EXERCISE

LING WANG

Problem 1. Let || - || be a norm on RY and f(z) = ||z||* : RN — R. Suppose that f is C*
near x = 0. Prove there is an inner product (-,-) on RN such that ||z||* = (z,z), v € RY.

Proof. First, by the definition of f we know f'(zg) = 2||z¢|| and f”(xo) = 2. Hence by
Taylor expansion we have

Flo+y)= 1) + F @y + 3 )

fle =)= f@) = P @y + 570wy,

Then we have

fl@+y)+ fle—y)=2f(z) +2f(y),
which is

|l +ylI* + llz =yl = 2[|=[* + 2{|y|]*.

Hence it is easy to show that there is an inner product (-, -) on R¥ such that ||z||? = (x, z),
r e RV, O

Problem 2. Let X = LP(Q)). Compute the Gateaux and Fréchet derivatives of the func-
tional f(u) = [, |ulPdz : X — R for p > 1 and the sub-differential f(0) if p = 1.

Proof. First consider p > 1. For Vh € LP(Q2), we have
f(u+th) = / |u + th|P dx.
Q
Hence the G-derivative is

df (u,h) = if(u%—th)

d
_ 2 thiP d
it dt/9|u+ " d

:p/ |u|P~ h da.
Q

t=0 t=0

We define A(u) € Z(X) as
A(u)h = df (u, h) = p/ (P11 dz.
Q
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We next show that u +— A(u) is continuous at every uy € LP(€2). Indeed
[A(u) — A(uo)l| = sup [A(u)h — A(uo)h]

Al <1

p=1 1
< s ([ =P an) ([ o)
IRl <1 Q Q

1

.
< ([l = a7 o)
Q

< (/ |u—u0|pdx) - 0, as||lu— u|r — 0.
Q
Hence f is F-differentiable at ug and
f'(uo) = A(uo).
For p =1, we need to find all u* € X* such that
f(u) > f(0) + (u*,u) Vu € X.
Indeed, it is easy to see that for |k| <1

(u*, u) ::/kudx§/|u|da:.
Q Q

af(0) = {u* e X" |(u",u) = /Qkudx, |k| < 1.}.

Hence we have

U

Problem 3. Let Q@ C R™ be a bounded domain and ¢(x,§), a¢g§,§) : QxR — R be
Carathéodory functions satisfying

%é? 5)‘ <b(z) +al¢],z €N EER

a > 0 be a constant, b € LH%(Q), 1<r< % Prove the functional

flu) = /ng(:v,u(x))dx, H'(Q) - R

1s F-differentiable and
< f'(u), h >= / %@(w,u(m))h(w)dw, he HY(9).
Q

Proof. We first calculate the G-derivative of f. For Vh € H'(Q), we have

flu+th) = /ng(x,u(x) + th(z)) dx.
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Then

We define A(u) : H'(Q2) — R by
A(u)h = df (u, h) = /Q a¢ég .6) (z,u(z))h(z)dz, he H'(Q).

Next, we show that A(u)
differentiable and f’(u) =
Estimate

€ Z(HY(Q)) and it is continuous respect to u, hence f is F-
A(u). Indeed, it is clearly that A(u)h is linear respect to h.

Al = | [ 28 0, uta)h(e) do

06(z.€)
S/Q €

g/Qb(x)|h(:c)]d:c—|—a/9\u|7"]h(x)\d:c.

By Sobolev embedding, we have

/ bh] dz < |[Bl) 2, [[Al] 2,

Ln¥2

(@, u<x>>\ h()| de

and

| 1 bl de < o bl
Hence, A(u) € Z(H'(Q)). By the Theorem 1.1.5 of course book, we have 8¢>aa£: ez l) (., ):L%
2n
— L»+2 is continuous, then we know A(w) is continuous respect to w. U

Problem 4. Let X, Y be Banach spaces and t — A(t) : [0,1] — Z(X,Y) be continuous.
Suppose that for allt € [0,1], A(t) is a Fredholm operator from X toY , prove the Fredholm
indez ind(A(t)) is independent of t € [0,1].

