
NOTES FOR “AFFINE BERNSTEIN PROBLEM”

LING WANG

Abstract. In this note, I’ll go through the proof of affine Bernstein problem given by
Trudinger and Wang. First, I’ll make some detail calculations for conclusion stated in the
original paper, and then restate the theorems based on my own understanding. Finally,
I’ll show that they produced a (non-smooth) counterexample for n ≥ 10.

1. Introduction

This note is about a talk I give on the seminar, Geometric PDEs, held by CAS. In
this note, I’ll go through the proof of affine Bernstein problem given by Trudinger and
Wang [TW], and I mainly introduce the idea about how to get the all dimensional con-
clusions under the assumption of uniform, “strict convexity” and just mention the proof
of dimension two, which is the Chern’s conjecture [Ch]. It is because their method for
dimension two can not be extended to higher dimensions, even for dimension 3 and there
are also other proofs of Chern’s conjecture in dimension two. In the end, it is also worthy
to mention that they produced a (non-smooth) counterexample for n ≥ 10.

Next, I will state the main theorem of this note.
Theorem 1.1 ([TW, Theorem 1.1 & 5.2]). An entire, affine maximal, locally uniformly
convex C4 graph in R3 must be an elliptic paraboloid.

Before I give the proof of Theorem 1.1, I’ll introduce some backgrounds of Bernstein
problems. As all we known, the Bernstein problem for minimal surfaces is a fundamental
problem in differential geometry and PDEs, ever since Bernstein proved that an entire, two
dimensional, minimal graph must be a hyperplane [Be]. And the theorem was extended
to n = 3 by De Giorgi [De], n = 4 by Almgren [Al] and n ≤ 7 by Simons [Si]. Finally
Bombieri, De Giorgi, and Giusti [BDG] gave an example showing that the result fails
for n ≥ 8, and this is one of the results reported by Professor Sun in the past lectures.
The Bernstein (or Liouville) theorem for Monge-Ampère equation is also important. A
celebrated result of Jörgens(n = 2) [Jo], Calabi(2 ≤ n ≤ 5) [Ca] and Pogorelov(n ≥ 2) [Po]
stated that any entire classical convex solution to the Monge-Ampère equation must be a
quadratic polynomial. Later, Caffarelli [Caf1] extended this result to viscosity solutions.
And an interesting thing is that in dimension two, the Bernstein theorem for minimal
surfaces can be deduced from Liouville theorem for Monge-Ampère equation. Indeed, we
can rewrite the minimal surface equation in the form

(1 + u2
x)uxx − 2uxuyuxy + (1 + u2

y)uyy = 0 in R2.
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Let

ϕxx =
1 + u2

x√
1 + u2

x + u2
y

,

ϕxy =
uxuy√

1 + u2
x + u2

y

,

ϕyy =
1 + u2

y√
1 + u2

x + u2
y

.

Such a function satisfies
ϕxxϕyy − ϕ2

xy = 1.

Then following by the Liouville theorem for Monge-Ampère equation that ϕ is a quadratic
function, and hence ux, uy are constants, which implies u is a linear function.

In 1977, Theorem 1.1 was proposed by Chern [Ch] as the Bernstein problem for affine
maximal hypersurfaces, and it was proved in 2000 by Trudinger and Wang [TW]. In the
following, I will explain what affine maximal means. Suppose M is given by

xn+1 = u(x), x = (x1, · · · , xn),(1.1)

where u ∈ C2(Ω) is convex. On M we can introduce a metric, called the affine metric
(also called the Berwald-Blaschke metric), given by

gij =
uij

[detD2u]1/(n+2)
,

where D2u = [uij] is the Hessian matrix of the second derivatives of u. If u is locally
uniformly convex in Ω, then detD2u > 0 and g is well defined. From the metric, we
introduce the affine area A by defining

A(u,Ω) =

∫
Ω

[
detD2u

]1/(n+2)

Definition 1.2. A hypersurface M, given by (1.1), is called affine maximal if the function
u is a critical point of the affine area functional A.

