EXERCISE

LING WANG

Problem 1. Let $\|\cdot\|$ be a norm on \mathbb{R}^{N} and $f(x)=\|x\|^{2}: \mathbb{R}^{N} \rightarrow \mathbb{R}$. Suppose that f is C^{2} near $x=0$. Prove there is an inner product (\cdot, \cdot) on \mathbb{R}^{N} such that $\|x\|^{2}=(x, x), x \in \mathbb{R}^{N}$.

Proof. First, by the definition of f we know $f^{\prime}\left(x_{0}\right)=2\left\|x_{0}\right\|$ and $f^{\prime \prime}\left(x_{0}\right)=2$. Hence by Taylor expansion we have

$$
\begin{aligned}
& f(x+y)=f(x)+f^{\prime}(x) y+\frac{1}{2} f^{\prime \prime}(\xi)(y, y) \\
& f(x-y)=f(x)-f^{\prime}(x) y+\frac{1}{2} f^{\prime \prime}(\eta)(y, y)
\end{aligned}
$$

Then we have

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

which is

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Hence it is easy to show that there is an inner product (\cdot, \cdot) on \mathbb{R}^{N} such that $\|x\|^{2}=(x, x)$, $x \in \mathbb{R}^{N}$.

Problem 2. Let $X=L^{p}(\Omega)$. Compute the Gateaux and Fréchet derivatives of the functional $f(u)=\int_{\Omega}|u|^{p} d x: X \rightarrow \mathbb{R}$ for $p>1$ and the sub-differential $\partial f(0)$ if $p=1$.
Proof. First consider $p>1$. For $\forall h \in L^{p}(\Omega)$, we have

$$
f(u+t h)=\int_{\Omega}|u+t h|^{p} d x
$$

Hence the G-derivative is

$$
\begin{aligned}
d f(u, h)=\left.\frac{d}{d t} f(u+t h)\right|_{t=0} & =\left.\frac{d}{d t} \int_{\Omega}|u+t h|^{p} d x\right|_{t=0} \\
& =p \int_{\Omega}|u|^{p-1} h d x
\end{aligned}
$$

We define $A(u) \in \mathscr{L}(X)$ as

$$
A(u) h=d f(u, h)=p \int_{\Omega}|u|^{p-1} h d x
$$

We next show that $u \mapsto A(u)$ is continuous at every $u_{0} \in L^{p}(\Omega)$. Indeed

$$
\begin{aligned}
\left\|A(u)-A\left(u_{0}\right)\right\| & =\sup _{\|h\|_{L^{p} \leq 1}}\left|A(u) h-A\left(u_{0}\right) h\right| \\
& \leq \sup _{\|h\|_{L^{p}} \leq 1}\left(\left.\int_{\Omega}| | u\right|^{p-1}-\left.\left|u_{0}\right|^{p-1}\right|^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{\Omega}|h|^{p} d x\right)^{\frac{1}{p}} \\
& \leq\left(\int_{\Omega} \|\left. u\right|^{p-1}-\left.\left|u_{0}\right|^{p-1}\right|^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}} \\
& \leq\left(\int_{\Omega}\left|u-u_{0}\right|^{p} d x\right)^{\frac{p-1}{p}} \rightarrow 0, \quad \text { as }\left\|u-u_{0}\right\|_{L^{p}} \rightarrow 0
\end{aligned}
$$

Hence f is F-differentiable at u_{0} and

$$
f^{\prime}\left(u_{0}\right)=A\left(u_{0}\right)
$$

For $p=1$, we need to find all $u^{*} \in X^{*}$ such that

$$
f(u) \geq f(0)+\left\langle u^{*}, u\right\rangle \forall u \in X
$$

Indeed, it is easy to see that for $|k| \leq 1$

$$
\left\langle u^{*}, u\right\rangle:=\int_{\Omega} k u d x \leq \int_{\Omega}|u| d x .
$$

Hence we have

$$
\partial f(0)=\left\{u^{*} \in X^{*}\left|\left\langle u^{*}, u\right\rangle=\int_{\Omega} k u d x,|k| \leq 1 .\right\}\right.
$$

