
Geometry of Surfaces Homework 1
Instructor: Ling

Due: None

Exercises for First class 0118

((⋆) means this exercise may be a little hard, do it carefully!)

1. Is γ(t) = (t2, t4) a parametrization of the parabola y = x2?

2. Find a parametrization of the following level curve:

x2

4
+
y2

9
= 1.

3. Find the Cartesian equations of the following parametrized curves:

(i) γ(t) =
(
cos2 t, sin2 t

)
;

(ii) γ(t) =
(
et, t2

)
.

4. Calculate the tangent vectors of the curves in Exercise 3.

5. (⋆) The normal line to a curve at a point p is the straight line passing through p perpendicular to the
tangent line at p. Find the tangent and normal lines to the curve γ(t) = (2 cos t− cos 2t, 2 sin t− sin 2t)
at the point corresponding to t = π/4.

6. Calculate the arc-length of the catenary γ(t) = (t, cosh t) starting at the point (0, 1).

7. Show that the following curves are unit-speed:

(i) γ(t) =
(

1
3 (1 + t)3/2, 13 (1− t)3/2, t√

2

)
.

(ii) γ(t) =
(
4
5 cos t, 1− sin t,− 3

5 cos t
)
.

8. (⋆) This exercise shows that a straight line is the shortest curve joining two given points. Let p and
q be the two points, and let γ be a curve passing through both, say γ(a) = p, γ(b) = q, where a < b.
Show that, if u is any unit vector, then there is

γ̇ · u ≤ ∥γ̇∥,

and deduce that

(q− p) · u ≤
∫ b

a

∥γ̇∥dt.

By taking u = (q− p)/∥q− p∥, show that the length of the part of γ between p and q is at least the
straight line distance ∥q− p∥.

Hint: Use Cauchy-Schwarz inequality and the fundamental theorem of calculus.



9. Which of the following curves are regular?

(i) γ(t) =
(
cos2 t, sin2 t

)
for t ∈ R.

(ii) The same curve as in (i), but with 0 < t < π/2.

(iii) γ(t) = (t, cosh t) for t ∈ R.
Find unit-speed reparametrizations of the regular curve(s).

10. The simplest type of singular point of a curve γ is an ordinary cusp: a point p of γ, corresponding to a
parameter value t0, say, is an ordinary cusp if γ̇ (t0) = 0 and the vectors γ̈ (t0) and

...
γ (t0) are linearly

independent (in particular, these vectors must both be nonzero). Show that: The curve γ(t) = (tm, tn),
where m and n are positive integers, has an ordinary cusp at the origin if and only if (m,n) = (2, 3)
or (3, 2).

11. (⋆) Give an example to show that a reparametrization of a closed curve need not be closed.

12. Show that if a curve γ is T1-periodic and T2-periodic, then it is (k1T1 + k2T2)-periodic for any integers
k1, k2.

13. Let γ : R → Rn be a curve and suppose that T0 is the smallest positive number such that γ is
T0-periodic. Prove that γ is T -periodic if and only if T = kT0 for some integer k.

14. (⋆) Let γ : R → Rn be a non-constant curve that is T -periodic for some T > 0. Show that γ is closed.



Geometry of Surfaces Homework 2
Instructor: Ling

Due: None

Exercises for Second class 0201

((⋆) means this exercise may be a little hard, do it carefully!)

1. Compute the curvature of the following curves:

(i) γ(t) =
(

1
3 (1 + t)3/2, 13 (1− t)3/2, t√

2

)
.

(ii) γ(t) =
(
4
5 cos t, 1− sin t,− 3

5 cos t
)
.

(iii) γ(t) = (t, cosh t)

(iv) γ(t) =
(
cos3 t, sin3 t

)
2. (⋆) Show that, if the curvature κ(t) of a regular curve γ(t) is > 0 everywhere, then κ(t) is a smooth

function of t. Give an example to show that this may not be the case without the assumption that
κ > 0.