Calabi [Ca1] proved that if u ∈ C4(Ω) is a critical point of the functional A, the second
variation of A at u is non-positive, that is, the affine area of M reaches a maximum
under smooth interior perturbations. Accordingly he proposed that M be called an affine
maximal hypersurface. The Euler-Lagrange equation of the functional A is a fourth order,
nonlinear partial differential equation, given by

HA[M] =: Dij

(
U ijw

)
= 0,(1.2)

where
w =

[
detD2u

]−(n+1)/(n+2)
,
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and [U ij] denotes the cofactor matrix of [uij]. Noting that
DjU

ij = 0.

In fact, since (refer to [Fi, Lemma A.1 & A.2] for detail calculations)
d

dε
det(A+ εB)

∣∣∣∣
ε=0

= detA tr(A−1B),

and
d

dε
(A+ εB)−1

∣∣∣∣
ε=0

= −A−1BA−1,

we have

Dj(detD
2u) =

d

dε
det(D2u+ εD2uj)

∣∣∣∣
ε=0

= detD2u tr([D2u]−1D2uj) = detD2u · ukluklj

and
Dj([ukl]

−1) =
d

dε
([ukl] + ε[uklj])

−1

∣∣∣∣
ε=0

= −[ukl][ustj][u
mn].

Hence
Dju

ij = −uikuklju
lj = −ukluklju

ij,

which yields
DjU

ij = Dj(detD
2u · uij) = Dj(detD

2u)uij + detD2uDju
ij = 0.

By this divergence free property, we know (1.2) can be written as
HA[M] = U ijDijw = 0.(1.3)

The quantity HA[M] on the left hand side of equations (1.2) and (1.3) represents the
affine mean curvature of the hypersurface M. Denoting

h = g1/2 = (det [gij])
1/2

=
(
detD2u

)1/(n+2)
= w−(n+1),

equation (1.2) can also be written as

∆M

(
1

h

)
= 0,

where ∆M is the Laplace-Beltrami operator with respect to the affine metric, given by

∆M =
1
√
g
Di

(√
ggijDj

)
=

1

h
Di

(
h2uijDj

)
,

and [gij] , [uij] are the inverses of [gij] , [uij]. In fact, note that

Dijw = Dij

(
h−1

)n+1
=n(n+ 1)

(
h−1

)n−1
Dih

−1Djh
−1

+(n+ 1)
(
h−1

)n
Dijh

−1.
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Then

∆M
(
h−1

)
=

1

h
Di

(
h2uijDj

(
h−1

))
=

1

h
Di

((
h−1

)n
U ijDj

(
h−1

))
=

1

h
U ijDi

((
h−1

)n
Dj

(
h−1

))
=

1

h
U ij

(
n
(
h−1

)n−1
Dih

−1Djh
−1 +

(
h−1

)n
Dijh

−1
)

=
1

(n+ 1)h
U ijDijw = 0.

Therefore the hypersurface M is affine maximal if and only if 1/h is harmonic on M.
In [Ch], Chern conjectured that, in the two dimensional case, any entire solution to

(1.3) must be quadratic. From Bernstein [Be], if the function w = o(|x|), as x → ∞, then
w is constant and Chern’s conjecture follows from Jörgens’ theorem [Jo], that an entire
convex solution of the Monge-Ampère equation

detD2u = constant

is a quadratic function, (which is true in all dimensions). Calabi [Ca1] verified the Chern
conjecture under the hypothesis that the affine metric of the graph of the solution is
complete. For if n = 2, the Ricci tensor under the affine metric is non-negative definite,
and by a result of Blanc and Fiala [BF], (see [Yau] for the higher dimensional case), that
a positive harmonic function on a complete Riemannian manifold with non-negative Ricci
curvature is constant, the result follows again from Jörgens’ theorem. Li [Li] proved that if
all the affine principal curvatures are bounded, then Euclidean completeness implies affine
completeness, so that in the two dimensional case, the Chern conjecture is valid if the
affine Gauss curvature is bounded from below (see also [MM]). It is worthy to know that
instead of Chern conjecture, Calabi asked whether affine completeness alone is sufficient
for the Bernstein theorem. This question was answered affirmatively in [TW2], see also
[LJ] for a different treatment based on the result in [MM]. In [TW2] the authors proved a
much stronger result. That is an affine complete, locally uniformly convex hypersurfaces
in Rn+1, n ≥ 2, is also Euclidean complete.

