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Abstract. We prove a half-space Bernstein theorem for Allen-Cahn equation.
More precisely, we show that every solution u of the Allen-Cahn equation in the
half-space Rn

+ := {(x1, x2, · · · , xn) ∈ Rn : x1 ≥ 0} with |u| ≤ 1, boundary value
given by the restriction of a one-dimensional solution on {x1 = 0} and monotone
condition ∂xn

u > 0 as well as limiting condition limxn→±∞ u(x′, xn) = ±1 must
itself be one-dimensional, and the parallel flat level sets and {x1 = 0} intersect at
the same fixed angle in (0, π

2 ].

1. Introduction

In this paper, we prove a half-space Bernstein theorem for Allen-Cahn equation.
This is related to a half-space version De Giorgi’s conjecture. We recall that the
classical De Giorgi’s conjecture was raised by De Giorgi in 1978 [De], which states as
follows:

Conjecture (De Giorgi’s conjecture). If u ∈ C2(Rn) is an entire solution of

(1.1) ∆u = u3 − u,

such that

|u| ≤ 1, ∂xnu > 0

in whole Rn, then is it true that all the level sets of u are hyperplanes, at least if
n ≤ 8?

The conjecture is sometimes called “the ε-version of the Bernstein problem for
minimal graphs” because the level sets of ε-Allen-Cahn equation converges minimal
hypersurface under some conditions (see [Mo, HT, TW, Gu]). This relation and the
Bernstein problem for minimal hypersurfaces explains why De Giorgi stated conjec-
ture under dimension condtion n ≤ 8.
De Giorgi’s Conjecture was proved true in dimension n = 2 by Ghoussoub and

Gui [GG] and for n = 3 by Ambrosio and Cabré [AC]. Savin [Sa2] showed that
for 4 ≤ n ≤ 8, De Giorgi’s Conjecture holds under the additional natural limiting
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condition

(1.2) lim
xn→±∞

u(x′, xn) = ±1

holds pointwisely for every x′ = (x1, · · · , xn−1) ∈ Rn−1. This condition implies that
for every λ ∈ (−1, 1), the level set {x ∈ Rn : u(x) = λ} of the function u is entire
graph with respect to the first n−1 variables. Another proof of Savin’s result provided
by Wang can be found in [Wa17]. On the other hand, for n ≥ 9, del Pino, Kowalczyk
and Wei [dPKW] constructed monotone solutions which are not one-dimensional, so
the dimension condition n ≤ 8 in the De Giorgi’s conjecture cannot be removed. It
is worth noting that this counterexample also satisfies the limiting assumption (1.2).

Additionally, it is not hard to see that (1.1) is the Euler-Lagrange equation of
energy functional

(1.3) J(u,Ω) :=

∫
Ω

1

2
|∇u|2 + 1

4

(
1− u2

)2
dx, |u| ≤ 1,

where Ω is a n-dimensional domain in Rn. One important rigidity result to highlight
is the classification of solutions that are global minimizers of the associated energy
functional (1.3) with Ω = Rn. Savin proved in the same paper [Sa2] that global
minimizers of (1.3) are one-dimensional for dimensions n ≤ 7, while Liu, Wang, and
Wei [LWW] constructed counterexamples in dimensions n ≥ 8. For more details and
extensions to nonlinear equations’ De Giorgi conjecture, we refer to [CW, DS, Sa1,
Sa2, Sa3, VSS] and the references therein. Recently, there have been some results
related to the nonlocal De Giorgi conjecture (see [CC14, DSV, Sa4, Sa5, SV09]) as
well.

As the half-space Bernstein theorem for graphical minimal hypersurfaces considered
in [EW] and [DMYZ], it is natural to investigate whether the De Giorgi conjecture for
Allen-Cahn equations is true in the half-space. In [Hetc], Hamel-Liu-Sicbaldi-Wang-
Wei proved a half-space rigidity result under the assumption that the zero level set
of the solution is contained in a half-space. Specifically, they showed that whenever
n ≤ 3 and u is a non-constant solution of (1.1) with the zero level set contained
in a half-space, u is one-dimensional. Farina and Valdinoci studied overdetermined
problems for Allen-Cahn equations in [FV] and subsequently obtained the half-space
De Giorgi conjecture in dimensions 2 and 3. Note that in both results, the level sets
of solutions are parallel to the boundary of half-space. In this paper, we obtain a
different type of half-space rigidity result for Allen-Cahn equations, where the level
sets of solutions of Allen-Cahn equations with double well potentials are allowed to
have any fixed intersection angle in (0, π