3. Show that, if γ is a unit-speed plane curve,

ṅs = −κst.

4. Show that the signed curvature of any regular plane curve γ(t) is a smooth function of t. (Compare
with Exercise 2.)

5. Let γ(t) be a regular plane curve and let λ be a constant. The parallel curve γλ of γ is defined by

γλ(t) = γ(t) + λns(t).

Show that, if λκs(t) ̸= 1 for all values of t, then γλ is a regular curve and that its signed curvature is
κs/ |1− λκs|.

6. (⋆) Another approach to the curvature of a unit-speed plane curve γ at a point γ (s0) is to look for the
’best approximating circle’ at this point. We can then define the curvature of γ to be the reciprocal of
the radius of this circle.

Carry out this programme by showing that the centre of the circle which passes through three nearby
points γ (s0) and γ (s0 ± δs) on γ approaches the point

ϵ (s0) = γ (s0) +
1

κs (s0)
ns (s0)

as δs tends to zero. The circle C with centre ϵ (s0) passing through γ (s0) is called the osculating circle
to γ at the point γ (s0), and ϵ (s0) is called the centre of curvature of γ at γ (s0). The radius of C is
1/ |κs (s0)| = 1/κ (s0), where κ is the curvature of γ-this is called the radius of curvature of γ at γ (s0).

7. (⋆) A string of length ℓ is attached to the point γ(0) of a unit-speed plane curve γ(s). Show that when
the string is wound onto the curve while being kept taught, its endpoint traces out the curve

ι(s) = γ(s) + (ℓ− s)γ̇(s),



where 0 < s < ℓ and a dot denotes d/ds. The curve ι is called the involute of γ (if γ is any regular
plane curve, we define its involute to be that of a unit-speed reparametrization of γ ). Suppose that
the signed curvature κs of γ is never zero, say κs(s) > 0 for all s. Show that the signed curvature of ι
is 1/(ℓ− s).

8. Compute κ, τ, t,n and b for each of the following curves, and verify that the Frenet-Serret equations
are satisfied:

(i) γ(t) =
(

1
3 (1 + t)3/2, 13 (1− t)3/2, t√

2

)
.

(ii) γ(t) =
(
4
5 cos t, 1− sin t,− 3

5 cos t
)
.

Show that the curve in (ii) is a circle, and find its centre, radius and the plane in which it lies.

9. (⋆) Let γ(t) be a unit-speed curve with κ(t) > 0 and τ(t) ̸= 0 for all t. Show that, if γ is spherical, i.e.,
if it lies on the surface of a sphere, then

τ

κ
=

d

ds

(
κ̇

τκ2

)
.

Conversely, show that if the equation holds, then

ρ2 + (ρ̇σ)2 = r2

for some (positive) constant r, where ρ = 1/κ and σ = 1/τ , and deduce that γ lies on a sphere of
radius r.

10. Let P be an n × n orthogonal matrix and let a ∈ Rn, so that M(v) = Pv + a is an isometry of R3.
Show that, if γ is a unit-speed curve in Rn, the curve Γ = M(γ) is also unit-speed. Show also that,
if t,n,b and T,N,B are the tangent vector, principal normal and binormal of γ and Γ, respectively,
then T = P t,N = Pn and B = Pb.

11. (⋆) Let (aij) be a skew-symmetric 3 × 3 matrix (i.e., aij = −aji for all i, j ). Let v1,v2 and v3 be
smooth functions of a parameter s satisfying the differential equations

v̇i =

3∑
j=1

aijvj

for i = 1, 2 and 3 , and suppose that for some parameter value s0 the vectors v1 (s0) ,v2 (s0) and v3 (s0)
are orthonormal. Show that the vectors v1(s),v2(s) and v3(s) are orthonormal for all values of s.

12. Show that any open disc in the xy-plane is a surface. Show that every open subset of a surface is a
surface.



Geometry of Surfaces Homework 3
Instructor: Ling

Due: None

Exercises for Third class 0208

((⋆) means this exercise may be a little hard, do it carefully!)

