§2.1. Curvature (曲毫)
$\left\|\overrightarrow{a^{2}}\right\|=1, \quad \gamma(t)=t \vec{a}+\vec{b} . \quad \dot{\gamma}(t)=\vec{a} \quad \dot{\gamma}, t=0$

$$
\begin{aligned}
& \gamma(s)=\left(x+R \cos \frac{s}{R}, y+R \sin \frac{s}{R}\right) \\
& \dot{\gamma}(s)=\left(-\sin \frac{s}{R}, \omega 3 \frac{s}{k}\right) \\
& \ddot{\gamma}(s)=\left(-\frac{1}{R} \operatorname{mos} \frac{s}{R},-\frac{1}{R} \sin \frac{s}{R}\right) \quad \Rightarrow\|\ddot{\gamma}\|=\frac{1}{2} \quad R \rightarrow \infty, \quad|-\dot{x}|-2 \quad
\end{aligned}
$$

Def 2.1.1. If γ is unit speed curve with parameters, its unnature $k(s)$ at the $\gamma(s)$ is defined by $\|\ddot{\gamma}(s)\|$.

- $\quad \hat{\gamma}(u)$

$$
u=15+c
$$

$$
\|\ddot{\gamma}(v)\|=\|\ddot{\gamma}(s)\|
$$

Prop 2.1.2 Let $\gamma(t)$ be a regular curve in $\mathbb{R} \mathbb{Q}$, then its curvature

$$
K=\frac{\|\ddot{\gamma}(\dot{\gamma}, \dot{\gamma})-\dot{\gamma}(\dot{\gamma}, \ddot{\gamma})\|}{\|\dot{\gamma}\|^{4}} \quad\|\dot{\gamma}\|=1
$$

In particular, in \mathbb{R}^{3}, there is

$$
k=\frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^{3}} .
$$

Pf. Let $\underbrace{\tilde{\gamma}(s)}$ be a unit speed reparameteriztion of $\gamma(0)$.

$$
\begin{aligned}
& (8) \frac{d s}{d t}=\gamma^{\prime}(t) \quad\left(\leqslant \tilde{\gamma}\left(s_{1}\right)=\gamma(t)\right) . \\
& k=\|\ddot{\gamma}\|=\left\|\frac{d}{d \underline{d}}\left(\frac{r^{\prime}(t)}{d s / d t}\right)\right\| \\
& \begin{array}{l}
\text { (es } \\
=\|\left.\frac{d}{d t}\left(\frac{r^{\prime}(t)}{d s \mid d t}\right)\left(\frac{d t}{d s}\right)\right|^{\frac{1}{d s / d t}}
\end{array} \\
& \left.=11 \frac{\left.\gamma^{\prime \prime}(t)\left(\frac{d s}{d t}\right)-\gamma^{\prime}(t) \frac{d^{3}}{d t^{2}}\right)}{(d s)} d_{c}\right)^{3}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(\frac{d s}{d t}\right)^{2} & =\| \gamma^{\prime}\left(t \|^{2}=\left(\gamma^{\prime}, \gamma^{\prime}\right)\right. \\
\frac{d s}{d t}\left(\frac{d^{2} s}{d t^{2}}\right. & =\left(\gamma^{\prime \prime}, \gamma^{\prime}\right)
\end{aligned}
$$