2
] with the boundary of the half-space Rn

+

under assuming ∂xnu > 0 and the limiting condition in (1.2).
To state our result in this paper, we consider general Allen-Cahn energy functional

(1.4) J(u,Ω) :=

∫
Ω

1

2
|∇u|2 +W (u) dx, |u| ≤ 1,
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where W is a double-well potential achieving minimum at 1 and −1 and satisfying

(1.5) W ∈ C2([−1, 1]), W (−1) = W (1) = 0, W > 0 on (−1, 1),

(1.6) W ′(−1) = W ′(1) = 0, W ′′(−1) > 0, W ′′(1) > 0.

The Euler-Lagrange equation of Allen-Cahn energy functional (1.4) is

(1.7) ∆u = W ′(u),

and in (1.1) W (s) = 1
4
(1− s2)2 is the classical double-well potential.

If we define

(1.8) H0(s) :=

∫ s

0

1√
2W (ξ)

dξ, and g0(t) := H−1
0 (t),

then we find that
g′′0(t) = W ′(g0),

and g0 is the unique strictly increasing solution of (1.7) and is called as the one-
dimensional solution of (1.7). On the other hand, a solution of (1.7) in Rn with
parallel flat level sets must be of the form u(x) = g0(a · x+ c), where c ∈ R, and a is
any unit vector in Rn.

Now, we recall that we define Rn
+ := {(x1, x2, · · · , xn) ∈ Rn : x1 > 0}, ∂Rn

+ =
{(x1, x2, · · · , xn) ∈ Rn : x1 = 0} and we have the following main result about half-
space Bernstein theorem for Allen-Cahn equations.

Theorem 1.1. If u ∈ C2
(
Rn

+

)
∩ C

(
Rn

+

)
is a solution to

(1.9)


∆u = W ′(u) in Rn

+,

u(x) = g0(a · x) on ∂Rn
+ = {x1 = 0},

|u| ≤ 1, ∂xnu > 0 in Rn
+,

where double well potential W satisfies (1.5)-(1.6), a := (a1, a2, · · · , an) is any unit
vector in Rn with an > 0. Assuming further that u satisfies the limiting condition1

(1.10) lim
xn→±∞

u(x′, xn) = ±1

pointwise for any x′ ∈ Rn−1
+ , then we have that u must be one of the following one-

dimensional solution:

u(x) = g0(±a1x1 + a2x2 + · · ·+ anxn).

In particular, if the above a = (0, a2, · · · , an) is any unit vector in {0} × Rn−1 with
an > 0, i.e. boundary condition function g0(a2x2 + · · · + anxn) is a one-dimensional

1By the example constructed by Andersson in [An], the limiting condition assumption (1.10) in
Theorem 1.1 is necessary when a1 ̸= 0. Indeed, Andersson’s non-one-dimensional counterexample to
half-space De Giorgi’s conjecture for (1.9) with W ′(u) = u3 − u in R2

+ has the boundary condition

g0(a1x1 + a2x2) with g0(x) = tanh( x√
2
) and (a1, a2) = (

√
2
2 ,

√
2
2 ) and his argument for showing

existence of counter example does not hold when a1 = 0. It would be interesting to know if limiting
condition (1.10) Theorem 1.1 can be removed or not when a1 = 0.
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solution to the equation (1.7) on Rn−1, then u(x) = g0(a2x2 + · · ·+ anxn) is the one-
dimensional solution whose level sets are orthogonal to the boundary of the half-space.

It is worth noting that, unlike the De Giorgi conjecture proved by Savin [Sa2], which
assumes dimension n ≤ 8, our main result Theorem 1.1 holds in all dimensions, just
as the affirmative answer to the half-space Bernstein problem for graphical minimal
hypersurfaces with linear boundary conditions also holds in all dimensions (see [EW]
or [DMYZ]). Our result also allows the level sets of entire solutions to have any fixed
intersection angle in (0, π

2
] with the boundary of the half-space, in contrast to the level

sets of entire solutions in lower dimensions n = 2, 3 being parallel to the boundary of
the half-space in [Hetc] and [FV].