Problem 3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and $\phi(x, \xi), \frac{\partial \phi(x, \xi)}{\partial \xi}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be Carathéodory functions satisfying

$$
\left|\frac{\partial \phi(x, \xi)}{\partial \xi}\right| \leq b(x)+a|\xi|^{r}, x \in \Omega, \xi \in \mathbb{R}
$$

$a>0$ be a constant, $b \in L^{\frac{2 n}{n+2}}(\Omega), 1 \leq r \leq \frac{n+2}{n-2}$. Prove the functional

$$
f(u)=\int_{\Omega} \phi(x, u(x)) d x, \quad H^{1}(\Omega) \rightarrow \mathbb{R}
$$

is F-differentiable and

$$
<f^{\prime}(u), h>=\int_{\Omega} \frac{\partial \phi(x, \xi)}{\partial \xi}(x, u(x)) h(x) d x, \quad h \in H^{1}(\Omega)
$$

Proof. We first calculate the G-derivative of f. For $\forall h \in H^{1}(\Omega)$, we have

$$
f(u+t h)=\int_{\Omega} \phi(x, u(x)+\operatorname{th}(x)) d x
$$

Then

$$
\begin{aligned}
d f(u, h)=\left.\frac{d}{d t} f(u+t h)\right|_{t=0} & =\left.\int_{\Omega} \frac{d}{d t} \phi(x, u(x)+t h(x))\right|_{t=0} d x \\
& =\int_{\Omega} \frac{\partial \phi}{\partial \xi}(x, u(x)) h(x) d x
\end{aligned}
$$

We define $A(u): H^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
A(u) h=d f(u, h)=\int_{\Omega} \frac{\partial \phi(x, \xi)}{\partial \xi}(x, u(x)) h(x) d x, \quad h \in H^{1}(\Omega) .
$$

Next, we show that $A(u) \in \mathscr{L}\left(H^{1}(\Omega)\right)$ and it is continuous respect to u, hence f is Fdifferentiable and $f^{\prime}(u)=A(u)$. Indeed, it is clearly that $A(u) h$ is linear respect to h. Estimate

$$
\begin{aligned}
|A(u) h| & =\left|\int_{\Omega} \frac{\partial \phi(x, \xi)}{\partial \xi}(x, u(x)) h(x) d x\right| \\
& \leq \int_{\Omega}\left|\frac{\partial \phi(x, \xi)}{\partial \xi}(x, u(x))\right||h(x)| d x \\
& \leq \int_{\Omega} b(x)|h(x)| d x+a \int_{\Omega}|u|^{r}|h(x)| d x
\end{aligned}
$$

By Sobolev embedding, we have

$$
\int_{\Omega}|b h| d x \leq\|b\|_{L^{\frac{2 n}{n+2}}}\|h\|_{H^{1}}
$$

and

$$
\int_{\Omega}|u|^{r}|h| d x \leq\|u\|_{H^{1}}\|h\|_{H^{1}}
$$

Hence, $A(u) \in \mathscr{L}\left(H^{1}(\Omega)\right)$. By the Theorem 1.1.5 of course book, we have $\frac{\partial \phi(x, \xi)}{\partial \xi}(\cdot, \cdot): L^{\frac{2 n}{n-2}}$ $\rightarrow L^{\frac{2 n}{n+2}}$ is continuous, then we know $A(u)$ is continuous respect to u.

Problem 4. Let X, Y be Banach spaces and $t \rightarrow A(t):[0,1] \rightarrow \mathscr{L}(X, Y)$ be continuous. Suppose that for all $t \in[0,1], A(t)$ is a Fredholm operator from X to Y, prove the Fredholm index $\operatorname{ind}(A(t))$ is independent of $t \in[0,1]$.

Proof. We denote $\mathscr{F}=\mathscr{F}(X, Y)$ be the Fredholm operator from X to Y. Then we know ind : $\mathscr{F} \rightarrow \mathbb{Z}$ is continuous. This can be proved by Theorem 4.6.7 in Kung-Ching Chang's functional analysis, which precisely state that if $T \in \mathscr{F}$, then there exists a $\varepsilon>0$ such that when $S \in \mathscr{L}$ and $\|S\|<\varepsilon$, we have

$$
T+S \in \mathscr{F}
$$

and

$$
\operatorname{ind}(T+S)_{3}=\operatorname{ind}(T)
$$

Then by the continuity of $A(t)$ we know ind $(A(t))$ is continuous. Since $[0,1]$ is connected, we have $\operatorname{ind}(A([0,1]))$ is connected in \mathbb{Z}, then $\operatorname{ind}(A([0,1]))$ is a constant, which implies that $\operatorname{ind}(A(t))$ is independent of $t \in[0,1]$.