What I will do in the following content is to give the proof of Theorem 1.1.

2. Proof of Theorem 1.1

First, we note that the fourth order equation (1.3) can be viewed as a system of two
second order PDEs. The first is a linearized Monge-Ampère equation

U ijwij = 0,(2.1)

and the other equation in the system is the standard Monge-Ampère equation

detD2u = w−n+2
n+1 .(2.2)
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For this system, if we know, for example, w ∈ Cα in (2.1), then put this information
into (2.2) and by classical interior C2,α estimate for Monge-Ampère equation derived by
Caffarelli [Caf], we have u ∈ C2,α. After updating this information in (2.1), we know
the equation now is a uniformly elliptic equation with Cα coefficients, hence by classical
Schauder estimate we know again w ∈ C2,α, and then by (2.2) we can know u ∈ C4,α,
and bootstrap, we obtain u ∈ C∞ and all derivatives estimates of u. Once we get higher
derivative estimates, we scale the equation to define it between two balls, and then blow
up to get the conclusion.

Nowadays, the above method is a standard way to investigate regularities of 4th order
equations, also for some other nonlinear equations. Clearly, it is the key point that if we
can begin the first step. Luckly, in the remarkable paper [CG], Caffarelli and Gutiérrez
established the Harnack inequality for positive solutions to linearized Monge-Ampère
equation (2.1) under the assumption of A∞ condition, which implies the Hölder regularity
of w. And it is easy to show that A∞ condition can be implied by the pinching of the
detD2u, that is there are two positive numbers λ, Λ such that 0 < λ ≤ detD2u ≤ Λ. This
theory of Caffarelli and Gutiérrez is an affine invariant version of the classical Harnack
inequality for uniformly elliptic equations with measurable coefficients [KS1, KS2].

In the following, we derive upper bounds and lower bounds for the Hessian determinant,
detD2u, of solutions u of (1.3). It should be noted that there are also no pure interior
estimates for Monge-Ampère type 4th order equations, which is very similar to classical
Monge-Ampère equations, so we derive a Pogorelov type estimate in the following. Since
we will normalize the sections of u, we derive the estimates in a normalized domain.
Lemma 2.1 ([TW, Lemma 3.1]). Let Ω be a bounded convex domain in Rn and u ∈
C4(Ω)∩ C0,1(Ω̄) a locally uniformly convex solution of equation (1.3) in Ω, satisfying

u = 0 on ∂Ω inf
Ω

u = −1.

Then, for y ∈ Ω,
detD2u(y) ≤ C,

where C depends on n, dist(y, ∂Ω), and supΩ |Du|.
Proof. Let

z = lnw − β ln(−u)− A|Du|2, w = (detD2u)−
n+1
n+2 ,

where β and A are positive constants to be specified later. Since z → ∞ on ∂Ω, it attains
a minimum at some point x0 ∈ Ω. At x0, we then have

0 = zi =
wi

w
− β

ui

u
− 2Aukuki

and
0 ≤ [zij] =

[
wij

w
− wiwj

w2
− βuij

u
+

βuiuj

u2
− 2Aukiukj − 2Aukukij

]
.

