permutation group, equivalence classes,

Lagrange’s theorem, the dihedral group and direct product groups. The homework problem

should be submitted for feedback during your tutorial.

2.1 (a) Show that all the matrices of the form(
λ µ

0 λ

)
,

where λ, µ are real numbers and λ 6= 0, form a group G if the law of composition is

taken to be matrix multiplication.

(b) Show that all the matrices of the form(
λ 0

0 λ

)
,

where λ is a real number (λ 6= 0), is a subgroup H of G. Find the right coset space

H\G.

2.2 The homogeneous modular group SL(2;Z) is

SL(2;Z) =

{
all matrices

(
a b

c d

)
: a, b, c, d ∈ Z and ad− bc = 1

}

(a) Verify that SL(2;Z) is a group.

(b) Is SL(2;Z) an abelian group and why?

(c) Is the collection of matrices (
1 n

0 1

)
,

n ∈ Z, a subgroup of SL(2,Z)?

2.3 Show that any group G of order n is isomorphic to a subgroup of the permutation group

Sn. CLUE: Associate with every element of the group G a permutation of the elements

of G using the group multiplication.
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2.4 Let H be a subgroup of G. Then an equivalence relation can be defined on G as follows:

a ∼ b, if a−1b ∈ H

where a, b ∈ G.

(a) Show that ∼ is an equivalence relation. (The equivalence classes are called left cosets

of G).

(b) Show Lagrange’s Theorem for the left cosets.

Homework

2.5 Consider the group D4 generated by two elements a, b subject to the relations

a4 = b2 = (ab)2 = e .

(a) What is the order of the group?

(b) Give the multiplication table of D4.

(c) Are the subsets H1 = {a, a2}, H2 = {e, a, a2, a3}, H3 = {e, b}, H4 = {e, ab} and

H5 = {a, b} subgroups of G?

(d) Find the right cosets of those subsets above that are subgroups of G and verify

Lagrange’s theorem.

(e) What are the orders of D4 ×D4 and Z3 ×D4 groups?
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TUTORIAL EXERCISES III

The topics covered in this problem set include normal subgroups, homomorphisms, left and

right cosets and conjugacy classes. The homework problem this week contributes to your final

grade on the module, it should be submitted in teaching week 5 via the link in the week 5

section of the course’s KEATS page. There are strict deadlines for the submission of the home-

work problem which are detailed on the KEATS page (in the Assessment section).

3.1 Let C be the complex numbers, C× = C \ {0} be the group of non-zero complex numbers

with multiplication law the standard complex number multiplication. Let C1 be the

subgroup of C× which is all complex numbers z with absolute value 1, i.e. |z| = 1. Show

that:

(a) That C1 is a normal subgroup of C×.

(b) That there exists a group homomorphism from C× onto R+ (the group of positive

real numbers with multiplication law the multiplication of real numbers).

(c) That the kernel of this homomorphism is C1.

(d) That C×/C1 is isomorphic to R+.

(e) That C× is isomorphic to C1 × R+.

3.2 Consider S to be the set of all the transformations sa,b : R→ R for all a ∈ R× := R \ {0}
and b ∈ R, where:

sa,b : x 7→ x′ = ax+ b.

(a) Show that S is a group.

(b) Let S1 be all transformations of the form x 7→ x′ = x+b and S2 be all transformations

of the form x 7→ x′ = ax. Show that S1 and S2 are subgroups of S.

(c) Show that S1 is a normal subgroup.

(d) S/S1 is a group, which group is it (i.e. what group is it isomorphic to)?

Homework

3.3 Consider the group S3 = {e, a, a2, b, ab, a2b} with a and b subject to ba = a2b, ba2 =

ab, a3 = e, b2 = e. Consider the cyclic subgroup H = 〈a〉 = {e, a, a2}.

(a) Find the right and left cosets of H in S3 and verify Lagrange’s theorem.
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(b) Find the conjugacy classes of S3.

(c) Show that H is a normal subgroup.

(d) What group is G̃ = S3/H (i.e., again, what standard group is it isomorphic to)?

CLUE: Do the latter by finding a suitable homomorphism φ : G→ G̃ with ker(φ) =

H.

