

$$
y=m x+c
$$

$$
x^{2}+y^{2}=1
$$

$$
y=x^{2}
$$

$$
\begin{aligned}
& \gamma(t):(-\infty,+\infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(t, t)
\end{aligned}
$$

$C=\{\gamma(t): t \in(\alpha, \beta)\}$. $\quad \gamma$'s image is called ohe parametriation of l.

Exam1.1.2

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right), \quad \gamma_{2}(t)=\gamma_{1}(t)^{2} .
$$

For asample

$$
\begin{aligned}
& \gamma_{10 t}, \quad \gamma_{2}(t)=t^{2} \\
& \tilde{\gamma}_{1}(t)=t^{3}, \quad \tilde{\gamma}_{2}(t)=t^{6}
\end{aligned}
$$

$$
\bar{\gamma}_{1}(t)=t^{2}, \quad \bar{\gamma}_{2}(t)=t^{4}
$$

Exam 1.1.3

$$
\begin{array}{cc}
x^{2}+y^{2}=1 \quad & t^{2}+y^{2}=1 \Rightarrow y=\sqrt{1-t^{2}} \\
\gamma(t)=\left(t, \sqrt{1-t^{2}}\right) & ? \Rightarrow
\end{array}
$$

Note that $\quad \cos ^{2} t+\sin ^{2} t=1$

$$
\gamma(t)=(\cos t, \sin t) \quad t G(-\infty,+\infty)
$$

$$
\begin{aligned}
& \gamma(t)=\left(\gamma_{1}\left(t_{1}\right), \ldots, \gamma_{n}\left(t_{1}\right)\right) \\
& \frac{d \gamma}{d t}=\left(\frac{d \gamma_{1}}{d t}, \ldots, \frac{d \gamma_{n}}{d t}\right) \\
& \frac{d^{2} \gamma}{d t^{2}}=\left(\frac{d^{2} \gamma_{1}}{d t^{2}}, \cdots, \frac{d^{2} \gamma_{n}}{d t^{2}}\right)
\end{aligned}
$$

$\left(c^{\infty}\right)$

- If $\frac{d^{k} \gamma}{d t^{k}}$ exists, $k=1,2, \cdots, n, \cdots$, we say r is a smooth curve.

$$
\frac{\dot{\gamma}}{\uparrow} \frac{d \gamma}{d t}=\lim _{\delta t \rightarrow 0} \frac{\gamma(t+\delta t)-\gamma(t)}{\delta t}
$$

- The first derivative $\frac{d r}{d t}$ is called the tangent vector of curve r at t.

Prop 1.1.4 If the tangent vector of a curve is constant, the image of the curve is a straight line.

Pf. If $\dot{\gamma}(t)=a, \forall t$. We have

$$
\begin{aligned}
\gamma(t) & =\int_{0}^{t} \dot{\gamma}(s) d s+\gamma(0) . \\
& =\int_{0}^{t} a d s+\gamma(s) \\
& =a(t)+\gamma(s) .
\end{aligned}
$$

ire. γ is a straight line.

$$
\begin{aligned}
\|\gamma(t+\Delta t)-\gamma(t)\| & \approx \frac{\|\dot{\gamma}(t)\| d t}{\|} . \\
\dot{\gamma}, t+(\Delta t) \Delta t & \approx \dot{\gamma}(t) \Delta t
\end{aligned}
$$

Def 1.2.1. The arc-length of a curve (8) starting at point $\gamma\left(t_{0}\right)$ is the $s(t)$ given by

$$
S(t)=\int_{t_{0}}^{t}\|\dot{\gamma}(u)\| d u \quad(\dot{X})
$$

$\frac{\text { Exam 1.2.2 }}{\gamma(t)=\frac{\left.\left(e^{t} \cos t\right), e^{t} \sin t\right)}{e^{t} \cos t+e^{t}(-\sin t)}}$

$$
\begin{aligned}
& \dot{\gamma}(t)=\left(e^{t}(\cos t-\sin t), e^{t}(\sin t e \cos t)\right) \\
& \|\dot{\gamma}(t)\|=\sqrt{e^{2 t}(\cos t-\sin t)^{2} e e^{2 t}(\sin t+\omega t)^{2}}=e^{t} \cdot \sqrt{2} \\
& S(t)=\int_{0}^{t} \int^{\|}(1 u) \| d u .
\end{aligned}
$$