Recalling w = (detD2u)θ−1, θ = 1
n+2

, we have

uijukij =
(
log detD2u

)
k
= − 1

1− θ

wk

w
,
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where [uij] = (detD2u)
−1

[U ij] is the inverse of D2u. Note that we have calculated this
formula in the proof of divergence free of U ij, hence we omit it here. Then we have

wiwj

w2
= β2uiuj

u2
+

2βA

u
(uiukukj + ujukuki) + 4A2ukulukiulj,

and hence, at x0, we have
0 ≤uijzij

=− βn

u
− uijwiwj

w2
+

βuijuiuj

u2
− 2Auijukjukj +

2A

1− θ

ukwk

w

=− βn

u
− β2u

ijuiuj

u2
+

βuijuiuj

u2
− 2βA

u
(uijuiukukj + uijujukuki)− 4A2uijukulukiulj

− 2Auijukiukj +
2A

1− θ
β
u2
k

u
+

4A2

1− θ
ukulukl

=− βn

u
− β(β − 1)

uijuiuj

u2
− 2A∆u+

4A2θ

1− θ
uijuiuj − 2βA

1− 2θ

1− θ

|Du|2

u

≤− A∆u− βn

u
+ 2βA

|Du|2

|u|
,

with the choice
A =

1− θ

4θ supΩ |Du|2
,

where we used uijuiuj ≤ ∆u|Du|2. Consequently, we obtain
−u∆u (x0) ≤ C(n, β) sup

Ω
|Du|2.

Setting β = (1− θ)n = n(n+ 1)/(n+ 2), we obtain
z(x) ≥ z (x0)

= (θ − 1) log |u|n detD2u (x0)− A|Du|2 (x0)

≥ (θ − 1)n log |u|∆u (x0)− A|Du|2 (x0)

≥ −C (n,M1) ,

where M1 = supΩ |Du|. Accordingly we estimate, for any y ∈ Ω,

detD2u ≤ C (n,M1)

|u(y)|n
≤ C (n,M1) (diamΩ)n

(dist(y, ∂Ω))n

by boundary conditions and the convexity of u, and hence Lemma 2.1 is proved. □
Remark 2.2. It is clear that Lemma 2.1 will hold for any θ ∈ (0, 1) with constant C
depending on θ.

We next derive a lower bound for detD2u in terms of a modulus of strict convexity for
the function u. For any y ∈ Ω, h > 0, we define the section S(y, h) by

S(y, h) = {x ∈ Ω | u(x) < u(y) +Du(y)(y − x) + h}.
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We then define the modulus of convexity of u at y, by
hu,y(r) = sup {h ≥ 0 | S(y, h) ⊂ Br(y)} , r > 0

and the modulus of convexity of u on Ω, by
h(r) = hu,Ω(r) = inf

y∈Ω
hu,y(r), r > 0.

Observe that a function u is strictly convex in Ω if and only if h(r) > 0 for all r > 0.

Lemma 2.3 ([TW, Lemma 3.2]). Let u ∈ C4(Ω) be a locally uniformly convex solution of
equation (1.3) in a domain Ω ⊂ Rn, satisfying −1 ≤ u ≤ 0 in Ω. Then, for y ∈ Ω, there
exists a positive constant C depending on n, dist (y, ∂Ω), diam(Ω), and hu,Ω, such that

C−1 ≤ detD2u(y) ≤ C

Proof. Since u ∈ C4(Ω) is locally uniformly convex, so also is its Legendre transform, u∗,
defined by

u∗(x) = sup
y∈Ω

(x · y − u(y)), x ∈ Ω∗ = Du(Ω),

with
Du∗(x) = y, detD2u∗(x) =

(
detD2u(y)

)−1
,

whenever x = Du(y), y ∈ Ω. Since u is maximal with respect to the functional A, it
follows that u∗ is maximal with respect to the functional A∗ given by

A∗[u,Ω]=

∫
Ω

[detD2u]1/(n+2)

=

∫
Ω∗

[
detD2u∗](n+1)/(n+2)

. (change of variable)

Therefore, if u satisfies (1.3), we see that u∗ satisfies a similar equation
(U∗)ij (w∗)ij = 0,

where
[
(U∗)ij

]
is the cofactor matrix of (u∗)ij and

w∗ =
[
detD2u∗]−1/(n+2)

We cannot apply Lemma 2.1, with θ = n+1
n+2

, directly as the function u∗ is not necessarily
constant on ∂Ω∗. However, for any point y ∈ Ω, and x = Du(y) ∈ Ω∗, we can see that
the section S∗(x, δ) of the Legendre transform u∗ lies in Ω∗ for δ = h

(
1
2
dist(y, ∂Ω)

)
.