Problem 5. (1) Let $a_{i}, x \in \mathbb{R}$ with $a_{n} \neq 0$. Suppose $R>0$ such that all real roots of $f(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n}=0$ are contained in $(-R, R)$. Compute the degree $\operatorname{deg}(f,[-R, R], 0)$. We can also consider f as a continuous map from $S^{1}=\mathbb{R} \cup\{\infty\}=$ $\mathbb{R} P^{1}$ into itself. Compute $\operatorname{deg}\left(f, S^{1}\right)$.
(2) Let $a_{i}, z \in \mathbb{C}$ with $a_{n} \neq 0$. Suppose $R>0$ such that all complex roots of $f(z)=$ $a_{0}+a_{1} z+\cdots a_{n} z^{n}=0$ are contained in $D(R)=\{z \in \mathbb{C} \| z \mid<R\}$. Compute the degree $\operatorname{deg}(f, D(R), 0)$. We can also consider f as a continuous map from $S^{2}=\mathbb{C} \cup\{\infty\}=$ $\mathbb{C} P^{1}$, the Riemannian sphere, into itself. Compute $\operatorname{deg}\left(f, S^{2}\right)$.
Solution of (1). We define the following homotopy of f :

$$
F(x, t):[-\widetilde{R}, \widetilde{R}] \times[0,1] \longrightarrow \mathbb{R}, \quad(x, t) \mapsto a_{n} x^{n}+t\left(a_{n-1} x^{n-1}+\cdots+a_{0}\right),
$$

where $\widetilde{R}>R$ is large enough such that $F(\pm \widetilde{R}, t) \neq 0$. Hence by the homotopy invariance of degree and all real roots of $f(x)$ are contained in $(-R, R)$., we have

$$
\begin{aligned}
\operatorname{deg}(f,[-R, R], 0) & =\operatorname{deg}(f,[-\widetilde{R}, \widetilde{R}], 0) \\
& =\operatorname{deg}\left(a_{n} x^{n},[-\widetilde{R}, \widetilde{R}], 0\right) \\
& =\left\{\begin{array}{lr}
\operatorname{sign}\left(a_{n}\right), & \mathrm{n} \text { is odd } \\
0, & \mathrm{n} \text { is even. }
\end{array}\right.
\end{aligned}
$$

When we consider f as a continuous map from S^{1} into itself, it no needs to choose large \widetilde{R}, hence we have

$$
\operatorname{deg}\left(f, S^{1}\right)=\operatorname{deg}\left(a_{n} x^{n}, S^{1}\right)=\left\{\begin{array}{lr}
\operatorname{sign}\left(a_{n}\right), & \mathrm{n} \text { is odd } \\
0, & \mathrm{n} \text { is even }
\end{array}\right.
$$

Solution of (2). Similar to (1), and note that complex Jacobi of holomorphic function is the square of real Jacobi one, we have

$$
\operatorname{deg}(f, D(R), 0)=\operatorname{deg}\left(a_{n} z^{n}, D(R), 0\right)=n
$$

Also,

$$
\operatorname{deg}\left(f, S^{2}\right)=\operatorname{deg}\left(a_{n} z^{n}, S^{2}\right)=n
$$

Problem 6. Let $B=\left\{x=\left.\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}\left|\sum_{1}^{n}\right| x_{i}\right|^{2} \leq 1\right\}$. Assume that $f: B \rightarrow \mathbb{R}$ be a C^{2} function such that

$$
\nabla f(x) \cdot x=\sum_{1}^{n} \frac{\partial f}{\partial x_{i}} x_{i} \neq 0, \quad x \in \partial B
$$

Determine the degree

$$
\operatorname{deg}(\nabla f, B, 0), \quad \nabla f=\left(\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right): B \rightarrow \mathbb{R}^{n}
$$