irene

$$
\begin{aligned}
K & =\| \frac{\gamma^{\prime \prime} \frac{d s}{d t}-\gamma^{\prime} \frac{d^{2} s}{d b^{2}} \|}{(d s \mid d t)^{3}} \\
& =\left\|\frac{\gamma^{\prime}\left\|\gamma^{\prime}\right\|^{2}-\gamma^{\prime}\left(\gamma^{\prime \prime}, \gamma^{\prime}\right) \mid\left\|\gamma^{\prime}\right\|}{\left(\left\|\gamma^{\prime}\right\|\right)^{3}}\right\| \\
& =\frac{\|\left(\gamma^{\prime \prime}\left(\gamma^{\prime}, \gamma^{\prime}\right)-\gamma^{\prime}\left(\gamma^{\prime \prime}, \gamma^{\prime}\right)\right.}{\left\|\gamma^{\prime}\right\| 4}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\gamma}^{\prime} \times\left(\gamma^{\prime \prime} x \gamma^{\prime}\right)=\left(\gamma^{\prime}, \gamma^{\prime}\right) \gamma^{\prime \prime}-\left(\gamma^{\prime}, \gamma^{\prime \prime}\right) \gamma^{\prime} \\
& \Rightarrow \quad\left\|\gamma^{\prime} x\left(\gamma^{\prime \prime} \times \gamma^{\prime}\right)\right\|=\left\|\gamma^{\prime}\right\|\left\|\gamma^{\prime \prime} \times \gamma^{\prime}\right\| \\
& \text { In } \mathbb{R}^{3} \text {, there is } \\
& k=\frac{\left\|\gamma^{\prime} x\left(\gamma^{\prime \prime} \times \gamma^{\prime}\right)\right\|}{\left\|\gamma^{\prime}\right\|^{4}}=\frac{\left\|\gamma^{\prime \prime} x \gamma^{\prime}\right\|}{\left\|\gamma^{\prime}\right\|^{3}} \text {. }
\end{aligned}
$$

Exams. 1.3

$$
\gamma(\theta)=a \operatorname{acos} \theta, a \sin \theta, b \theta) \text { in } R^{3} .
$$

$$
\begin{aligned}
& \gamma^{\prime}(\theta)=(-a \sin \theta, a \cos \theta, b) \quad \Rightarrow\left\|\gamma^{\prime}\right\|=\sqrt{a^{2}+b^{2}} \\
& \gamma^{\prime \prime}(\theta)=(-a \cos \theta,-a \sin \theta, 0)
\end{aligned}
$$

$$
\begin{aligned}
\underline{\gamma}^{\prime \prime} \times \underline{\gamma}^{\prime} & =\left|\begin{array}{ccc}
-i & k \\
-a \cos \theta & -a \sin \theta & 0 \\
-a \sin \theta & a \operatorname{los} \theta & b
\end{array}\right| \\
& =\left(-a b \sin \theta, a b u s \theta,-a^{2}\right) \\
K= & \|\left(-a b \sin \theta, a b\left(0,-a^{2}\right) \|\right. \\
\left(\sqrt{a^{2}+b^{2}}\right)^{3} & =\frac{1 a \mid}{a^{2}+b^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } b=0 \Rightarrow k=\frac{1}{a} \\
& \text { If } a=0 \Rightarrow k=0
\end{aligned}
$$

82.2. plane curve.

$$
\underline{t}=\gamma
$$

If $\| \dot{\gamma}(s) \mid=1$, then $(\dot{\gamma}(s), \dot{\gamma}(s))=0 . \Rightarrow \hat{\gamma} \perp \dot{\gamma}$

$$
\ddot{r}=k_{s} \vec{n}_{s}
$$

k_{s} is called the signed curvature. Since $\left\|\vec{n}_{3}\right\|=1$,

$$
k=\left\|\ddot { r } \left|=\left\|k_{s} \vec{s}_{s}\right\|=\left|k_{s}\right|\right.\right.
$$

$k s=0$

$k_{s}<0$

Prop 2.2 .1 Let $\gamma(s)$ be unit speed plane curve, and let $y(s)$ be the angle through which a fixed unit vector \vec{a} must be rotated anti-clockwise to bring it into $\dot{r}(s)$. Then

$$
k_{s}=\frac{d \varphi}{d s}
$$

$$
\begin{aligned}
& \mathbb{R}_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& x \mapsto M_{\alpha} x: \quad M_{\alpha}=\left(\begin{array}{cc}
\operatorname{c\beta s} \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \quad(0 \leq \alpha \leq 2 \pi) . \\
& \underline{T_{a}}: \quad \begin{array}{l}
\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
x
\end{array} \quad \begin{array}{l}
M=T_{a} \circ R_{a} .
\end{array}
\end{aligned}
$$