The key idea for proving Theorem 1.1 is to extend the blowdown method in
the proof of the half-space Bernstein theorem for anisotropic minimal graphs (see
[DMYZ]), to Savin’s framework [Sa2] for Allen-Cahn equations. Using the linear
boundary condition, limiting condition (1.10) and ∂xnu > 0, we show that solution is
minimizer of Allen-Cahn energy. While the level sets of Allen-Cahn energy minimiz-
ing solution to (1.9) generally do not satisfy any equation, we can still show that in
some weak sense there are equations that can be satisfied. By passing to the limit of
rescaled solutions to (1.9), we obtain that the limiting level set satisfies the graph-
ical minimal hypersurface equation in the viscosity sense. Therefore, we can apply
results of half-space Bernstein problem for graphical minimal hypersurfaces with lin-
ear boundary conditions from [EW] or [DMYZ] to conclude that this level set must
be a graphical half hyperplane. Then, similar to the blowdown method in [DMYZ],
we bound the level sets of solutions to (1.9) by two critical hyperplanes with the
same boundary. Using a barrier argument similar to the Hopf-type lemma proved in
[DMYZ, Lemma 3.1] and sliding method, we show that these two hyperplanes must
coincide with the hyperplane obtained in the limit. Consequently, the level sets are
flat. Since this procedure holds for all level sets, we conclude that the solutions to
(1.9) with limiting condition (1.10) are one-dimensional.

The structure of this paper is organized as follows. In Section 2, we present some
lemmas that will be used in the proof of the main theorem. In Section 3, we give the
proof of Theorem 1.1.

Acknowledgments. W. Du acknowledges the support of the MIT. L. Wang ac-
knowledges his PhD supervisor, Professor Bin Zhou, for his constant encouragement
and support. Y. Yang acknowledges the support of the Johns Hopkins University
Provost’s Postdoctoral Fellowship Program.

2. Preliminary

In this section, we present some lemmas that will be used in the proof of the
main theorem. The first lemma is a minor modification of the Modica theorem in
viscosity sense proved in [Sa2, Proposition 5.1], which says that the 0 level set of a
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local minimizer of (1.4) satisfies the mean curvature equation in some weak viscosity
sense, where the size of the neighborhood around the touching point must be specified.

Proposition 2.1 (Modica theorem-viscosity sense). Let u be a minimizer of (1.4)
and assume that u(0) = 0. Consider the graph of a C2 function

Γ = {(x′, xn) : xn = w(x′), w(0′) = 0, Dw(0′) = 0}
that satisfies

(2.1) ∆w(0′) > δ0∥D2w(0′)∥, ∥D2w(0′)∥ < δ−1
0 ,

at the origin 0′ ∈ Rn−1 for some δ0 > 0 small. Let uε(x) := u(ε−1x) be minimizer of

J(uε,Ω) :=

∫
Ω

ε

2
|∇u|2 + W (u)

ε
dx, |uε| ≤ 1,

There exists σ0(δ0) > 0 small, such that if ε ≤ σ0(δ0) then Γ cannot touch from

below {uε = 0} at 0 in a δ0ε
1
2 (∆w(0′))−

1
2 neighborhood; more explicitly,

{uε = 0} ∩ {xn < w} ∩
¶
|x| < δ0ε

1
2 (∆w(0′))−

1
2

©
̸= ∅.

Proof. In [Sa2, Proposition 5.1], Savin proved this statement with w(x′) = 1
2
x′TMx′.

Following a similar argument based on the equivalent definition of viscosity solutions,
we can prove this statement as well. The details are given below.

Let

P (x′) =
1

2
x′TD2w(0′)x′ − t

2
|x′|2.

Then by (2.1), we can choose sufficient small t > 0 such that

∆P > δ0∥D2w(0′)− tI∥, ∥D2w(0′)− tI∥ < δ−1
0 .

Hence by [Sa2, Proposition 5.1], we know that there exists σ0(δ0) > 0 small, such
that if ε ≤ σ0(δ0) then

{uε = 0} ∩ {xn < P} ∩
¶
|x| < δ0ε

1
2 (∆P )−

1
2

©
̸= ∅.

Since {xn < P} ⊂ {xn < w} and a little perturbation of t, we have

{uε = 0} ∩ {xn < w} ∩
¶
|x| < δ0ε

1
2 (∆w(0′))−

1
2

©
̸= ∅,

which is Γ cannot touch from below {uε = 0} at 0 in a δ0ε
1
2 (∆w(0′))−

1
2 neighborhood.

