
NOTES FOR “BERNSTEIN PROBLEM”

LING WANG

1. Two-dimensional case

This ia a seminar note that I reported at the seminar, Geometric analysis 3+X, held
by PKU in December, 2020. In this note, I’ll mainly give the proof of Bernstein theorem
[Be] in dimension two based on Colding and Minicozzi [CM], then I will briefly introduce
the higher dimensions and half space cases, and in the last, I give a problem (Problem
3.3) related to Bernstein theorem. The main theorem stated as following:
Theorem 1.1 (Bernstein). If u : R2 → R is an entire solution to the minimal surface
equation, then u(x, y) = ax+ by + c for some constants a, b, c ∈ R.

Actually, Bernstein obtained Theorem 1.1 as an application of the so called Bernstein��s
geometric theorem:
Theorem 1.2. If the Gauss curvature of the graph of u ∈ C∞(R2) in R3 satisfies K ≤ 0
everywhere and K < 0 at some point, then u cannot be bounded.

In the original proof of Bernstein, there is a gap, and later it is filled by Hopf [Ho]. As
a corollary, Bernstein proved a very general Liouville theorem:
Corollary 1.3. Suppose u is a smooth solution to the elliptic equation

2∑
i,j=1

aijuij = 0 in R2

such that
|u(x)| = o(|x|) as |x| → +∞.

Then u is a constant.
In this note, I’ll use a method belongs to differential geometry different from Berntsein’s

and Hopf’s to prove Theorem 1.1.
Considering the Gauss map N : Σ → S2 ⊂ R3 is a continuous choice of a unit normal.

Since the unit normal to S2 at N(x) is just N(x) itself, the differential of the map N can
be identified with the Weingarten map ∇·N : TxΣ → TxΣ. Hence, the differential dN is
given by

⟨dN(Ei), Ej⟩ = ⟨∇Ei
N,Ej⟩ = −⟨N,∇Ei

Ej⟩ = −Aij,

where Aij are the second fundamental form. There is a property of Gauss map related to
minimal surface.
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Proposition 1.4. If Σ is a minimal surface, then the Gauss map is an (anti)conformal.

Proof. We only need to check that under principle vector fields. Take principle vector
fields {e1, e2} for Σ, i.e. ∇e1N = −κ1e1, ∇e2N = −κ2e2. So

|∇e1N | = |κ1| = |κ2| = |∇e2N |

by H = κ1 + κ2 = 0. □

Moreover, for minimal surface, we have

(1.1) |dN |2 = |A|2 = κ2
1 + κ2

2 = −2κ1κ2 = −2K = −2 det(dN).

Note that (1.1) will be used to prove Theorem 1.1. In the following, I’ll prove Theorem
1.1. It can be done by following two propositions.

Lemma 1.5. If u : Ω → R is a solution to minimal surface equation, then for all
nonnegative Lipschitz function η with support contained in Ω× R, there is∫

Graphu

|A|2η2 ≤ C

∫
Graphu

|∇Graphuη|
2.

Proof. Let ω denote the area two-form on the unit S2. Since the upper hemisphere is
contractible, we know Hr

dR(S
2
+) = 0, r = 1, 2. Then closed form ω = dα also exact. Since

Σ is minimal and the differential d commutes with pull-backs, we see that

|A|2dArea = −2KdArea = −2N∗ω = −2dN∗α.

Moreover, since α is a one-form, there is a constant Cα so that

|N∗α| = |α(dN)| ≤ Cα|dN | = Cα|A|.

Set Σ = Graphu. By Stokes theorem, we get∫
Σ

η2|A|2dArea = 2

∫
Σ

−η2dN∗α = 4

∫
Σ

ηdη ∧N∗α

≤ 4Cα

∫
Σ

|η||∇Ση||A|dArea

≤ 4Cα

(∫
Σ

η2|A|2dArea
) 1

2
(∫

Σ

|∇Ση|2dArea
) 1

2

where the last inequality used the Cauchy-Schwarz inequality. □

Corollary 1.6. If u : Ω → R is a solution to the minimal surface equation, k > 1, and Ω
contains a ball of radius kR centered at the origin, then∫

B√
kR∩Graphu

|A|2 ≤ C

ln k
.
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Proof. Set Σ = Graphu. Define the cutoff function η on all of R3 and then restrict it to
the graph of u as follows: Let r denote the distance to the origin in R3 and define η by

η =


1 r2 ≤ kR2,

2− 2
ln(rR−1)

ln k
kR2 < r2 ≤ k2R2,

0 r2 > k2R2.