Solution. Since $\nabla f(x) \cdot x \neq 0, \forall x \in \partial B$, we know

$$
t(\nabla f(x) \cdot x) x+(1-t) \nabla f \neq 0, \quad \forall(x, t) \in \partial B \times[0,1]
$$

Then by the homotopy invariance of degree, we have

$$
\operatorname{deg}(\nabla f, B, 0)=\operatorname{deg}((\nabla f(x) \cdot x) x, B, 0)
$$

Since f is C^{2} on ∂B, we know $\nabla f(x) \cdot x$ is continuous on ∂B. Then by $\nabla f(x) \cdot x \neq 0$, $\forall x \in \partial B$, we get either $\nabla f(x) \cdot x>0$ or $\nabla f(x) \cdot x<0, \forall x \in \partial B$.

For $\nabla f(x) \cdot x>0, \forall x \in \partial B$, we know

$$
t+(1-t) \nabla f(x) \cdot x>0, \quad \forall(x, t) \in \partial B \times[0,1]
$$

Hence

$$
\operatorname{deg}((\nabla f(x) \cdot x) x, B, 0)=\operatorname{deg}(x, B, 0)=1
$$

For $\nabla f(x) \cdot x<0, \forall x \in \partial B$, we know

$$
-t+(1-t) \nabla f(x) \cdot x<0, \quad \forall(x, t) \in \partial B \times[0,1]
$$

Hence

$$
\operatorname{deg}((\nabla f(x) \cdot x) x, B, 0)=\operatorname{deg}(-x, B, 0)=(-1)^{n}
$$

Combing above, we get

$$
\operatorname{deg}(\nabla f, B, 0)= \begin{cases}1, & \nabla f(x) \cdot x>0 \\ (-1)^{n}, & \nabla f(x) \cdot x<0\end{cases}
$$

Problem 7. Let

$$
\begin{gathered}
Q=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0, x_{1}^{2}+x_{2}^{2} \leq 1\right\} \\
\partial Q=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0, x_{1}^{2}+x_{2}^{2}=1\right\} \\
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0,\left(x_{2}-1\right)^{2}+x_{3}^{2}=1\right\}, \quad \phi: Q \rightarrow \mathbb{R}^{3}
\end{gathered}
$$

be continuous with $\phi(x)=x, x \in \partial Q$. Prove $\phi(Q) \cap S \neq \emptyset$.
Proof. First by the homotopy invariance of degree, we have

$$
\operatorname{deg}(\phi, Q, 0)=(x, Q, 0)=1 \neq 0
$$

Then by Kronecker existence theorem, we know $\phi(Q) \cap S \neq \emptyset$.
Problem 8. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain. Given some conditions on f : $\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the equation

$$
\begin{aligned}
-\triangle u & =f(x, u, \nabla u), \quad x \in \Omega \\
u(x) & =0, \quad x \in \partial \Omega
\end{aligned}
$$

possesses a solution $u \in C^{2, \gamma}$.

Solution. Assume that $f \in C^{1}\left(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}\right)$ and satisfies
(1) There exists an increasing function $c: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
|f(x, \eta, \xi)| \leq c(|\eta|)\left(1+|\xi|^{2}\right), \quad \forall(x, \eta, \xi) \in \bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n}
$$

$$
\begin{equation*}
\frac{\partial f}{\partial \eta}(x, \eta, \xi) \leq 0 . \tag{2}
\end{equation*}
$$

(3) Assume there exists a $M>0$ such that

$$
f(x, \eta, \xi)= \begin{cases}<0, & \text { if } \eta>M \\ >0, & \text { if } \eta<-M\end{cases}
$$

Then the equation possesses a unique solution in $C^{2, \gamma}$. For proof we refer to Theorem 1.2.10 in Kung-Ching Chang's Methods in Nonlinear Analysis.