(f) Are the subgroups {e, b} and {e, ab} normal?
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TUTORIAL EXERCISES IV

The topics covered in this problem set include automorphisms, the centre of a group, quotient

groups and the homomorphism theorem. The homework problem should be submitted in your

tutorial for feedback.

4.1 (a) Let H be a subgroup of a group G. Give the defining property satisfied by H for it

to be a normal subgroup of G.

(b) Consider the dihedral group D6 =< a, b > subject to the relations a6 = e, b2 = e

and ab = ba−1, where e is the identity element. Construct the centre of D6, denoted

Z(D6), and show that it is a normal subgroup of D6.

(c) Find the left cosets of D6 with respect to Z(D6).

An associative multiplication law for subsets S1 and S2 of a group G is defined by

S1S2 = {s1s2| ∀ s1 ∈ S1,∀ s2 ∈ S2}.

(d) Show that the set D6/Z(D6) of left cosets forms a group when the product of two

cosets is given by the associative multiplication law for sets defined above. Up to

isomorphism, identify the group.

4.2 This question concerns the proof of the homomorphism theorem.

(a) Let G be a group and H ⊂ G a normal subgroup. We define an associative multi-

plication law for subsets S1 and S2 of G as

S1S2 = {s1s2 | s1 ∈ S1, s2 ∈ S2}.

Show that the set of left cosets G/H forms a group under this multiplication law.

(b) Let φ : G1 → G2 be a homomorphism where G1 and G2 are both groups. Show that

kerφ is a normal subgroup of G1.

(c) Let φ : G1 → G2 be a surjective homomorphism. Show that G1/ kerφ ∼= G2.

Considering the map ψ given by ψ(g1H) ≡ φ(g1) for a suitable normal subgroup H

will be useful.

4.3 Let G be a group, Aut(G) its automorphism group and Inn(G) the group of inner auto-

morphisms. Show that:
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(a) Inn(G) is a normal subgroup of Aut(G).

(b) Inn(G) ∼= G/Z(G) where Z(G) is the centre of G. (Clue: Use the map

ϕ : G→Inn(G)

g → αg ,

where αg(h) = ghg−1 for every h ∈ G.)

Homework

4.4 Consider the dihedral group

D4 = 〈a, b〉 = {e, a, a2, a3, b, ab, a2b, a3b}

(a) Find the conjugacy classes of D4.

(b) Find the normal proper subgroups of D4.

(c) Find the centre Z(D4).

(d) Find the groups D4/H where H is a normal proper subgroup of D4.

(e) Specify the group of inner automorphisms I(D4) of D4 (you may use the answer to

question 4.3).
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TUTORIAL EXERCISES V

The topics covered in this problem set include classical matrix groups, the centre of a group,

the dimension of a matrix group and the homomorphism theorem. The homework problem

should be submitted in your tutorial for feedback.

5.1 (a) Show that the set

GL+(n;R) = {A ∈ GL(n,R) : detA > 0}

is a subgroup of GL(n;R).

(b) Show that GL+(n;R) is a normal subgroup of GL(n;R)

(c) Determine the group to which GL(n;R)/GL+(n;R) is isomorphic.

5.2 Find which group is isomorphic to the quotient groupGL+(n;R)/Z
(
GL+(n;R)

)
for n odd,

where Z
(
GL+(n;R)

)
is the centre of GL+(n;R). Note that Z

(
GL+(n;R)

)
= {λ1;λ ∈

R+}. (Hint: find a suitable homomorphism whose kernel is Z
(
GL+(n;R)

)
).

5.3 Using the homomorphism theorem or otherwise, show that

GL(N,C)/Z(GL(N,C) ∼= SL(N,C)/Z(SL(N,C)).

5.4 The modular group ML(2;Z) is

ML(2;Z) =

{
all matrices

(
a b

c d

)
: a, b, c, d ∈ Z and ad− bc ∈ {1,−1}

}
(a) Show that ML(2;Z) is a group.

(b) Find the centre Z(ML(2;Z)) of this group.

(c) Find the centre of SL(2;Z) := {A ∈ML(2;Z) : det(A) = 1}.

Homework

5.5 Consider the groups SU(N) and U(N).

(a) Show that

U(N)/SU(N) ∼= U(1) ,

where U(1) := {z ∈ C : |z| = 1}.