$S(t)=\int_{0}^{t} \delta(|\gamma(x)| d u$.
$\Rightarrow \frac{d s}{d t}=\|\dot{\gamma}(t)\|$ is called speed of γ.
$=1$
Def 1.3.1. A curve $\tilde{\gamma}$ is a reparametrizalion of a curve $\gamma:(\alpha, \beta) \rightarrow-k^{k^{2}}$ if there is a smooth function $\phi:(\alpha, \beta) \rightarrow \mathbb{R}$ such that
(i) $\frac{d d}{d t}$ is non-zero on (α, β).
(ii) $\tilde{\gamma}(\phi(t))=\gamma(t)$ for all $t \in(\alpha, \beta)$.
γ is re... of $\tilde{\gamma}$. $\beta-1<\exists$ smooth
Exam 1.3.2. $\quad \gamma(t)=(\cos t, \sin t)$.

$$
\left.\tilde{\gamma_{1}}(t)=1 \sin t, \cos t\right)
$$

$\exists \oint:$

$$
\begin{aligned}
& \tilde{\gamma}(\phi(t))=\gamma(t) \\
\Leftrightarrow & (\sin \phi(t), \cos \phi(t))=(\cos t, \sin t) \\
& \phi(t)=\frac{2}{2}-t \quad \frac{d \phi}{d t}=-1 \neq 0,
\end{aligned}
$$

Prop 1.3.3. Let $\gamma(t)$ be a unit speed curve. Then

pf

$$
\begin{gathered}
\|\dot{\gamma}(t)\|=1 \\
\|\gamma(t)\|=\sqrt{\dot{\gamma}(t) \cdot \dot{\gamma}(t)} \\
\text { or } 1=\|\dot{\gamma}(t)\|^{2}=\underline{\gamma}(t) \cdot \dot{\gamma}(t)
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{d}{d t}(\vec{a} \cdot \vec{b})=\frac{d \vec{a}}{d t} \cdot \vec{b}+\vec{a} \cdot \frac{d \vec{b}}{d t}\right) \\
& 0=\ddot{\gamma}(t) \cdot \dot{\gamma}(t)+\dot{\gamma}(t) \cdot \ddot{\gamma}(t)=2 \gamma^{\prime}(t) \cdot \ddot{\gamma}(t) . \\
& \Rightarrow \gamma^{\prime}(t) \cdot \dot{\gamma}^{\prime}(t)=0 .
\end{aligned}
$$

Prop 1．3．4．A curve γ has a unit speed reparametrization if and only if $\frac{d x}{d t} \neq 0$
Def 1．3．5．A curve γ whose tangent vector is never zero is said to be regular（正则曲成）

Pf of Prop 1．3．0．Suppose $\gamma(t) h a s$ a unit speed r ．．．$\tilde{\gamma}(u)$ ． $\exists \dot{\xi}(t): \alpha, \beta>)^{\sim} \xi t$.

$$
\underline{\tilde{\gamma}(\phi(t))}=\gamma(t) .
$$

（chain rule）$\quad \frac{d \hat{r}}{d u}\left(\frac{d \phi}{d t}=\frac{d r}{d t}\right.$

$$
\frac{\left(\left.\left|\frac{d \phi}{d t}\right|=\| \frac{d \gamma}{d t} \right\rvert\,\right.}{\neq 0} \Rightarrow \frac{d \gamma}{d t} \neq 0.1
$$

Conversely, suppose that $\frac{d \gamma}{d t} \neq 0 .(\Rightarrow|\dot{\gamma}(t)| \neq 0)$.

$$
s(t)=\int_{t_{0}}^{t}\|\dot{\gamma}(u)\| d u \Rightarrow \frac{d s}{d t}=\|\gamma(t)\|>0
$$

choosing $\tilde{\gamma}_{s i s}$ as the reparametriaction of $\gamma_{t i s}$ is.

$$
\begin{align*}
& \tilde{\gamma}(s(t))=\gamma(t) \\
& \frac{d \tilde{r}}{d s} \cdot \frac{d s}{d t}=\frac{d \gamma}{d t} \\
\Rightarrow \quad & \left.\left\|\frac{d \tilde{\gamma}}{d s}\right\| \cdot \frac{d s}{d t}\right)=\left\|\frac{d \gamma}{d t}\right\| \\
\Rightarrow \quad & \left\|\frac{d \tilde{r}}{d s}\right\|\left\|\frac{d y}{d t}\right\|=\left\|\frac{d x}{d t}\right\|>0 . \\
\Rightarrow \quad & \left\|\frac{d \tilde{d}}{d s}\right\|=1 .
\end{align*}
$$

x_{5}
Cor 1.3.6.