□

Proposition 2.1 shows that the level set {uε = 0} is, in some sense, a viscosity
supersolution of the minimal surface equation. Of course, by similar argument in
Proposition 2.1, the level set {uε = 0} is also a viscosity subsolution of the minimal
surface equation.

As a corollary of the above lemma, we conclude that if {uε = 0} converges uni-
formly to a surface, then this surface satisfies the zero mean curvature equation in
the viscosity sense. We state this result precisely below.
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Lemma 2.2 ([SV, Theorem 2.3]). Let u be a minimizer of (1.4) and uε := u(ε−1x).
If uε converges in L1

loc to χE − χRn\E and {uε = 0} converges locally uniformly to
S := ∂E, then S satisfies the zero mean curvature equation in the viscosity sense.

Proof. This result was proved in [SV, Theorem 2.3] for general p-Laplace phase tran-
sitions; here, we apply it for the case p = 2. □

The final lemma in this section addresses interior gradient estimates for viscosity
solutions to the minimal surface equation. This result will later be used to show that
viscosity solutions to the minimal surface equation are, in some sense, classical.

Lemma 2.3 (a priori estimate of the gradient). Let γ be a viscosity solution to the
minimal surface equation,

n∑
i,j=1

Å
δij −

DiγDjγ

1 + |Dγ|2

ã
Dijγ = 0

in BR(x0). Then there exists a constant C > 0 such that

(2.2) sup
BR/2(x0)

|Dγ| ≤ exp

ñ
C

Ç
1 +

supBR(x0) γ − γ(x0)

R

åô
.

Proof. This estimate was first derived under the assumption γ ∈ C2 by Bombieri, De
Giorgi, and Miranda [BDM]. Since then, several simpler and more modern proofs have
been provided by various authors. For the viscosity solution case, Wang stated in [Wa,
Theorem 1.1] that the estimate can be achieved via an approximation argument. □

3. Proof of the main theorem

In this section, we give the proof of Theorem 1.1. Before doing so, we first show
that a function u satisfying (1.9) and (1.10) is a global minimizer in Rn

+. The idea is
similar to the proof of [Sa2, Theorem 2.4], with some details adapted from the proof
of [VSS, Lemma 9.1].

Lemma 3.1. If u ∈ C2
(
Rn

+

)
∩ C

(
Rn

+

)
satisfies (1.9) and (1.10), then u is a global

minimizer of (1.4) in Rn
+.

Proof. Since ∂xnu > 0, i.e. u is strictly increasing, we actually know |u| < 1 by [VSS,
footnote in page 2]. Let B ⊂ Rn be a closed n-dimensional ball, and let v be a
minimizer of J(v,B ∩ Rn

+) such that v = u on ∂(B ∩ Rn
+). Our goal is to show that

u = v in B ∩ Rn
+. If B ∩ ∂Rn

+ = ∅, this follows from [Sa2, Theorem 2.4] or [VSS,
Lemma 9.1]. Thus, it suffices to consider the case where B∩ ∂Rn

+ ̸= ∅. We will prove

this claim by contradiction. Assume that there exists a point x∗ ∈ B ∩Rn
+ such that

(3.1) v(x∗) > u(x∗).

Hence by the boundary assumption u = v, we know that x∗ is in the interior of
B ∩ Rn

+.
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Note that the boundary condition in (1.9), which is a one-dimensional solution
restricts to ∂Rn

+. By the global gradient estimate for semilinear elliptic equations

(with the above boundary condition), we know that for all x ∈ Rn
+, there exists a

constant C > 0 (does not depend on x), such that |∇u| ≤ C in B1(x) ∩ Rn
+ (see, for

example, [HL, Proposition 2.20]). Combining lim
xn→+∞

u(x′, xn) = 1, we deduce that

(3.2) u(x+ ten) ≥ v(x)

for any x ∈ B ∩ Rn
+ provided that t is large enough. Indeed, if this is not true, we

have u(xt + ten) < v(xt) for some xt ∈ B ∩ Rn
+ and a diverging sequence of t. Note

that there is α > 0 so that v ≤ 1−α. Then, up to subsequence, we may assume that
xt converges to x∞ ∈ B ∩ Rn