1. Show that, if f(x, y) is a smooth function, its graph{
(x, y, z) ∈ R3 | z = f(x, y)

}
is a smooth surface with atlas consisting of the single regular surface patch

σ(u, v) = (u, v, f(u, v)).

2. Which of the following are regular surface patches (in each case, u, v ∈ R)
(i) σ(u, v) = (u, v, uv).

(ii) σ(u, v) =
(
u, v2, v3

)
.

(iii) σ(u, v) =
(
u+ u2, v, v2

)
?

3. Show that the ellipsoid
x2

p2
+
y2

q2
+
z2

r2
= 1,

where p, q and r are non-zero constants, is a smooth surface.

4. Find the equation of the tangent plane of each of the following surface patches at the indicated points:

(i) σ(u, v) =
(
u, v, u2 − v2

)
, (1, 1, 0).

(ii) σ(r, θ) =
(
r cosh θ, r sinh θ, r2

)
, (1, 0, 1).

5. Show that, if σ(u, v) is a surface patch, the set of linear combinations of σu and σv is unchanged when
σ is reparametrized.

6. (⋆) Let S be a surface, let p ∈ S and let F : R3 → R be a smooth function. Let ∇SF be the
perpendicular projection of the gradient ∇F = (Fx, Fy, Fz) of F onto TpS. Show that, if γ is any
curve on S passing through p when t = t0, say,

(∇SF ) · γ̇ (t0) =
d

dt

∣∣∣∣
t=t0

F (γ(t)).

Deduce that ∇SF = 0 if the restriction of F to S has a local maximum or a local minimum at p.

7. Let f : S1 → S2 be a local diffeomorphism and let γ be a regular curve on S1. Show that f ◦ γ is a
regular curve on S2.

8. Calculate the first fundamental forms of the following surfaces:

(i) σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).

(ii) σ(u, v) =
(
u− v, u+ v, u2 + v2

)
.

(iii) σ(u, v) = (coshu, sinhu, v).

(iv) σ(u, v) =
(
u, v, u2 + v2

)
.

What kinds of surfaces are these?



9. Show that applying an isometry of R3 to a surface does not change its first fundamental form. What
is the effect of a dilation (i.e., a mapR3 → R3 of the form v 7→ av for some constant a ̸= 0)?

10. Suppose that a surface patch σ̃(ũ, ṽ) is a reparametrization of a surface patch σ(u, v), and let

Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2 and Edu2 + 2Fdudv +Gdv2

be their first fundamental forms. Show that:

(i) du = ∂u
∂ũdũ+ ∂u

∂ṽ dṽ, dv = ∂v
∂ũdũ+ ∂v

∂ṽdṽ.

(ii) If

J =

(
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)
is the Jacobian matrix of the reparametrization map (ũ, ṽ) 7→ (u, v), and J t is the transpose of J , then(

Ẽ F̃

F̃ G̃

)
= J t

(
E F
F G

)
J.
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Exercises for Fourth class 0215

((⋆) means this exercise may be a little hard, do it carefully!)

1. Calculate the first fundamental forms of the following surfaces:

(i) σ(u, v) = (sinhu sinh v, sinhu cosh v, sinhu).

(ii) σ(u, v) =
(
u− v, u+ v, u2 + v2

)
.

(iii) σ(u, v) = (coshu, sinhu, v).

(iv) σ(u, v) =
(
u, v, u2 + v2

)
.

What kinds of surfaces are these?

2. Show that applying an isometry of R3 to a surface does not change its first fundamental form. What
is the effect of a dilation (i.e., a mapR3 → R3 of the form v 7→ av for some constant a ̸= 0)?

3. Suppose that a surface patch σ̃(ũ, ṽ) is a reparametrization of a surface patch σ(u, v), and let

Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2 and Edu2 + 2Fdudv +Gdv2

be their first fundamental forms. Show that:

(i) du = ∂u
∂ũdũ+ ∂u

∂ṽ dṽ, dv = ∂v
∂ũdũ+ ∂v

∂ṽdṽ.