(b) Show that

U(N) ∼=
(
SU(N)× U(1)

)
/ZN .
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TUTORIAL EXERCISES VI

The topics covered in this problem set include matrix groups and their structure. The home-

work problem should be submitted in your tutorial for feedback.

6.1 Consider the groups SO(2) and U(1).

(a) Show that SO(2) ∼= U(1).

(b) Show that Z2 = {1,−1} equipped with the standard multiplication is a normal

subgroup of U(1).

(c) Find the group U(1)/Z2 (that is, find which standard group it is isomorphic to).

6.2 Consider the sets M2 and N2 given by the matrices

M2 :=

{(
λ−1 0

µ λ

)
: µ, λ ∈ R, λ 6= 0

}

and

N2 :=

{(
1 0

µ 1

)
: µ ∈ R

}
respectively.

(a) Show that M2 and N2 are groups under matrix multiplication.

(b) Show that N2 is a normal subgroup of M2 both directly and by establishing that N2

is the kernel of a group homomorphism.

(c) Find the coset space M2/N2 using the definition of the left cosets of M2 with respect

to N2.

(d) Find the group M2/N2.

6.3 Find the centres of SU(N), N ≥ 2 and U(N), N ≥ 2. What are the groups SU(N)/Z(SU(N))

and U(N)/Z(U(N)) isomorphic to?

Homework

6.4 (a) State the definition of the matrix group GL(N,C).
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(b) Prove that SL(N,C) is a normal subgroup of GL(N,C). Identify the quotient group

GL(N,C)/SL(N,C) giving a clear explanation of your answer.

Let a Möbius transformation f : GL(2,C)× C̄→ C̄ where C̄ = C ∪∞ be given by

f(A, z) =
az + b

cz + d

where A =

(
a b

c d

)
∈ GL(2,C).

(c) Let fA : C̄ → C̄ be given by fA(z) = f(A, z), so that fA is a transformation of C̄.

Prove that fA1 ◦ fA2 = fA1A2 for A1, A2 ∈ GL(2,C) where ◦ denotes the composition

of maps.

(d) Consider the homomorphism φ : GL(2,C)→ Aut(C̄) given by φ(A) = fA. Compute

and identify the kernel of φ. Hence prove that

Aut(C̄) ∼=
GL(2,C)

ker(φ)

You may assume that φ is a homomorphism whose image is Aut(C̄).

(e) For A =

(
eiθ/2 0

0 e−iθ/2

)
∈ SU(2) ⊂ GL(2,C), show that fA is a rotation of C.

Now by considering the map ψ : C̄→ S2 ⊂ R3 given by

ψ(z) = (
2Re(z)

1 + |z|2
,

2Im(z)

1 + |z|2
,
−1 + |z|2

1 + |z|2
)

show that fA induces a rotation R of the sphere S2 by Rψ(z) = ψ(fA(z)). Identify

another element of SU(2) that induces the same rotation R on S2.
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TUTORIAL EXERCISES VII

The topics covered in this problem set include SU(2), the Pauli matrices and the Euclidean

group. The homework problem this week contributes to your final grade on the module, it

should be submitted in teaching week 9 via the link in the week 9 section of the course’s

KEATS page. There are strict deadlines for the submission of the homework problem which

are detailed on the KEATS page (in the Assessment section).

7.1 You can use without proof all properties of homomorphisms. Consider, for any g ∈ U(1),

the automorphism ϕg : SU(N) → SU(N) given by ϕg(h) = ω(g)hω(g)−1, h ∈ SU(N),

where ω : U(1)→ U(N) is the map

ω(z) =


z 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Show that the map ψ : U(1)→ Aut(SU(N)) given by ψ(g) = ϕg is a homomorphism (no

need to prove that ϕg is an automorphism).

Show that U(N) ∼= U(1)nψ SU(N). For this, you may make use of the map Φ acting on

U(N) given by

Φ(x) = (det(x), xκ(x)−1), x ∈ U(N),

where κ = ω ◦ det. Prove all necessary properties of Φ and κ.

7.2 Show the following:

(a) Without using the Pauli matrices, verify directly that the parameters of SU(2) lie

on the three sphere S3.

(b) Let U = t+ ixxx.σσσ, verify that

yyy′ · σσσ = U(yyy · σσσ)U † = (t2 − ‖xxx‖2)yyy · σσσ + 2(xxx.yyy)xxx · σσσ − 2t(xxx ∧ yyy) · σσσ

where xxx ∧ yyy denotes the vector-product of xxx with yyy.