$$
\begin{aligned}
& \tilde{\gamma}(\phi(t)=\gamma(t) . \\
& \phi= \pm s+C_{\uparrow} \\
& \text { cost. }
\end{aligned}
$$

$$
\Rightarrow \quad \beta= \pm s+C_{\uparrow}<\frac{d \phi}{d t}= \pm \frac{d s}{d t}
$$

Exam 1.3.7 $\quad \gamma(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$

Exam 1.3.8. $\quad \gamma(t)=\left(t, t^{2}, t^{3}\right), \quad-\infty<t<\infty$.

$$
\begin{array}{r}
\dot{\gamma}(t)=\left(1,2 t, 3 t^{2}\right) \\
\delta(t)=\int_{0}^{t} \sqrt{1+4 u^{2}+9 u^{4}} d u
\end{array}
$$

$$
t=t(s) \text { exiets. }
$$

$\tilde{\gamma}(s)=\gamma(t(s)) \vee$.

Exam 1.3.9

$$
\begin{aligned}
& y=x^{2} . \\
& \gamma(t)=\left(t, t^{2}\right) . \\
& \gamma(t)=11,2 t) \neq 0 .
\end{aligned}
$$

$\||\gamma(t)|=\sqrt{1+\cot } \geq 0$

Exec unit speed reparametrization of γ.

$$
\begin{aligned}
& \bar{\gamma}(t)=\left(t^{3}, t^{6}\right) . \\
& \left.\frac{d \bar{\gamma}}{d t}=\left(3 t^{2}, 6 t^{5}\right) \quad t=0 \quad \frac{d \bar{\gamma}}{d t}=10,0\right)
\end{aligned}
$$

$t \in\left[\begin{array}{l}\operatorname{To}, 221 \\ \end{array}\right.$
$(\cos t, \sin t)$
$t \in(-\infty+\infty)$
Def $1-\omega .1$ Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a smooth curve and let $T \in \mathbb{R}$.
We say that γ is T-periodic if

$$
\gamma(t+T)=\gamma(t) .
$$

If γ is not constant and $T \neq 0$, then γ is said to be closed.

Def 1.4.2. The period of a closed curve γ is the smallest positive number T such that γ is T-periodic.

Exam 1-q.3. $\quad \gamma(t)=(p \cos t, q \sin t) \quad p>q$

$$
\begin{aligned}
l(\gamma) & =\int_{0}^{T}\|\gamma(t)\| d t \\
& \gamma(t+\tilde{T})=\gamma(t), \forall t \Rightarrow \tau=k T
\end{aligned}
$$

Def 1.4.6. A curve γ is said to have a self-intersection at p of the cums if there are
(i) $\quad \gamma(a)=\gamma(b), \quad a \neq b$
(ii) if γ is closed with period T, then $a-b \neq k T$

$$
\begin{aligned}
& \frac{\gamma:(\alpha, \beta) \rightarrow k^{n}}{\forall p \in l, \quad \exists t_{0}, \gamma\left(t_{0}\right)=p} \\
& \frac{\gamma(t)=\left(\cos ^{2} t, \sin ^{2} t\right)}{y=\sqrt{1-x^{2}}} \Rightarrow(\cos , \sin t) \\
& \text { ! } \\
& \left\{\begin{array}{l}
x=\cos ^{2} t \\
y=\sin ^{2} t
\end{array} \Rightarrow x+y=1 \Rightarrow y=1-x, \quad \leq \leq x \leq 1,0 x y \leq 1\right. \\
& \xrightarrow[(\cos t, \sin t), t \in \cos \pi t]{\sim} \\
& \gamma(t)=(t, \cosh t) \\
& \uparrow \quad \cosh t=\frac{e^{t}+e^{-t}}{2} \\
& (\cos t)^{\prime}=-\sin t \\
& \gamma(t)=(1, \sinh t) \\
& \cosh ^{2} t-\sinh ^{2} t=1 \\
& \|\gamma(t)\|=\sqrt{1+\sinh ^{2} t}=\sqrt{\cosh ^{2} t}=\cosh t .
\end{aligned}
$$

$$
\begin{aligned}
S(t)=\int_{0}^{t} \| \gamma^{\prime}(x) \mid d t=\int_{0}^{t} \cosh u d u & =\left.\sinh u\right|_{0} ^{t} \\
& =\sinh t
\end{aligned}
$$