Furthermore, we have, (for 0 ∈ Ω ),
|Du∗| ≤ diam(Ω)

and hence the ball BR(x) ⊂ S∗(x, δ) for R ≤ δ/ diamΩ. In fact, to compare the slop of a
line connect boundary points of S∗(x, δ) and x with the gradient of u∗, we have

δ

dist(x, S∗(x, δ))
≤ sup |Du∗| ≤ diamΩ,
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which implies that dist(x, S∗(x, δ)) ≥ δ/ diamΩ. Accordingly, we may apply Lemma 2.1,
with θ = n+1

n+2
, to the function u∗ in the domain S∗(x, δ) to deduce the lower bound for

detD2u. The upper bound follows by applying Lemma 2.1 in the section S(y, δ) where we
would have the gradient bound |Du| ≤ 2/ dist(y, ∂Ω). (For this inequality, we can refer
[Fi, Corollary A.23] or [Le, Lemma 2.6]) □

Note that we can directly get the lower bound of detD2u without using Legendre
transform, just performing the same method as Lemma 2.1.

Lemma 2.4 ([TW1, Lemma 4.2]). Let u ∈ C4(Ω)∩C0,1(Ω̄) be a locally uniformly convex
solution of (1.3). Suppose there exists an open set ω ⊂ Ω such that x ·Du < u in ω and
x ·Du = u on ∂ω. Then for any y ∈ ω,

detD2u(y) ≥ C,

where C > 0 depends on n, dist (y, ∂ω), supΩ |Du|, infΩ f and supω |u− x ·Du|.

Proof. Let
z = lnw + β ln(u− x ·Du) + A|x|2

for some positive constants β and A to be determined. Suppose z attains its maximum
at x0 ∈ ω. Then at x0,

0= zi =
wi

w
− β

xkuki

ϕ
+ 2Axi,

0≥ zii =
wii

w
− w2

i

w2
− β

xkukii + uii

ϕ
− β

x2
iu

2
ii

ϕ2
+ 2A,

where ϕ = u− xiui. By a rotation we may suppose D2u is diagonal at x0. Then
0 ≥ uiizii

=
f

dθ
− uii

[
β2x

2
iu

2
ii

ϕ2
− 4βA

x2
iuii

ϕ
+ 4A2x2

i

]
− βxk

ϕ
uiiukii −

βn

ϕ
− βx2

iuii

ϕ2
+ 2Auii

=
f

dθ
− β(β + 1)

x2
iuii

ϕ2
+

4βAx2
i

ϕ
+ 2A

(
1− 2Ax2

i

)
uii − βn

ϕ
+

βxi

ϕ(1− θ)

wi

w

=
f

dθ
− βn

ϕ
+

4βAx2
i

ϕ
+ Auii − β(β + 1)

x2
iuii

ϕ2
+

βxi

ϕ(1− θ)

(
β
xiuii

ϕ
− 2Axi

)
≥ f

dθ
− C

ϕ
+ Auii + β

(
β

1− θ
− β − 1

)
x2
iuii

ϕ2

≥ f

dθ
− C

ϕ
+ Auii

if β is large and A is sufficiently small. It follows that |ϕ|uii ≤ C and hence the desired
lower bound. □

Hence, we also have Lemma 2.3 as follows. If u is a strictly convex solution of (1.3),
we can characterize the open set ωy (y ∈ Ω) in the following way. Let ε > 0 be any
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given constant. Let Pε denote the set of linear functions g such that g < u in Ω and
g(y) = u(y) − ε. Let ḡ(x) = sup {g(x) | g ∈ Pε}. Then ḡ ≤ u and the graph of ḡ is a
convex cone. Let ω denote the component of {ḡ < u} containing y. Then if ε < hu