Problem 9. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain with $n \geq 3$ and $2<q<\frac{2 n}{n-2}$. Suppose $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\Omega}|u|^{q-2} u \phi d x, \quad \forall \phi \in H_{0}^{1}(\Omega) .
$$

Prove that u is C^{2} via the L^{p} and C^{α} estimate of $-\triangle$.
Proof. Choosing $\phi=u$ in the integral equation and combing $u \in H_{0}^{1}(\Omega)$ yield

$$
\int_{\Omega}|u|^{q} d x=\int_{\Omega}|\nabla u|^{2} d x<+\infty
$$

i.e. $u \in L^{q}(\Omega)$. By definition, $u \in H_{0}^{1}(\Omega)$ is a weak solution to the Dirichlet problem

$$
\left\{\begin{aligned}
-\Delta u & =|u|^{q-2} u & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

with right hand side $|u|^{q-2} u \in L^{\frac{q}{q-1}}(\Omega)$. Since $\frac{q}{q-1}>1$, we have $u \in W^{2, \frac{q}{q-1}}(\Omega)$ by L^{p} estimate of elliptic equations. Then by Sobolev imbedding we know $u \in L^{\gamma q}(\Omega)$, where $\gamma=\frac{n}{n q-2 q-n}>1\left(2<q<\frac{2 n}{n-2}\right.$ used here $)$. This means $|u|^{q-2} u \in L^{\frac{\gamma q}{q-1}}(\Omega)$, then by L^{p} estimate again we have $u \in W^{2, \frac{\gamma q}{q-1}}(\Omega)$. Also, by Sobolev imbedding we have $u \in L^{\gamma^{\prime} \gamma q}(\Omega)$, where $\gamma^{\prime}=\frac{n}{n q-2 \gamma q-n}$. Since $\gamma>1$, it's easy to verify that $\gamma^{\prime}>\gamma$. Then using Hölder inequality we get $u \in L^{\gamma^{2} q}(\Omega)$. Repeating the above way, we can obtain $u \in L^{\gamma^{k} q}(\Omega)$ for any $k \in \mathbb{N}$. We choose a $k_{0} \in \mathbb{N}$ such that $\gamma^{k_{0}} q>\frac{n}{2}$, hence the L^{p} estimate and Sobolev embedding yield $u \in C^{\alpha}(\Omega)$, where $\alpha=1-\frac{n}{2 \gamma^{k} 0_{0}}$, which implies $|u|^{q-2} u \in C^{\alpha}(\Omega)$. Finally, by classical Schauder estimate we get $u \in C^{2, \alpha}(\Omega)$. (Actually, we can obtain $u \in C^{\infty}(\Omega)$.)

Problem 10. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain and $X=W_{0}^{1, p}(\Omega)$ with $p>1$, $f: \Omega \times \mathbb{R}$ be continuous satisfying

$$
|f(x, u)| \leq C\left(1+|u|^{\alpha}\right), \quad(x, u) \in \Omega \times \mathbb{R}
$$

$\alpha<\frac{n+2}{n-2}, F(x, u)=\int_{0}^{u} f(x, s) d s$.
(1) Prove the functional

$$
I(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} F(x, u(x)) d x
$$

is w.s.l.s.c. in X;
(2) compute the Euler-Lagrange equation of $I(u)$.

Proof of (1). We refer to Remark 4.3.11 in Kung-Ching Chang's Methods in Nonlinear Analysis, and I think there should be $1<p<n$ and $0 \leq \alpha<\frac{n p}{n-p}-1$.
Solution of (2). Choosing a test function $\varphi \in C_{0}^{\infty}(\Omega)$ yields

$$
I(u+\varepsilon \varphi)=\frac{1}{p} \int_{\Omega}|\nabla u+\varepsilon \nabla \varphi|^{p} d x-\int_{\Omega} F(x, u+\varepsilon \varphi) d x .
$$

Since u is the local minimizer, we have

$$
\begin{aligned}
0=\left.\frac{d}{d \varepsilon} I(u+\varepsilon \varphi)\right|_{\varepsilon=0} & =\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x-\int_{\Omega} f(x, u) \varphi d x \\
& =-\int_{\Omega} \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \varphi d x-\int_{\Omega} f(x, u) \varphi d x
\end{aligned}
$$

Hence by the arbitrariness of $\varphi \in C_{0}^{\infty}(\Omega)$, we know the Euler-Lagrange equation of $I(u)$ is

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } \Omega
$$

(L. Wang) School of Mathematical Sciences, Peking University, Beijing 100871, China. E-mail address: lingwang@stu.pku.edu.cn