Since |∇Σr| ≤ |∇r| = 1, we have

|∇Ση| ≤
2

r ln k
.

Applying Lemma 1.5 with this cutoff function η, we get∫
B√

kR∩Σ
|A|2 ≤

∫
Σ

η2|A|2 ≤ C

∫
Σ

|∇Ση|2

≤ 4C

(ln k)2

∫
(BkR\B√

kR)∩Σ
r−2

≤ 4C

(ln k)2

ln k∑
l= ln k

2

∫
(B

llR
\B

ll−1R
)∩Σ

r−2

≤ 4C

(ln k)2

ln k∑
l= ln k

2

2πe2 ≤ 4πCe2

ln k
.

□
Theorem 1.1 followed by Corollary 1.6 easily.

Proof of Theorem 1.1. By Corollary 1.6, we have∫
B√

kR∩Graphu

|A|2 ≤ C

ln k
.

Letting k → +∞ yields ∫
R2

|A|2 = 0,

which means |A| = 0 in R2, i.e. the second fundamental form of graph of u is identically
equal to zero, then we know it is a plane. Indeed, If the second fundamental form vanishes,
we have

0 = ru · nu = rv · nu = ru · nv = rv · nv,

so that
nu = nv = 0.

Since nu, nv are orthogonal to n and hence linear combinations of ru, rv. Thus n is
constant. This means

(r · n)u = ru · n = 0,
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(r · n)v = rv · n = 0.

So r · n = const., which is the equation of a plane. Hence we complete the proof. □
It is not hard to extend the Bernstein theorem to complete minimal surfaces whose

Gauss map omits an open set, this was a conjecture of Nirenberg and was proven by
Osserman [Os]. Later, it is improved by Xavier [Xa].
Theorem 1.7 ([Os, Theorem]). Every complete simply-connected minimal surface in 3-
space whose normal mapping into the unit sphere omits a neighborhood of some point must
be a plane.
Theorem 1.8 ([Xa, Theorem]). The complement of the image of the Gauss map of a
non-flat complete minimal surface in R3 contains at most 6 points of S2.

2. Higher-dimensional case

In this section, I’ll state some results in higher dimensions without proof. For details
discussion we refer to related references.

In 1962, Fleming [Fl]1 gave a new proof of the two dimensional theorem, using a method
independent of the number of dimensions and provided hope of proving the theorem in
more than two variables (we should be note that it doesn’t yield Osserman’s or Xavier’s
results). The geometric measure theory technique described there led to yet another
solution of Bernstein’s theorem. The main idea in the proof is to construct a sequence of
surface by blowing down the original surface about a point. It is shown that this sequence
converges to a minimizing cone. The question is then reduced to the existence of singular
cones in Rn. Since no such cones exist in R3, Fleming’s argument gives the new proof in
2-dimension.

In 1965, De Giorgi [De] improved the result showing that nonexistence of singular
minimal k-cones in Rk+1 would imply Bernstein’s theorem for minimal graphs in Rk+2.
Hence De Giorgi proved Bernstein’s theorem is true in R4.

In 1966, Almgren [Al] proved that there exist no singular cones in R4, which extend
Bernstein theorem that four-dimensional minimal surface in R5.

In 1968, Simons [Si] extend the result to R7, which is seven-dimensional minimal surface
in R8. The exciting discovery in the paper is the example of the cone

C = {x ∈ R8 : x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8}.
Simions’ cone is not only stable but even absolutely area minimizing as shown by Bombieri,
De Giorgi, Giusti in [BDG]. They also constructed a complete minimal graph over Rn, n ≥
8 [BDG, Theorem B], different from hyperplane.