(
1
2
r
)
,

where r = dist(y, ∂Ω), we have ω̄ ⊂ Ω.
In the above discussing, we have established bounds for Hessian determinant of solutions

to (1.3) in bounded convex domain Ω ⊂ Rn, namely, for any subdomain Ω′ ⊂⊂ Ω, there
is

0 < λ ≤ detD2u ≤ Λ in Ω′,

where λ and Λ are positive constants depending only on n, diamΩ, dist(Ω′,Ω) and mod-
ulus of convexity of u, i.e. hu. Next, we use the Hölder estimate from Caffarelli and
Gutiérrez [CG] to get following theorem.

Theorem 2.5 ([TW, Theorem 4.2]). Let Ω be a bounded convex domain in Rn and
u ∈ C4(Ω) a locally uniformly convex solution of equation (1.3) in Ω satisfying −1 ≤
u ≤ 0 in Ω. Then u ∈ C∞(Ω) and for any subdomain Ω′ ⊂⊂ Ω, k ≥ 2, we have the
estimates

D2u ≥ C1I,
∣∣Dku

∣∣ ≤ C2,

where C1 depends on n, dist (Ω′, ∂Ω), diam Ω, and the modulus of convexity hu,Ω, and C2

depends additionally on k. Moreover, u is also analytic in Ω.

Next, we apply Theorem 2.5 to prove the Bernstein problem provided uniform, strict
convexity.

Theorem 2.6 ([TW, Corollary 4.3 & Theorem 2.1]). Let u ∈ C4(Ω) be a locally uniformly
convex solution of equation (1.3) in a comvex domain Ω ⊂ Rn, satisfying lim

x→∂Ω
u(x) = +∞.

Then, if u satisfies the uniform strict convexity condition in Ω, i.e. there is a nondecreasing
positive function h on (0,∞), independent of u, such that

hu,x(r) ≥ h(r) for x ∈ Ω.

Then it follows that u is a quadratic function and Ω = Rn.

Proof. By subtracting a linear function, we may suppose
u(0) = Diu(0) = 0, i = 1, · · · , n.

Let Tt =
[
aijt

]
be a linear transformation which normalizes (John’s lemma [Fi, Lemma

A.13]) the section
St = {x ∈ Ω | u < t}, (t > 0),

and define ut and Ωt by

ut(x) =
1

t
u
(
T−1(x)

)
, Ωt = {x | ut < 1} = Tt (St)

By the assumption of Theorem 2.6, ut ∈ C4
(
Ω̄t

)
is uniformly convex and satisfies the

affine invariant (it’s easy to check) equation (1.3) in Ωt. Furthermore, we have
D2ut(x) ≥ C1I(2.3)
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for any t ≥ 1 and x ∈ γB. Let Λt denote the maximum eigenvalue of Tt. We claim there
exists a positive constant Λ0 such that

limt→∞tΛ2
t ≤ Λ0

In fact, we observe from (2.3),

u(x) = tut (Tt(x)) ≥ C1t |Tt(x)|2

and hence
sup
x∈rB

u(x) ≥ sup
x∈rB

C1t |Tt(x)|2 = C1r
2tΛ2

t ,

where r is chosen small enough to ensure rB ⊂ Ω. Next for x ∈ Ω, we estimate∣∣D3u(x)
∣∣ ≤ CΛ3

t t
∣∣D3ut (Tt(x))

∣∣
≤ CΛ

3/2
0 t−1/2

for Tt(x) ∈ γB. Hence letting t → ∞, we conclude D3u = 0, whence u is quadratic and
Ω = Rn. □

In the following, we state that in the two dimensional case (n = 2) a solution to (1.3)
with zero boundary condition satisfies a modulus of convexity estimate. We say p ∈ ∂D
is an extreme point of D if there is a supporting hyperplane of D such that D lies on one
side of the plane and D touches the plane only at p. If D is convex, then any point in D
can be represented as a linear combination of extreme points of D.