(ii) If

J =

(
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

)
is the Jacobian matrix of the reparametrization map (ũ, ṽ) 7→ (u, v), and J t is the transpose of J , then(

Ẽ F̃

F̃ G̃

)
= J t

(
E F
F G

)
J.

4. Show that every local isometry is conformal. Give an example of a conformal map that is not a local
isometry.

5. Show that Enneper’s surface

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
is conformally parametrized.

6. (⋆) Let Φ : U → V be a diffeomorphism between open subsets of R2. Write

Φ(u, v) = (f(u, v), g(u, v)),

where f and g are smooth functions on the uv-plane. Show that Φ is conformal if and only if either
(fu = gv and fv = −gu) or (fu = −gv and fv = gu). Show that, if J(Φ) is the Jacobian matrix of Φ,
then det(J(Φ)) > 0 in the first case and det(J(Φ)) < 0 in the second case.

7. Compute the second fundamental form of the elliptic paraboloid

σ(u, v) =
(
u, v, u2 + v2

)
.



8. Suppose that the second fundamental form of a surface patch σ is zero everywhere. Prove that σ is
an open subset of a plane. This is the analogue for surfaces of the theorem that a curve with zero
curvature everywhere is part of a straight line.

9. Let a surface patch σ̃(ũ, ṽ) be a reparametrization of a surface patch σ(u, v) with reparametrization
map(u, v) = Φ(ũ, ṽ). Prove that (

L̃ M̃

M̃ Ñ

)
= ±J t

(
L M
M N

)
J,

where J is the Jacobian matrix of Φ and we take the plus sign if det(J) > 0 and the minus sign
if det(J) < 0. Deduce from Exercise 6.1.4 that the second fundamental form of a surface patch is
unchanged by a reparametrization of the patch which preserves its orientation.
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Exercises for Fifth class 0222

((⋆) means this exercise may be a little hard, do it carefully!)

1. Compute the second fundamental form of the elliptic paraboloid

σ(u, v) =
(
u, v, u2 + v2

)
.

2. Suppose that the second fundamental form of a surface patch σ is zero everywhere. Prove that σ is
an open subset of a plane. This is the analogue for surfaces of the theorem that a curve with zero
curvature everywhere is part of a straight line.

3. Calculate the Gauss map G of the paraboloid S with equation z = x2 + y2. What is the image of G?

4. (⋆)Let γ be a regular, but not necessarily unit-speed, curve on a surface. Prove that (with the usual
notation) the normal and geodesic curvatures of γ are

κn =
⟨⟨γ̇, γ̇⟩⟩
⟨γ̇, γ̇⟩

and κg =
γ̈ · (N× γ̇)

⟨γ̇, γ̇⟩3/2
.

5. Show that the normal curvature of any curve on a sphere of radius r is ±1/r.

6. Calculate the principal curvatures of the helicoid

σ(u, v) = (v cosu, v sinu, λu) .

7. (⋆)Show that, if γ(t) = σ(u(t), v(t)) is a unit-speed curve on a surface patch σ with first fundamental
form Edu2 + 2Fdudv +Gdv2, the geodesic curvature of γ is

κg = (v̈u̇− v̇ü)
√
EG− F 2 +Au̇3 +Bu̇2v̇ + Cu̇v̇2 +Dv̇3,

where A,B,C and D can be expressed in terms of E,F,G and their derivatives. Find A,B,C,D
explicitly when F = 0.

8. A curve γ on a surface S is called asymptotic if its normal curvature is everywhere zero. Show that
any straight line on a surface is an asymptotic curve. Show also that a curve γ with positive curvature
is asymptotic if and only if its binormal b is parallel to the unit normal of S at all points of γ.