+, then

1 = lim
t→+∞

u(x∞ + ten)

= lim
t→+∞

[u(x∞ + ten)− u(xt + ten) + u(xt + ten)]

≤ lim
t→+∞

[u(xt + ten) + C|x∞ − xt|]

= lim
t→+∞

u(xt + ten)

≤ lim
t→+∞

v(xt)

≤ 1− α,

which make a contradiction. Thanks to the inequality (3.2), we thus slide u(· + ten)
along the en-direction until we touch v from above for the first time. Say this happen
at x̄ ∈ B ∩ Rn

+ for t = t̄. Then by (3.1), we have

u(x∗ + t̄en) ≥ v(x∗) > u(x∗),

thence, since u is strictly increasing in the en-direction (inB∩Rn
+, we use ∂xnu > 0 and

inB∩∂Rn
+ we use one-dimensional strictly increase boundary condition u(x) = g0(a·x)

with an > 0), we know that t̄ > 0. Since now ∂xnu > 0 we have that ∇u(·+ t̄en) ̸= 0.
Therefore, it follows that the assumptions of the Strong Comparison Principle for
quasilinear degenerate elliptic equations in [Da, Theorem 1.4] applies to u(· + t̄en)
and v(·) and so this touching point must occur on ∂(B∩Rn

+), that is x̄ ∈ ∂(B∩Rn
+).

Since u = v on ∂(B∩Rn
+), it follows that v(x̄) = u(x̄). Note that as above, by ∂xnu > 0

and one-dimensional strictly increase boundary condition u is strictly increasing in
the en-direction. Hence

u(x̄) = v(x̄) = u(x̄+ t̄en) > u(x̄),

contradiction, which means that (3.1) cannot hold. Hence u ≥ v. Analogously, one
can see that u ≤ v, thence u = v. □

Since we have established the minimality of u, we can combine the Modica theorem
with the half-space Bernstein theorem for minimal surfaces to conclude that the level
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sets of rescaled solutions to (1.1) locally uniformly converge to hyperplanes in all
dimensions.

Lemma 3.2. Let u ∈ C2
(
Rn

+

)
∩ C

(
Rn

+

)
be a solution to (1.9) with (1.10), and

uε(x) := u(ε−1x). Then there exists a subsequence {εk} → 0 such that the level sets{
x ∈ Rn

+ : uεk(x) = 0
}
= εk

{
x ∈ Rn

+ : u(x) = 0
}

converge uniformly on compact sets to a graphical half-hyperplane.

Proof. By the minimality of u (see Lemma 3.1) and the Modica theorem, we know
that uε converges in L1

loc (and thus a.e. converges), up to a subsequence, to χE−χRn
+\E

for a suitable set E ⊂ Rn
+ with minimal perimeter. Following the arguments in [VSS,

Pages 80-81], we can conclude that there exists a measurable function γ∗ : Rn−1
+ →

[−∞,+∞], where

Rn−1
+ := {x′ = (x1, x2, · · · , xn−1) ∈ Rn−1 : x1 > 0},

such that Rn
+\E =

{
x ∈ Rn

+ : xn < γ∗(x
′)
}
, and that γ∗|∂Rn−1

+
is linear. By Lemma

2.2, we know that γ∗ satisfies the minimal surface equation in the viscosity sense with
linear boundary value conditions. Next we show that γ∗ is smooth in the interior.
For any x0 ∈ Rn−1

+ , we can choose a small enough r > 0 such that Br(x0) ⊂⊂
Rn−1

+ . Then by Lemma 2.3, we know that |Dγ∗| is bounded in Br/2(x0). Then by
approximation argument as in [Tr], the function w = Dsγ∗, (s = 1, 2, · · · , n − 1)
satisfies the equation

(3.3) Di (aij(x)Djw) = 0

with

aij(x) =
δij(1 + |Dγ∗|2)−Diγ∗Djγ∗

(1 + |Dγ∗|2)3/2
∈ L∞(Br/2(x0)).

Since we have proved |Dγ∗| is bounded in Br/2(x0), we have for every ξ ∈ Rn−1

ν|ξ|2 ≤ aij(x)ξiξj

with some constant ν > 0. Thus, equation (3.3) is uniformly elliptic. Then by De
Giorgi-Nash-Moser theory [GT, Theorem 8.24], we know that w ∈ Cα(Br/4(x0)) for
some α > 0, which is γ∗ ∈ C1,α(Br/4(x0)). Hence, by the classical Schauder theory
[GT, Theorem 6.2], we can conclude that γ∗ is smooth at x0.