Proof. We denote .# = .%(X,Y) be the Fredholm operator from X to Y. Then we know
ind : % — Z is continuous. This can be proved by T heorem 4.6.7 in Kung-Ching Chang’s
functional analysis, which precisely state that if T" € %, then there exists a € > 0 such
that when S € .Z and [|S|| < €, we have

T+SeZF

and
ind(7+ S) = ind(7)).
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Then by the continuity of A(t) we know ind(A(t)) is continuous. Since [0, 1] is connected,
we have ind(A([0,1])) is connected in Z, then ind(A([0,1])) is a constant, which implies
that ind(A(t)) is independent of ¢ € [0, 1]. O

Problem 5. (1) Let a;,x € R with a, # 0. Suppose R > 0 such that all real roots
of f(x) = ag + a1z + -+ - a,a™ = 0 are contained in (—R, R). Compute the degree
deg(f,[—R, R],0). We can also consider f as a continuous map from S = RU{oo} =
RP! into itself. Compute deg (f,S?).

(2) Let a;,z € C with a, # 0. Suppose R > 0 such that all complex roots of f(z) =
ap+arz+---a,z" =0 are contained in D(R) = {z € C||z |< R}. Compute the degree
deg(f, D(R),0). We can also consider f as a continuous map from S* = CU {oo} =
CP!', the Riemannian sphere, into itself. Compute deg (f,S?).

Solution of (1). We define the following homotopy of f:
F(z,t): [-R, R x [0,1] — R, (2,t) — anz” + t(ap_12""" + - - + ao),

where R > R is large enough such that F (:I:E, t) # 0. Hence by the homotopy invariance
of degree and all real roots of f(x) are contained in (—R, R)., we have

deg(f, [~ R, R),0) = deg(f, [~ ], I}, 0)
= deg(anz”, [ R, R],0)
sign(ay,), n is odd,
- { 0, n is even.

When we consider f as a continuous map from St into itself, it no needs to choose large
R, hence we have

sign(a,,), n is odd,

deg(f,S") = deg(a,z™, S*) = { (@) ,
0, n is even.
O

Solution of (2). Similar to (1), and note that complex Jacobi of holomorphic function is
the square of real Jacobi one, we have

deg(f, D(R),0) = deg(a,z", D(R),0) = n.
Also,
deg(f, S?) = deg(a,z", S*) = n.
O
Problem 6. Let B = {x = (21, , ) € RS0 2 < 1}. Assume that f : B — R
be a C? function such that

Vf(x)-xzzgg'xi#(), x € 0B
1 1
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Determine the degree
of . 9f

deg(Vf,B,O), Vf: (8331’ e ' O

Solution. Since Vf(z)-x # 0, Vo € 0B, we know
t(Vf(z) z)e+(1—-t)Vf#0, V(z,t)€0B x|[0,1].
Then by the homotopy invariance of degree, we have
deg(Vf, B,0) = deg((Vf(z) - x)z, B,0).

Since f is C? on 0B, we know Vf(x) -z is continuous on dB. Then by Vf(z) -z # 0,
Vz € 0B, we get either Vf(z) -2 >0o0r Vf(z) -2 <0,Vz € IB.
For Vf(z) -z > 0,Vz € 0B, we know

t+(1—t)Vf(x) -z >0, V(x,t)edBx]|0,1].

):B—>R”

Hence
deg((Vf(z) - z)x, B,0) = deg(x, B,0) = 1.
For Vf(z) -z <0, Vz € 0B, we know
—t+(1-t)Vf(x) -2 <0, V(x,t)€dBx]|0,1].

Hence
deg((Vf(z) - z)z, B,0) = deg(—=x, B,0) = (—1)".
Combing above, we get
1, Vfix) x>0,
deg(Vf, B,0) = {

(=", Vf(x)-z<0.