9. Prove that the asymptotic curves on the surface

σ(u, v) = (u cos v, u sin v, lnu)

are given by
lnu = ±(v + c),

where c is an arbitrary constant.
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Exercises for Sixth class 0301

((⋆) means this exercise may be a little hard, do it carefully!)

1. Show that the Gaussian and mean curvatures of the surface z = f(x, y), where f is a smooth function,
are

K =
fxxfyy − f2xy(
1 + f2x + f2y

)2 , H =

(
1 + f2y

)
fxx − 2fxfyfxy +

(
1 + f2x

)
fyy

2
(
1 + f2x + f2y

)3/2 .

2. Show that the Gaussian and mean curvatures of a surface S are smooth functions on S.

3. Show the Gaussian curvature of a ruled surface

σ(u, v) = γ(u) + vδ(u)

is non-positive.

4. In the notation of Exercise 3, show that if δ is the principal normal n of γ or its binormal b, then
K = 0 if and only if γ is planar.

5. (⋆) Let σ : U → R3 be a patch of a surface S. Show that the image under the Gauss map of the part
σ(R) of S corresponding to a region R ⊆ U has area∫

R

|K|dAσ

where K is the Gaussian curvature of S.

6. Prove that any geodesic has constant speed.

7. (⋆) Let γ(t) be a geodesic on an ellipsoid S. Let 2R(t) be the length of the diameter of S parallel to
γ̇(t), and let S(t) be the distance from the centre of S to the tangent plane Tγ(t)S. Show that the
curvature of γ is S(t)/R(t)2, and that the product R(t)S(t) is independent of t.

8. (⋆) Let S1 and S2 be two surfaces that intersect in a curve C, and let γ be a unit-speed parametrization
of C.
(i) Show that if γ is a geodesic on both S1 and S2 and if the curvature of γ is nowhere zero, then S1

ad S2 touch along γ (i.e., they have the same tangent plane at each point of C ). Give an example of
this situation.

(ii) Show that if S1 and S2 intersect orthogonally at each point of C, then γ is a geodesic on S1 if and
only if Ṅ2 is parallel to N1 at each point of C (where N1 and N2 are unit normals of S1 and S2 ).
Show also that, in this case, γ is a geodesic on both S1 and S2 if and only if C is part of a straight line.

9. Construct a smooth function with the properties in the class we want in the following steps:

(i) Show that, for all integers n (positive and negative), tne−1/t2 tends to 0 as t tends to 0 .

(ii) Deduce from (i) that the function

θ(t) =

{
e−1/t2 if t > 0

0 if t ≤ 0



is smooth everywhere.

(iii) Show that the function
ψ(t) = θ(1 + t)θ(1− t)

is smooth everywhere, that ψ(t) > 0 if −1 < t < 1, and that ψ(t) = 0 otherwise.

(iv) Show that the function

ϕ(t) = ψ

(
t− t0
η

)
has the properties we want.
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Exercises for Seventh class 0308

((⋆) means this exercise may be a little hard, do it carefully!)

1. A surface patch has first and second fundamental forms

cos2 vdu2 + dv2 and − cos2 vdu2 − dv2,

respectively. Show that the surface is an open subset of a sphere of radius one. Write down a
parametrization of S2 with these first and second fundamental forms.

2. Show that there is no surface patch whose first and second fundamental forms are

du2 + cos2 udv2 and cos2 udu2 + dv2,

respectively.

3. Show that if a surface patch has first fundamental form eλ
(
du2 + dv2

)
, where λ is a smooth function

of u and v, its Gaussian curvature K satisfies

∆λ+ 2Keλ = 0

where ∆ denotes the Laplacian ∂2/∂u2 + ∂2/∂v2.

4. Show that there is no isometry between any region of a sphere and any region of a (generalised) cylinder
or a (generalised) cone.

5. The first fundamental form of Poincaré disc is

4
(
dv2 + dw2

)
(1− v2 − w2)

2 .

Calculate its Gaussian curvature. (In particular, Poincaré disc is a conformal model of hyperbolic
geometry.)