7.3 Find the transformations yyy → yyy′ ≡ Ruyyy induced by yyy′ · σσσ = U(yyy · σσσ)U † for
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(a) U =

(
e−

i
2
α 0

0 e
i
2
α

)
.

(b) U =

(
cos 1

2
β − sin 1

2
β

sin 1
2
β cos 1

2
β

)
.

Homework

7.4 In this question you will prove that Dn
∼= Z2 nψ Zn.

(a) Dn is the group 〈a, b〉 with an = e, b2 = e and ab = ba−1. Prove that 〈a〉 is a normal

subgroup of Dn

Let ψ : Z2 → Aut(Zn) be given by ψ(g) = φg where φg(h) = ghg−1 for all g ∈ 〈b〉 and

h ∈ 〈a〉.

(b) Show that φg for each g ∈ 〈b〉 is an automorphism of Zn ∼= 〈a〉.

(c) Show that ψ is a homomorphism.

Consider the map Φ : Dn → Z2nψZn given by Φ(apbq) = (bq, ap), where p ∈ {0, 1, 2, . . . n−
1} and q ∈ {0, 1}.

(d) Show that Φ is an isomorphism.
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TUTORIAL EXERCISES VIII

The topics covered in this problem set include the semi-direct product; and the Euclidean

group. The homework problem should be submitted in your tutorial for feedback.

8.1 For this question, you can use without proof all basic properties of homomorphisms.

Consider, for any z ∈ Z2 = {−1, 1}, the automorphism ϕz : SO(2) → SO(2) given by

ϕz(B) = ω(z)B ω(z) for any B ∈ SO(2), where

ω(z) =

(
z 0

0 1

)
.

(a) As stated above, ϕz is an automorphism of SO(2) for each individual z. Now show

that the map ψ : Z2 → Aut(SO(2)) given by ψ(z) = ϕz is a homomorphism.

(b) Show that O(2) ∼= Z2 nψ SO(2). For this, you may make use of the map Φ acting

on O(2) by

Φ(A) = ( det(A) , A ω(det(A)) ), A ∈ O(2).

Prove all necessary properties of Φ.

8.2 The Euclidean group is

EN = O(N) nψ RN

where ψ : O(N) → Aut(RN) given by ψ(A) = ϕA is a homomorphism, with ϕA defined

by

ϕA(bbb) = Abbb.

where A ∈ O(N) and bbb ∈ RN .

(a) Demonstrate explicitly that EN is a group.

(b) Prove that the group of translations of the Euclidean plane, RN is a normal subgroup

of EN .

(c) Construct an isomorphism between the quotient group EN

RN and the orthogonal group

O(N).

(d) Compute the real dimension of the Euclidean group EN .
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Homework

8.3 Define the cross product of two vectors V i and T i in R3 as (V × T )i =
∑

j,k εijkV
jT k,

where the anti-symmetric symbol εijk for i, j, k ∈ {1, 2, 3} is defined by

ε123 = ε231 = ε312 = 1,

ε321 = ε213 = ε132 = −1,

and all other elements are zero. Consider the transformation

GL(3,R)× R3 → R3

(R,X)→ RX

Find the conditions on the matrices R such that (V × T ) transforms as a vector under

matrix multiplication. For this, use, after you prove it, the identity∑
i,j,k

εijkAimAjnAkp = detAεmnp,

which is valid for any 3×3 matrix A. Then generalise this to the following case: Consider

the transformation

GL(n,R)× Rn → Rn

(R,X)→ RX

Find the conditions on the matrices R such that

Y i =
∑

j1,j2,...,jn−1

εij1j2...jn−1X
j1
1 X

j2
2 . . . X

jn−1

n−1

transforms as a vector under the above transformation, X1, . . . , Xn−1 are vectors in Rn.
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TUTORIAL EXERCISES IX

The topics covered in this problem set include the Poincaré group; the Lorentz group; matrix

groups; infinitesimal transformations; G-sets, stabilisers and orbits.

