§6. Croups of low order and Klein's Fowr-Groyp

- $|G|=1 . \quad G=\{e\}$.
- $|G|=2, G=\{e, a\}, a \neq e, \quad a^{2}=e$.

$$
=\langle a\rangle
$$

$$
G=\mathbb{Z}_{2}
$$

- $|G|=3, \quad G=\mathbb{Z}_{3}$
- $|G|=4 . \quad G=\{e, a, b, c\}$
- If 0 (a) $=4,\langle a\rangle=\left\{e, a, a^{2}, a^{3}\right\} \leq G \Rightarrow G=\langle a\rangle$
- $\quad a^{2}=b^{2}=c^{2}=e$

$$
\begin{aligned}
& a b=a \quad x \quad b=e x \\
& a b=b \Rightarrow a=e x
\end{aligned}
$$

$a b=c$
$a c=b$
$b c=a$

$$
\{a, a, b, a b\}, \quad a^{2}=b^{2}=e \quad a b=b a
$$

klein four-group. V_{4} or K_{4}
(Vierergrappe)

Thm6.1. Every group of order 4 is either \mathbb{Z}_{4}, or the V_{4}.

- V_{4} is abelian
order
- V_{4} is smallest non-cyclic group.
- all elements diffenoit from e have order 2
N. Vac can be seen as a subgroup of S_{4}

$$
\left\{e \cdot \frac{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 6
\end{array}\right)}{\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right)}, \frac{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right.}{1} \begin{array}{l}
1 \\
1
\end{array} 443\right) .
$$

Example 6.1 .

$$
\begin{aligned}
& a=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad a=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad b=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& c=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Exercise

Example br. $\quad V_{4}=\{a, a, b, a b\}$

$$
\begin{array}{ll}
H=\{0, a\} . & H a=\{a, a\}=1 \\
H b=\{b, a b\}, & H a b=\{b, a b\}
\end{array}
$$

§7. Direct product

$$
A \times B=\{(a, b): a \in A, b \in b\}
$$

Def T1. Let G_{1} and G_{2} be two groups. Then $G=G_{1} \times G_{2}$ is a group, with the multiplication law

$$
\left(g_{1}, g_{2}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}\right)=\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}\right) \text {. }
$$

$G_{1} \times G_{2}$ is called the direct product of G_{1} and G_{2}

$$
G_{1} \times\left\{e_{2}\right\} \leq G_{1} \times G_{2}
$$

Exercise: prove: $G_{1} \times\left\{R_{2}\right\} \cong G_{1}$

- G_{1} and G_{2} are abelian, then $G_{1} \times G_{2}$ is abelian.

$$
\begin{aligned}
\left(g_{1}, g_{2}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}\right) & =\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}\right) \\
& =\left(g_{1}^{\prime} g_{1}, g_{2}^{\prime} g_{2}\right) \\
& =\left(g_{1}^{\prime}, g_{2}^{\prime}\right)\left(g_{1}, g_{2}\right)
\end{aligned}
$$

- $\quad\left|G_{1} \times G_{2}\right|=\left|G_{1}\right|\left|G_{2}\right|$

$$
\begin{aligned}
& G_{1}=G_{2}=\mathbb{Z}_{2} \\
& G_{2}=a, a \\
& G_{2} \times Z_{2}=\{(e, e),(e, a)(a, e)(a, a)\} \\
&(e, a)^{2}=(e, a)(e, a)=\left(e, a^{2}\right)=(e, e) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathbb{Q}_{2} \times \mathbb{Z}_{2}}{} \cong V_{4} \\
& G_{1} \times G_{2}
\end{aligned}
$$

Lem 7.1. All groups of even order contain at least one-identity element whose order is two.

If. $|G|=2 n$, but has no element whose order is two.

$$
G=\left\{e,\left(g_{1}\right),\left(g_{2}\right) \cdots, g_{2 n-1}\right\} .
$$

g_{1}, g_{k}
Thm7.1. A group of order 6 is either \mathbb{Z}_{6} or S_{3}.
Pf. $\quad|G|=6 . \quad 1,2,3,6$

$$
\exists a, O(a)=6 . \Rightarrow G=\langle a\rangle \Rightarrow G=\mathbb{Z}_{6} .
$$

$$
\exists a G G, \quad 0(a)=2 . \quad(b)=2 \text {. }
$$

$$
\left(a b=(a b)^{-1}=b^{-1} a^{-1}=(b a) \Rightarrow V_{c}\right.
$$

$$
\begin{aligned}
& a(a)=3, \quad a(b)=2 . \\
& \left\{a, a, a^{2}, b, \cdots\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& a b=b a^{2} \\
& \text { (} a b=b a) \\
& (\underline{a b})^{n}=\underline{a}^{n} \underline{b}^{n}=e \\
& n=6 \\
& a^{3}=a, \quad b^{2}=e, \quad a b=b a^{2} \Rightarrow S_{3} \\
& a=(123) \quad b=(12)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong V_{4}} \quad \times \underline{\mathbb{Z}_{4}} \\
& \text { - } \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{6}
\end{aligned}
$$

Thm7.2. $\mathbb{Z}_{p} \times \mathbb{Z}_{q} \cong \mathbb{Z}_{p q}$ if and only if $(p, q)=1$.
if \leqslant

$$
\begin{aligned}
& \mathbb{Z}_{p}=\langle a\rangle, \quad Z_{q}=\langle b\rangle, \quad a^{p}=0, \quad b^{q}=0 . \\
& (a, b\rangle \in \cdot \mathbb{Z}_{p} \times \mathbb{C}_{q}
\end{aligned}
$$

" $\Rightarrow \quad p, q$ are not relatively prime, ${ }^{\prime} Z_{p} \times \times Z_{q}$ 生 $冖_{p p q}$

$$
(u, v) \in \mathbb{E}_{p} \times \mathbb{E}_{q}
$$

$$
(u, v)^{n}=(l, l)
$$

$$
\begin{align*}
& \Rightarrow n=\frac{k p p}{\Rightarrow}=\frac{k q}{l}=\frac{q}{p^{\prime}}=\frac{\left(q^{\prime}\right.}{p^{\prime}} \quad p=s p^{\prime}, g=s q^{\prime} \\
& \Rightarrow k=\xi^{\prime}, l=p^{\prime} \frac{(q) p<p q}{\frac{p^{\prime} q}{2}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& (a, b)^{n}=(e, e) \\
& \Rightarrow \quad\left(a^{n}, b^{n}\right)=(e, e) \\
& \Rightarrow \quad a^{n}=e, b^{n}=e \\
& \Rightarrow n=k p, \quad n=l q \Rightarrow k p=l q \Rightarrow k=q, \quad l=p \\
& \Rightarrow n=p q \\
& o(a, b))=p s \\
& { }^{Z_{p} \times{ }^{\prime} Z_{q} \cong \mathcal{Z}_{p q} .}
\end{aligned}
$$

Exercise. If G is abelian, $o(a)=m, \quad o(b)=n$. prove

$$
o(a b)=\frac{m n}{(m, n)}
$$

