A CALCULATION FOR THE THIRD FUNDAMENTAL FORM

LING WANG

In this short notes, we give a detailed calculation for the third fundamental form of a regular surface in \mathbb{R}^{3}. The following technique is very basic, but the calculation is very painful. Our main result is as follows:

Theorem 1. Define the third fundamental form of a surface to be

$$
\mathrm{III}=d \mathbf{N} \cdot d \mathbf{N}
$$

where $d \mathbf{N}=\mathbf{N}_{u} d u+\mathbf{N}_{v} d v$, for a surface $\mathbf{x}(u, v)$. Show that

$$
\mathrm{III}=2 H \mathrm{II}-K \mathrm{I},
$$

where H is the mean curvature, K is the Gauss curvature, I is the first fundamental form, and II is the second fundamental form.

Proof. By definition, we have

$$
\mathrm{I}=E(d u)^{2}+2 F d u d v+G(d v)^{2}
$$

and

$$
\mathrm{II}=L(d u)^{2}+2 M d u d v+N(d v)^{2}
$$

Hence, the mean curvature H and the Gauss curvature K are the form of

$$
H=\frac{L G+N F-2 M F}{2\left(E G-F^{2}\right)}, \quad K=\frac{L N-M^{2}}{E G-F^{2}} .
$$

Since $\mathbf{N} \cdot \mathbf{N}=1$, we know that $\mathbf{N}_{u}, \mathbf{N}_{v}$ are elements of the tangent space to the surface. Hence they can be written as linear combinations of \mathbf{x}_{u} and \mathbf{x}_{v}, i.e. there are a, b, c, d such that

$$
-\mathbf{N}_{u}=a \mathbf{x}_{u}+b \mathbf{x}_{v}, \quad-\mathbf{N}_{v}=c \mathbf{x}_{u}+d \mathbf{x}_{v} .
$$

Hence, by the definition of E, F, G, L, M, and N, we have

$$
\left(\begin{array}{rr}
L & M \\
M & N
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

which gives us that

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{rr}
L & M \\
M & N
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1} \\
& =\frac{1}{E G-F^{2}}\left(\begin{array}{rr}
L & M \\
M & N
\end{array}\right)\left(\begin{array}{rr}
G & -F \\
-F & E
\end{array}\right)
\end{aligned}
$$

$$
=\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
L G-M F & -L F+M E \\
M G-N F & -M F+N E
\end{array}\right)
$$

Now, we compute the coefficients of III.
The first term is

$$
\begin{aligned}
\mathbf{N}_{u} \cdot \mathbf{N}_{u}= & \left(a \mathbf{x}_{u}+b \mathbf{x}_{v}\right) \cdot\left(a \mathbf{x}_{u}+b \mathbf{x}_{v}\right) \\
= & a^{2} E+2 a b F+b^{2} G \\
= & \frac{1}{\left(E G-F^{2}\right)^{2}}\left[(L G-M F)^{2} E+2(L G-M F)(-L F+M E) F\right. \\
& \left.\quad+(-L F+M E)^{2} G\right] \\
= & \frac{1}{\left(E G-F^{2}\right)^{2}}\left(L^{2} G^{2} E-2 M L E F G+M^{2} F^{2} E-2 L^{2} G F^{2}+2 M L E F G\right. \\
& \left.+2 M L F^{3}-2 M^{2} E F^{2}+L^{2} F^{2} G-2 M L E F G+M^{2} E^{2} G\right) \\
= & \frac{1}{\left(E G-F^{2}\right)^{2}}\left(L^{2} G-2 M L F+M^{2} E\right)\left(E G-F^{2}\right) \\
= & \frac{1}{E G-F^{2}}\left(L^{2} G-2 M L F+N L E-N L E+M^{2} E\right) \\
= & 2 H L-K E .
\end{aligned}
$$

The second term is

$$
\begin{aligned}
\mathbf{N}_{u} \cdot \mathbf{N}_{v}= & \left(a \mathbf{x}_{u}+b \mathbf{x}_{v}\right) \cdot\left(c \mathbf{x}_{u}+d \mathbf{x}_{v}\right) \\
= & a c E+(a d+b c) F+b d G \\
= & \frac{1}{\left(E G-F^{2}\right)^{2}}[(L G-M F)(M G-N F) E+(L G-M F)(-M F+N E) F \\
& \quad+(-L F+M E)(M G-N F) F+(-L F+M E)(-m F+N E) G] \\
& \quad \frac{1}{\left(E G-F^{2}\right)^{2}}\left(M L G^{2} E-N L E F G-M^{2} E F G+M N F^{2} E-M L G F^{2}\right. \\
& \quad \quad+N L E F G+M^{2} F^{3}-M N E F^{2}-M L G F^{2}+N L F^{3}+M^{2} E F G \\
& \left.\quad \quad-M N E F^{2}+M L F^{2} G-N L E F G-M^{2} E F G+M N E^{2} G\right) \\
& \quad \frac{1}{\left(E G-F^{2}\right)^{2}}\left(M L G+M N E-M^{2} F-N L F\right)\left(E G-F^{2}\right) \\
= & \frac{1}{E G-F^{2}}\left(M L G+M N E-2 M^{2} F+M^{2} F-N L F\right) \\
= & 2 H M-K F .
\end{aligned}
$$

The third term is
$\mathbf{N}_{v} \cdot \mathbf{N}_{v}=\left(c \mathbf{x}_{u}+d \mathbf{x}_{v}\right) \cdot\left(c \mathbf{x}_{u}+d \mathbf{x}_{v}\right)$

$$
\begin{aligned}
& =c^{2} E+2 c d F+d^{2} G \\
& =\frac{1}{\left(E G-F^{2}\right)^{2}}\left[(M G-N F)^{2} E+2(M G-N F)(-M F+N E) F\right. \\
& =\frac{1}{\left(E G-F^{2}\right)^{2}}\left(M^{2} G^{2} E-2 M N E F G+N^{2} F^{2} E-2 M^{2} G F^{2}+2 M N E F G\right. \\
& \left.\quad+2 M N F^{3}-2 N^{2} E F^{2}+M^{2} F^{2} G-2 M N E F G+N^{2} E^{2} G\right) \\
& =\frac{1}{\left(E G-F^{2}\right)^{2}}\left(M^{2} G-2 M N F+N^{2} E\right)\left(E G-F^{2}\right) \\
& =\frac{1}{E G-F^{2}}\left(N L G-2 M N F+N^{2} E-N L G+M^{2} G\right) \\
& =2 H N-K G .
\end{aligned}
$$

Hence, we obtain

$$
\mathrm{III}=2 H \mathrm{II}-K I
$$

School of Mathematical Sciences, Peking University, Beijing 100871, China.
Email address: lingwang@stu.pku.edu.cn