9.1 The Poincaré group, P consists of translations and Lorentz rotations in R4 and so its

elements can be denoted by the symbol (aµ,Λµ
ν) for aµ ∈ R4, Λµ

ν ∈ L where L is

in the Lorentz group (the Lorentz group is the group of 4 by 4 matrices Λ which satisfy∑3
µ,ν=0 ηµ,νΛ

µ
αΛν

β = ηα,β where ηµ,ν is −1 if µ = ν = 0, it is 1 if µ = ν ∈ {1, 2, 3} and

it is zero otherwise). Given that the action of such an element of the Poincare group on

xµ ∈ R4 is given by

xµ′ =
∑
ν

Λµ
νx

ν + aµ

calculate the composition rule for the Poincare group. Show that all such transformations

actually form a group, assuming that the Lorentz group indeed forms a group.

Note

For continuous groups (Lie groups) there is a simple description of the elements that lie near

the identity. For this one considers a small number ε and writes the elements of G in the

neighbourhood of identity e as

A = e+ εa .

Then one can proceed to investigate various properties of the group G working in first order in

ε. As an example consider the inverse of A. Assuming that A−1 is also near the identity, one

can write

A−1 = e+ εb .

Then the condition

A−1A = e

implies that

(e+ εb)(e+ εa) = e+ ε(a+ b) +O(ε2) = e

Thus

b = −a .

Using the above proceed to answer questions [9.2] and [9.3] below.
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9.2 Write a matrix R in infinitesimal form i.e. R = I + εr and working to lowest order in ε

show that

(a) R is unitary implies r† = −r.

(b) R is a real orthogonal matrix implies that rT = −r.

(c) detR = 1 implies Tr(r) = 0 (you may assume that R is a diagonalisable matrix,

and you may wish to use the formula: detR = eTr logR). Consequently, find a

parametrisation of SO(N) and SU(N) in the infinitesimal neighbourhood of the

identity element.

9.3 Consider the infinitesimal transformation induced by elements of the type R = e + εΛ,

x′i = xi+ε
∑N

j=1 Λ j
i xj, and find the conditions on the matrix Λ j

i to leave the line element

‖x‖2 =
∑N

i=1 xixi invariant, i.e.
∑

i x
′
ix
′
i =

∑
i xixi to lowest order in ε.

9.4 Consider the set of all real polynomials in n variables x1, x2, . . .xn. This set can be

equipped with an action for the symmetric group Sn, where the permutation π ∈ Sn

permutes the variables as x1 7→ xπ(1), x2 7→ xπ(2), . . .xn 7→ xπ(n). Show that this satisfies

the defining properties of a G-set.

9.5 For any G-set X and x ∈ X, prove that the stabiliser Gx is a subgroup of G.

Homework

9.6 Let X be the set of all subsets of G. Construct all the orbits in X generated when

(a) g · x = gx for x ∈ X when G = Z3, and

(b) g · x = gx for x ∈ X when G = D3.

For the final part of the question, let X be the set of all subgroups of G. Construct all

the orbits in X generated when

(c) g · x = gxg−1 for x ∈ X when G = D3.
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TUTORIAL EXERCISES X

The topics covered in this problem set include G-sets, the orbit-stabiliser theorem, and the

Sylow theorems.

10.1 Let G = GL(N,R) and let X = RN , show that X equipped with the action M ·xxx = Mxxx

where M ∈ G and xxx ∈ X is a G-set.

10.2 1 Let V be a complex vector space with basis {v1, v2, . . . vn} and let G = Sn, the symmetric

group of all permutations of n elements. For π ∈ G and any v =
∑n

k=1 λkvk ∈ V , define

the action

π · v =
n∑
k=1

λkvπ(k).

Show that V is a G-set, and find both orb(v) and Gv when

(a) n = 4 and v = v1 + v2 + v3 + v4; and

(b) n = 4 and v = v1 + v3.

10.3 Consider the G-set X = D10 with action g · x = gxg−1. Compute

(a) the centralisers of every element in D10; and

(b) construct all the conjugacy classes of D10.

[Hint: find Z(D10) and use the orbit-stabiliser theorem.]

10.4 What do the Sylow theorems allow you to determine about the Sylow 2-subgroups and

Sylow 3-subgroups of any group of order 12?

10.5 Let p, q be primes with p > q. Prove that any group G of order pq has a normal Sylow

p-subgroup. Show that G is a semi-direct product group.

Homework

10.6 Prove that every group of order 35 is cyclic.

1Question due to John E. Humphreys.
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