S8. Symmetry Tranformations and Dihedral groups.
Def 8.1. A symmetry Transformation is an action on a set that leaves the set as a whole unaltered.

- even function. $f(-x)=f(x) \quad x_{1 \rightarrow-\infty}$

Def 8.2. Let X and Y be two vector spaces equipped with distance functions D_{X} and D_{Y}. An isometry between x and Y is a distance preserving map $f: x \rightarrow Y$

$$
\begin{aligned}
& D_{x}\left(x_{1}, x_{2}\right)=D_{1}\left(y_{1}, y_{2}\right) \\
& y_{i}=f\left(x_{i}\right) \\
& X \quad Y \\
& (\lambda) \xrightarrow{t} \theta \\
& X=Y=R^{2}, \quad D_{R^{2}}(x, y)=|x-y|=\sqrt{\left.x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}} \\
& \underline{\left\{(x, y): x^{2}+y^{2}=1\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& A(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& B(\theta)=A(\theta) B A(-\theta)
\end{aligned}
$$

- Al) $A\left(\theta^{\prime}\right)=A\left(\theta+\theta^{\prime}\right), A(2 \pi)=I, B^{2}=I$
- so(2)

Def 8.3. Let $n \geq 2$ be an integer. The set of rotations and reflections that preserve the regular polygon p_{n}, form by

$$
\left(\cos \frac{2 k \pi}{n}, \sin \frac{2 k \pi}{n}\right) \quad k=0,1,2, \ldots, n-1 .
$$

is called the dihedral group (On).
$\left(1 D_{3} y=6\right.$
(SB) \underline{Z}_{6}

$$
\begin{equation*}
\text { - }\left|D_{n}\right|=2 n \tag{n}
\end{equation*}
$$

Exercise. Is D_{n} isomorphic to $S_{n}, n \geq 4$?

$$
\left|D_{4}\right|=8 .
$$

$D_{n}=$

$$
\begin{aligned}
& \left\{a, a, \cdots, a^{n-1}, b, a b, \cdots, a^{n-1} b\right\}, \\
& \quad a^{n}=l, b^{2}=l, a^{k} b=b a^{-k}, k=1, \cdots, n-1
\end{aligned}
$$

$S_{n} D_{n}$
\$9. Conjugation, Normal Subgroups, Quotient Groups. S5.1. Conjugation.

Def. Given a group G, we say that a is conjugate to b if $\exists g \in G$ st. $a=g b g^{-1}$
Thmp.1 The conjugacy relation is an equivaleme relation

Exercise

- $\underbrace{}_{3}$

$$
\begin{align*}
(23)(123)(23) & =\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=(132) \tag{1231}
\end{align*}
$$

- All elements of a conjugacy class have the same order.

$$
\begin{aligned}
& a=g b g-1 \quad 0\left(a_{1}=o(b) \quad \quad \quad(a)=k . \quad b=g^{-1} a g\right. \\
& b^{k}=\left(g^{-1} a g\right)^{k}=g^{-1} a^{k} g=g^{-1} g=e .
\end{aligned}
$$

$\left.0(b)\right|_{k} \quad k \mid a(b) \quad \Leftrightarrow \quad o(a)=o(b)$.

- If G is abelian, then $[a]_{c}=\{a\}$ for all $a \in G$.

Thun 9.2 On any subgroup $H \leq G$, the conjugation map
$M_{g}: H \rightarrow \mathrm{gHg}^{-1}, \quad h \rightarrow \mathrm{ghg}^{-1}$
associated to $g G G$ is bijective.

- injertive. $M\left(h_{1}\right)=M\left(h_{2}\right) \Rightarrow h_{1}=h_{2}$

$$
g h_{1} g-1=g h_{2} g^{-1} \Rightarrow h_{1}=h_{2} .
$$

- Surjective. $g^{\prime 2-1} G g^{-1}{ }^{-1}, \quad M(h)=g^{\prime} g^{-1}$.

$$
H=g H j^{-1}, \quad \forall g o G
$$

\$9.2 Normal subgroups.
Def 9.1. A subgroup $H \leq G$ is called normal if $\mathrm{gHg}^{-1} \mathrm{CH}$ for all $g G G$

- It is normal $\Rightarrow g \mathrm{Hg}^{-1}=H \Leftrightarrow g H=H g, \forall g G G$
- if is normal $\Leftrightarrow \forall g G G, h \in H, g^{\prime} g^{-1} \in H$
- $2 e\}$ G
- Every subgroup of an abelian group is normal

Def 9.2 . A group is simple if has no proper normal group. A semi-simple group if it has no proper abelian normal subgroup. Def 9.3. The center $Z(G)$ of a group G is the set of all elements which commute with all elements of G.

$$
Z(G)=\{a G G: \quad a b=b a, \forall b \in G\} .
$$

Thm9.3 The $Z(G)$ is a normal subgroup.
Exercise. Prove that $2(G)$ is a subgroup. $\forall g G G, \forall a G 2(G) \quad g^{-1} G 2(G)$

$$
g a g^{-1}=g g^{-1} a=a G Z(G)
$$

$Z(G)$ is a normal subgroup.

- If G is simple, then $Z(G)=\{e\}$ or $Z(G)=G$

Exercise. $H=\left\{e, a, a^{2}\right\} \leq S_{3}$. Prove that if is normal