Problem 7. Let

Q = {(z1,29,23) € R? | 23 = 0,27 + 25 < 1},

aQ = {(1'1,{[‘271'3) € RS | T3 = 07‘@% —f—l'g = 1}7

S = {(ml,xg,xg) ER? |z, =0, (zy — 1)2—|—x§ = 1}, ¢:Q —R3
be continuous with ¢(x) = x,x € 0Q. Prove ¢(Q) NS # 0.
Proof. First by the homotopy invariance of degree, we have
deg<¢7Q70> - (IJQ70) =1 7é 0.

Then by Kronecker existence theorem, we know ¢(Q) NS # 0. O

Problem 8. Let @ C R™ be a bounded reqular domain. Given some conditions on f :
QxR xR™ — R such that the equation

—Au= f(z,u,Vu), z €
u(z) =0, x€df

possesses a solution u € C?7.



Solution. Assume that f € C'(Q2 x R x R",R) and satisfies

(1) There exists an increasing function ¢ : Ry — R such that

(@, O < elln)(L+1€%), V(z,m,6) €XxR xR

(2)
of
— < 0.
an (x,n,8) <
(3) Assume there exists a M > 0 such that

<0, ifn>M,
f(33777>§)—{>0’ 1fT]<—M

Then the equation possesses a unique solution in C*7. For proof we refer to Theorem
1.2.10 in Kung-Ching Chang’s Methods in Nonlinear Analysis. 0

Problem 9. Let 2 C R™ be a bounded regular domain with n > 3 and 2 < q < nQT"

2
Suppose u € Hg(Q) such that

/Vu-V¢dx:/|u]q_2u¢da:, Vo € Hi(Q).
Q Q

Prove that u is C? via the LP and C* estimate of —/\.

Proof. Choosing ¢ = u in the integral equation and combing u € Hg () yield

/|u|qu:/ IVul* dr < 400,
Q Q

i.e. u € LIQ). By definition, u € H} () is a weak solution to the Dirichlet problem

~Au=|[ul"%u inQ,
u=>0 on 0f),

with right hand side |u|72u € La-1(Q). Since -5 > 1, we have u € W21 (Q) by LP
estimate of elliptic equations. Then by Sobolev imbedding we know u € LY()), where

V= s > 12 <g< 22 used here). This means |u|?™%u € La-1(2), then by LP

estimate again we have u € W71 (). Also, by Sobolev imbedding we have u € LY7(),

where +' = anQr'Lyqfn‘ Since 7 > 1, it’s easy to verify that 4/ > ~. Then using Holder

inequality we get u € L7*9(£2). Repeating the above way, we can obtain u € L7(Q)

for any ¥ € N. We choose a ky € N such that v*q > 5, hence the LP estimate and

Sobolev embedding yield u € C%(2), where « = 1 — 3:%54> Which implies lu|92u € C*(Q).

Finally, by classical Schauder estimate we get u € C?%(Q). (Actually, we can obtain

ue C®(Q).) O
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Problem 10. Let Q C R” be a bounded regular domain and X = Wy (Q) with p > 1,
f QxR be continuous satisfying

[f(z,u)] <O+ [ul*),  (2,u) € 2R,
a <22 F(x,u) = [ f(z,s)ds.
(1) Prove the functional

I(u) = 1/Q|vu\pdx—/QF(m,u(x))dx

p
15 w.s.l.s.c. in X ;
(2) compute the Euler-Lagrange equation of I(u).

Proof of (1). We refer to Remark 4.3.11 in Kung-Ching Chang’s Methods in Nonlinear
Analysis, and I think there should be 1 <p<nand 0 < a < n"—f; -1 O

Solution of (2). Choosing a test function ¢ € C§°(Q2) yields
1
Iu+ep)=- / |\Vu+eVplP de — / F(z,u+eyp)dz.
P Ja Q
Since u is the local minimizer, we have

d
0= —I(u+ep) :/|Vu|p_2Vu-V<pdx—/f(x,u)gpdm
e=0 Q Q

de

:—/djv(|Vu|p_2Vu)<pdx—/f(x,u)gpdx.
Q Q

Hence by the arbitrariness of ¢ € C§°(€2), we know the Euler-Lagrange equation of I(u)
1s
—div (|VulP*>Vu) = f(z,u) in Q.
U
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