ELLIPTIC PDE EXERCISE

1. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded Lipschitz domain, show that the trace operator $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$

is compact.

2. Assume u satisfies $\sum_{i,j=1}^{n} a_{ij} u_{ij} = 0$ in viscosity sense in B_4 , where $\lambda I \leq (a_{ij}) \leq \Lambda I$ for some positive constant λ, Λ . For $\epsilon > 0$ small, let

$$u_{\epsilon}(x) := \inf_{y \in B_4} \left(u(y) + \frac{1}{\epsilon} |y - x|^2 \right)$$

for $x \in B_1$.

1) Show that u_{ϵ} converges to u uniformly

2) Suppose $\phi \in C^2(B_4)$ is tangent to u_{ϵ} from below at $x_0 \in B_1$, show that if we slide ϕ down it will touch u from below at some point in B_2

3) Let ϕ be as in 2), suppose the eigenvalues of $D^2\phi(x_0)$ satisfy

 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_m < 0 \leq \lambda_{m+1} \leq \cdots \leq \lambda_n$

then $\sum_{i=1}^{m} \Lambda \lambda_i + \sum_{i=m+1}^{n} \lambda \lambda_i \leq 0.$

3. Suppose u is a convex function defined on B_4 . Let $v = u + \frac{1}{2}|x|^2$. Show that $|\partial v(B_1)| \ge |B_1|$.

4. Given a smooth uniformly convex body $K \subset \mathbb{R}^n$ with the origin in its interior. Let h_K be its support function, prove that the Gauss curvature of K is $\frac{1}{\det(\nabla^2 h_K + h_K I)}$.