Thu 2.2.2. Let $K:(\alpha, \beta) \rightarrow \mathbb{R}$ be any smooth function. Then there is a unit speed carve $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ whose signed curvature is k. Furthermore, if $\tilde{\gamma}:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \rightarrow$ there exists a rigid motion M of \mathbb{R}^{2} such that

$$
\tilde{\gamma}(s)=M(\gamma(s)) .
$$

Pf. Fixed $\operatorname{sog}(\alpha, \beta)$, define

$$
\begin{aligned}
& \varphi(s)=\int_{s_{0}}^{s} k d u \\
& \gamma(s)=\left(\int_{s_{0}}^{s} \cos \varphi(t) d t, \int_{s_{0}}^{s} \sin \varphi(t) d t\right) \\
& \gamma(s)=(\underset{x}{\cos \varphi(s), \sin \varphi(s)}) \\
& \gamma(s) \\
& x_{x} \varphi(s)
\end{aligned}
$$

By Prop 2.2.1, we know

$$
k_{s}=\frac{d \varphi}{d s}=k
$$

$\tilde{\gamma}(s)$ unit speed

$$
\begin{align*}
& \tilde{\gamma}^{\prime}(s)=(\cos \tilde{\varphi}(s), \sin \tilde{\varphi}(s)) \\
& \tilde{\gamma}_{(s)}=\left(\int_{s_{0}}^{s} \cos \dot{\varphi}(0) d t, \int_{s 0}^{s} \sin \varphi(t) d t\right)+\gamma_{1}\left(s_{0}\right) a \\
& \left.\frac{d \widetilde{\varphi}}{d s}=k(s) \Rightarrow \tilde{\varphi}^{2}(s)=\int_{0}^{3} k(u) d u\right)+\tilde{\varphi}\left(s_{0}\right)=\varphi(s)+\tilde{\varphi}_{0}\left(s_{0}\right) \text {. } \\
& \cos \varphi^{2}(s)=\cos (\varphi(s)+\theta)=\cos \theta \cos \varphi(s)-\sin \theta \sin \varphi(s) \\
& \sin \varphi(s)=\sin (\varphi(s)+\theta)=\cos \theta \sin \varphi(s)+\sin \theta \cos \varphi(s) \\
& \Rightarrow\binom{\omega \hat{\varphi}}{\sin \varphi^{2}}=\left(\begin{array}{cc}
\omega \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\omega \varphi}{\sin \varphi} . \\
& \tilde{\gamma}^{\tilde{\prime}}(s)=M \gamma(s) \\
& M=a_{a}, R_{\theta} \tag{V}
\end{align*}
$$

Exam 2.2.3. Any regular plane curve whose curvature is a positive constant must be a pent of a circle.

S2． 3 ．Space curves．
－$\gamma(s)=(\cos s, \sin s, 0)$
$\tilde{\gamma}(s)=\left(\frac{1}{2} u \cos s, \frac{1}{2} \sin s, \frac{1}{2} s\right)$
$\Rightarrow K(s)=1$.

$$
k(s)=\frac{|a|}{a^{2}+b^{2}}=1 . \begin{aligned}
& a=b=\frac{1}{2} \\
& =
\end{aligned}
$$

（

$\partial(s)$ unit speed．

$$
\begin{equation*}
\vec{t}=\dot{\gamma} \tag{t}
\end{equation*}
$$

If $k(s) \neq 0$ ，we define the $\frac{\text { principal normal }}{(\dot{1} / \dot{4} \dot{0} \text { 鉒）}}$ of γ at the point $\mathrm{r}(\mathrm{s})$ to be the vector

$$
\vec{n}(s)=\frac{1}{k(s)} \dot{\vec{t}}\left(=\frac{1}{k(s}, \gamma\right) \text {. }
$$