Lemma 2.7 ([TW, Lemma 5.1]). Let Ω be a normalized convex domain in Rn and
u ∈ C4(Ω) be a locally uniformly convex solution of (1.4), satisfying (3.1). Then there
exists a nondecreasing positive function h on (0,∞), independent of u, such that

hu,x(r) ≥ h(r) for x = (x1, x2) ∈
1

2
αnB, r > 0.

Proof. We refer to [TW, Page 410-413] or [Zh, Page 35-39] for detail discussions. □

Remark 2.8. In dimension 2, there is another proof of Theorem 1.1 without using Caf-
farelli and Gutiérrez’s theory. Actually, it is original from Bernstein. Let’s state it
below.

Theorem 2.9 ([Zh, Proposition 5.2]). Suppose u is a solution to the elliptic equation
2∑

i,j=1

aijuij = 0 in R2

such that
|u(x)| = o(|x|) as x → +∞.

Then u is a constant.
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3. Example

In this section, we provide an example of affine maximal, convex graphs which does
not satisfy the Bernstein property, and which violates the uniform strict convexity in high
dimensions. Specifically we take n = 10 and define

u(x) =

√
|x′|9 + x2

10,

where x′ = (x1, · · · , x9). It is readily shown that u ∈ W 2,1
loc (R10) so that D2u = ∂2u and

we need to show that u is affine maximal. For x ̸= 0, we consider the transformation
y′ =x′

y10 =x10 + u

v =u− x10

so that the function v is given by

v(y) =
|y′|9

y10

for y10 > 0. In fact,

v(y)=
√

|x′|9 + x2
10 − x10

=
|y′|9√

|x′|9 + x2
10 + x10

=
|y′|9

y10
.

To show that v satisfies the affine maximal surface equation, we consider, more generally,
functions of the form,

u =
r2α

t

where α ≥ 1, r = |y′| , t = |yn| , y′ = (y1, · · · , yn−1). Then

ur =
2αr2α−1

t
,

ut =−r2α

t2
,

urr =2α(2α− 1)
r2α−2

t
,

urt =−2αr2α−1

t2
,

utt =
2r2α

t3
.
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Denote

∆= urrutt − u2
rt = 4α(α− 1)

r4α−2

t4
,

D =detD2u =
(ur

r

)n−2

∆ = C
r2n(α−1)+2

tn+2
,

w=D
1

n+2
−1 = C ′ t

n+1

rθ
,

where

C =2nαn−1(α− 1), C ′ = C−(n+1)/(n+2)

θ=
2(n+ 1)

n+ 2
(nα− n+ 1).

Also, denote

∆̃ = uttwrr + urrwtt − 2urtwrt

=
C ′tn−2

rθ−2α+2
(2θ(θ + 1) + n(n+ 1)2α(2α− 1)− 4α(n+ 1)θ).

Then we have (see [li])

L[u] := uijwij = (n− 2)
r

ur

wr

r
+

1

∆
∆̃ =

tn+2

rθ+2α
K,

where

K =C ′
[
−n− 2

2α
θ

+
1

2α(α− 1)
(θ(θ + 1) + n(n+ 1)α(2α− 1)− 2(n+ 1)αθ)

]
.

For u to be affine maximal, we need K = 0, i.e.,

θ(θ + 1) + n(n+ 1)α(2α− 1)− 2(n+ 1)αθ − (n− 2)(α− 1)θ = 0.

Substituting for θ, we obtain the equivalent quadratic equation for α,

8α2 −
(
n2 − 4n+ 12

)
α + 2(n− 1)2 = 0,

which is solvable for n ≥ 10. In particular for n = 10, α = 9
2

and we conclude that the
function u satisfies (1.3) for x ̸= 0. Consequently u is affine maximal in R10 \ {0}. If
n > 10, it is easy to verify that the function u, given by

u(x) =

√
|x′|9 + |x10|2 + |x̃|2,

is affine maximal in R10 \ {0}, where x̃ = (x11, · · · , xn).
12
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