Therefore, by the half-space Bernstein theorem for minimal graphs in [EW] or
[DMYZ], we can conclude that ∂E =

{
x ∈ Rn

+ : xn = γ∗(x
′)
}

is a graphical half-

hyperplane in Rn
+. By the boundary condition, we obtain that ∂E ∩ {x1 = 0} =

{u = 0} ∩ {x1 = 0}. Then thanks to the density estimates of Caffarelli and Cordoba
[CC, Page 11], we know {uε = 0} L∞

loc-converges to ∂E. □

Next, to apply a similar blowdown method as in [DMYZ], we need to extend certain
notions and lemmas to the level sets of solutions to (1.9). Given the assumption that



FLAT LEVEL SETS OF ALLEN-CAHN EQUATION IN HALF-SPACE 9

∂xnu > 0, we know that the level sets are graphs along the xn-direction. By the
boundary value condition and the definition of g0 in (1.8), we have

Γ : = {u(x) = 0} ∩ {x1 = 0} =
{
x ∈ Rn

+ : g0(a · x) = 0, x1 = 0
}

=
{
x ∈ Rn

+ : a2x2 + · · · anxn = 0, x1 = 0
}
.

Hence, we define

(3.4)
A+ : = sup

{
A : {u = 0} ⊂ {x ∈ Rn

+ : Ax1 + a2x2 + · · ·+ anxn ≤ 0}
}
,

A− : = inf
{
A : {u = 0} ⊂ {x ∈ Rn

+ : Ax1 + a2x2 + · · ·+ anxn ≥ 0}
}
,

where A+ ∈ R∪{−∞} and A− ∈ R∪{+∞}. By definition, it is clear that A+ ≤ A−.
To show that {u = 0} is flat, it suffices to prove that A+ = A−.
Let H± denote the critical hyperplanes {A±x1 + a2x2 + · · · + anxn = 0}. Note

that our definition of A± has the opposite sign compared to that in [DMYZ], but
H± are the same. Thus, when A+ = −∞, we interpret H+ as the closed half-space
in {x1 = 0} lying above Γ, and we understand H− similarly when A− = +∞. See
Figure 1.

{u = 0}

H−

H+

xn

x′

Figure 1. critical hyperplanes H±

Denote uε(x) = u(ε−1x), then we have

(3.5)
{
x ∈ Rn

+ : uε(x) = 0
}
= ε

{
x ∈ Rn

+ : u(x) = 0
}
.

Lemma 3.3. Let u ∈ C2
(
Rn

+

)
∩ C

(
Rn

+

)
be a solution to (1.9) with (1.10), then we

have A+ = A−.

Proof. By the definition of A± in (3.4), we know that

{x ∈ Rn
+ : u(x) = 0} ⊂ {x ∈ Rn

+ : A+x1 + a2x2 + · · ·+ anxn ≤ 0}
and

{x ∈ Rn
+ : u(x) = 0} ⊂ {x ∈ Rn

+ : A−x1 + a2x2 + · · ·+ anxn ≥ 0},
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i.e. {u = 0} lies between H+ and H−. Since H± are Lipschitz scaling invariant,
combining (3.5), we get

{x ∈ Rn
+ : uε(x) = 0} ⊂ {x ∈ Rn

+ : A+x1 + a2x2 + · · ·+ anxn ≤ 0}
and

{x ∈ Rn
+ : uε(x) = 0} ⊂ {x ∈ Rn

+ : A−x1 + a2x2 + · · ·+ anxn ≥ 0},
which means that {uε = 0} still lies between H±.

Since ∂xnu > 0, we know that u is a graph in the xn-direction. Hence, we denote

{u = 0} = {x ∈ Rn
+ : xn = γ(x′)},

where γ : Rn
+ → R is a C2-function satisfying

u(x′, γ(x′)) = 0, and γ(0, x2, · · · , xn−1) = −a−1
n (a2x2 + · · ·+ an−1xn−1).