Combing all of results, we know Bernstein theorem now solved, but new problem arised.
Are there any additional conditions on the function u(x, y) which guarantee for the solution
to be a plane even in higher dimensions? In the book of Giusti and Williams [GW], we
can find the answers.

1The plateau problem is to find in R3 a minimal surface bounded by a given system of closed curve.
4



Theorem 2.1 ([GW, Theorem 17.5]). Let u be a solution of minimal surface equation in
Rn, if u has bounded gradient in Rn, then u is an affine function.
Theorem 2.2 ([GW, Theorem 17.6]). Let u be a solution of minimal surface equation in
Rn. Suppose that for every x ∈ Rn, u(x) ≤ K(1 + |x|) for some constant K. Then u is
an affine function.

3. Other interesting things

In this section, I’ll briefly introduce some results of Bernstein theorem in half space
and a conjecture made by myself. The first part comes from the work of Jiang, Wang
and Zhu [JWZ]. The second part is a question motivated by seeing Mooney’s notes: The
Monge-Ampère equations.

Let n ≥ 2 be an integer and Rn
+ = {(x′, xn)|x′ ∈ Rn−1, xn > 0}. We have

Theorem 3.1. Let n ≥ 2 be an integer and u ∈ C2(Rn
+) ∩ C(∂Rn

+) be a solution ofdiv
(

∇u√
1 + |∇u|2

)
= 0 in Rn

+,

u = l on ∂Rn
+,

where l : Rn → R is an affine function. Assume that u : Rn
+ → R has at most a linear

growth, which means there exists a constant K > 0 such that
(3.1) |u(x)| ≤ K(1 + |x|) ∀ x ∈ Rn

+.

Then u is an affine function.
Hence here comes two questions. The first is whether the assumption (3.1) is necessary?

In dimension two, we know Theorem 3.1 is still true without (3.1), but in higher dimension
it is still not clear. The other question is whether the affine boundary is necessary? The
answer is yes. Following is the counterexample:

f(x) =

∫ |x|

1

dt√
1 + t2

in P+ = {(x1, x2) ∈ R2 : x2 > 2}.

From this point of view, it is interesting to know whether Liouville type theorem will be
valid for Neumann boundary condition. Luckly, the answer is positive.
Theorem 3.2. Let n ≥ 2 be an integer and u ∈ C2(Rn

+)∩C1(Rn
+) be a solution of minimal

surface equation with Neumann boundary condition
∂xnu = τ on ∂Rn,

where τ is a constant. If u satisfies (3.1), then u is an affine function.
In the following, I’ll state a conjecture made by myself when I was reading Mooney’s

notes: The Monge-Amp��re equations. We first note that in Corollary 1.3, the equation
doesn’t need to be uniformly elliptic, hence it is a very powerful result. What I want
to know if this result has a half space version, which is like harmonic functions. More
precisely, I want to obtain the following proposition:
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Problem 3.3. Suppose u ≥ 0 is a solution to the elliptic equation
2∑

i,j=1

aijuij = 0 in R2
+,

u(x, 0) = 0 on R.

Then u is a linear function of form
u(x, y) = Ay, A ≥ 0.

Note that in the question, aij could be degenerate or sigular at ∞. This question is
motivated by seeing Mooney’s notes: The Monge-Amp��re equations. He used partial Le-
gendre transform to investigate the Liouville theorem for Monge-Amp��re equation in half
space, and one of steps in his proof used the similar proposition for harmonic functions,
and which can be proved by boundary Harnack inequality and odd extension of u. But
it is failed for the case without uniform ellipticity.

Generally, if we don’t assume any regularity condition on aij, Problem 3.3 is wrong.
There is a counterexample given by Mooney [Mo]. And also I can construct a solution
satisfies a equation degenerate on {y = 0}. Indeed, u(x, y) = e−x sinh y is an example.
But I still believe that Problem 3.3 maybe true if we assume aij is smooth. I have no idea
how to prove it and I didn’t find any references about this problem, either.
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