\Rightarrow 1．We define

$$
\vec{b}=\hat{t} \times \vec{n} \quad\|\vec{b}\|=1
$$

be the binormal vector of γ ．
(从活向重)

$$
b=t \times n, \quad n=b \times t, \quad t=n \times b
$$

$$
\begin{aligned}
& b=t \times n \\
\Rightarrow & \dot{b}=\dot{t} \times n+t \times \dot{n}=t \times \dot{n} \\
\Rightarrow & \dot{b} \perp t \quad \dot{b}+b
\end{aligned}
$$

$$
\dot{b}=\theta>n
$$

If $\tilde{\gamma}(u(s))=\gamma(s)$. unit speed $u= \pm s p c$
Prop 2.3.1. Let $\gamma(t)$ regular in \mathbb{R}^{3} Kt) $\neq 0$

Exam 2.3.2

$$
\begin{aligned}
& \gamma(\theta)=(a \cos \theta, a \sin \theta, b \theta) \\
& \dot{\gamma}(\theta)=(-a \sin \theta, a \cos \theta, b) \\
& \ddot{\gamma}(\theta)=(-a \cos \theta,-a \sin \theta, 0) \\
& \ddot{\gamma}(\theta)=(a \sin \theta,-a \cos \theta, 01 \\
& \dot{\gamma} \times \ddot{\gamma}=\left(a b \sin \theta, a b u n \theta, a^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}=a^{2} b \sin ^{2} \theta+a^{2} b r^{2} v=a^{2} b \\
& \Gamma=\frac{a^{2} b}{a^{4}+a^{2} b^{2}}=\frac{b}{a^{2}+b^{2}} \\
& +f=0 \quad r=0
\end{aligned}
$$

Prop 2.2.3. Let $\gamma(t)$ is a regular curve in \mathbb{R}^{3}. $k \in t \neq 0$. IT can be defined, Then, the image of r is contained in a plane if and only if $\tau=0$.
Pf " E " if $\tau=0 . \quad(\dot{b}=-i n)$.

$$
\begin{aligned}
& \Rightarrow \quad \dot{b}=0 \Rightarrow b \equiv \text { const. } \\
& \Rightarrow \frac{d}{d s}(\gamma \cdot b)=\dot{\gamma} \cdot b+\gamma \cdot \dot{b}=\dot{\gamma} \cdot b=t \cdot b=0 \\
& \Rightarrow r \cdot b=c
\end{aligned}
$$

$\Rightarrow \gamma$ is contained in the plane

$$
\vec{r} \cdot \hat{b}=c .
$$

" \Rightarrow If γ is contained in a plane.

$$
\gamma \cdot \overrightarrow{a^{2}} \xrightarrow{\underline{k}} c k \quad\left(\left|\vec{a}^{-}\right|=1\right)
$$

$$
\begin{aligned}
& \Rightarrow \quad t \cdot-\dot{a}=0 \quad(t=\dot{\gamma}) \\
& \Rightarrow \quad \dot{t} \cdot \vec{a}=0 . \quad\left(n=\frac{1}{k, s,}, t\right) \\
& \Rightarrow \quad \vec{n} \cdot \vec{a})=0 \text {. } \\
& \Rightarrow \quad \vec{b}=l \vec{a} \\
& \overbrace{\vec{t}}^{\vec{a}} \\
& \Rightarrow \quad \vec{b}^{\prime}=\vec{a} \text { or }-\vec{a} \Rightarrow \vec{b} \equiv \vec{a}, \vec{b} \equiv-\vec{a} \\
& \Rightarrow \quad \dot{\vec{b}}=0 \quad \Rightarrow \quad T=0
\end{aligned}
$$