Denote γε(x
′) := εγ(ε−1x′). Then we have

{uε = 0} = {x ∈ Rn
+ : xn = γε(x

′)}.
By Lemma 3.2, there is sequence {εk} such that {uεk = 0} locally uniformly converges
to a graphical half-hyperplane, denoted by ∂E, and

∂E = {x ∈ Rn
+ : xn = γ∗(x

′)} with ∂E ∩ {x1 = 0} = Γ,

where γ∗(x
′) := limk→∞ γεk(x

′) is a linear function in Rn−1
+ . Thus, we know that ∂E

still lies between H±. Next, we show that the hyperplanes H± must coincide with the
hyperplane ∂E, which implies that A+ = A−.
Suppose towards a contradiction A+ < A− We first consider the case where A− <

+∞. Suppose that H− lies below ∂E, i.e., the plane ∂E and H− form a positive
angle on the boundary Γ. Denote e′1 := (1, 0, . . . , 0) ∈ Rn−1

+ . Then, using a similar
subsolution barrier function as in [DMYZ, Lemma 3.1], we define

w = −a−1
n (A−x1 + a2x2 + · · ·+ an−1xn−1) + µφM(x′ − e′1),

where
φM(x′) := min{|x′|−M , η−M} − 1,

and µ, η are chosen sufficiently small such that w < γ∗ in Bη(e
′
1), and M is large

enough such that graph of w has positive mean curvature in B1(e
′
1) \ Bη(e

′
1). Thus,

by a direct calculation, we know that there exists sufficient small constant δ0 > 0
such that

(3.6) ∆w − DwTD2wDw

1 + |Dw|2
> δ0∥D2w∥, ∥D2w∥ < δ−1

0 in B1(e
′
1) \Bη(e

′
1).

Now, we claim that there exists a subsequence of {εk}, we may still denote it as {εk},
such that {uεk = 0} continue to lie above the graph of w, i.e. γεk ≥ w in B1(e

′
1).

If this were not the case, by the boundary condition and uniform convergence, we
know that there must exist a small domain in B1(e

′
1) \ Bη(e

′
1) where {uεk = 0} lies

below the graph of w. In this case, we can slide down the graph of w along the
xn-direction until it touches interior of {uεk = 0}. By translating and rotating the
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graph of w and H− we can assume in the new coordinates Dw in (3.6) vanishes at
the touching point. Since the touching point lies in the interior, Proposition 2.1 leads
to a contradiction. Therefore, there exists a subsequence {εk} such that {uεk = 0}
still lies above the graph of w. See Figure 2 for the geometric interpretation.

{uεk = 0}
∂E

H−

w

Figure 2. Barrier function

Following a similar argument to the proof of [DMYZ, Lemma 3.1], we can complete
the proof. Indeed, from the previous claim, we know that γεk ≥ −a−1

n (A−x1 + a2x2 +
· · · + an−1xn−1) + tx1 on the line segment from 0′ to e′1 for some small t > 0. We
can repeat the same argument by replacing e′1 with e′1 + λe′ for any unit vector e′

in the span of {e′2, . . . , e′n−1} and |λ| < η. This allows us to conclude that γεk ≥
−a−1

n (A−x1 + a2x2 + · · · + an−1xn−1) + tx1 on the line segment from λe′ to e′1 + λe′

for all e′ and λ as above. This implies the existence of a hyperplane between {u = 0}
and H−, which forms a small positive angle with H− on the boundary Γ. This
contradicts the definition of A− in (3.4). In the second case where A− = +∞, we
know that we can find a sufficiently small µ > 0 such that the non-vertical hyperplane‹H := {Rn

+ : µ−1x1+a2x2+ · · ·+anxn = 0} lies between ∂E and H−, and is sufficiently

close to H−. Then, we can replace H− with ‹H in the above discussion and argue
similarly as in the first case where A− < +∞ to derive a contradiction. Hence, we
conclude that H− = ∂E. Similarly, we can show that H+ = ∂E. □

Now, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Lemma 3.1, Lemma 3.2, and Lemma 3.3, we con-
clude that the level set {u = 0} coincides with H±, implying that {u = 0} is a
hyperplane. Since we can apply this method to all level sets of the solution to (1.9),
we deduce that all level sets are flat. Moreover, since ∂xnu > 0, i.e., u is increas-
ing with respect to xn, the level sets are parallel and we conclude that u must be a
one-dimensional solution. Due to its boundary condition, we have

u(x) = g0(±a1x1 + a2x2 + · · ·+ anxn).

Then we complete the proof. □
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