
EXERCISE

LING WANG

Problem 1. Let ∥ · ∥ be a norm on RN and f(x) = ∥x∥2 : RN → R. Suppose that f is C2

near x = 0. Prove there is an inner product (·, ·) on RN such that ∥x∥2 = (x, x), x ∈ RN .

Proof. First, by the definition of f we know f ′(x0) = 2∥x0∥ and f ′′(x0) = 2. Hence by
Taylor expansion we have

f(x+ y)= f(x) + f ′(x)y +
1

2
f ′′(ξ)(y, y),

f(x− y)= f(x)− f ′(x)y +
1

2
f ′′(η)(y, y).

Then we have

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

which is

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.
Hence it is easy to show that there is an inner product (·, ·) on RN such that ∥x∥2 = (x, x),
x ∈ RN . �

Problem 2. Let X = Lp(Ω). Compute the Gateaux and Fréchet derivatives of the func-
tional f(u) =

∫
Ω
|u|pdx : X → R for p > 1 and the sub-differential ∂f(0) if p = 1.

Proof. First consider p > 1. For ∀h ∈ Lp(Ω), we have

f(u+ th) =

∫
Ω

|u+ th|p dx.

Hence the G-derivative is

df(u, h) =
d

dt
f(u+ th)

∣∣∣∣
t=0

=
d

dt

∫
Ω

|u+ th|p dx
∣∣∣∣
t=0

= p

∫
Ω

|u|p−1h dx.

We define A(u) ∈ L (X) as

A(u)h = df(u, h) = p

∫
Ω

|u|p−1h dx.
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We next show that u 7→ A(u) is continuous at every u0 ∈ Lp(Ω). Indeed

∥A(u)− A(u0)∥= sup
∥h∥Lp≤1

|A(u)h− A(u0)h|

≤ sup
∥h∥Lp≤1

(∫
Ω

∣∣|u|p−1 − |u0|p−1
∣∣ p
p−1 dx

) p−1
p

(∫
Ω

|h|p dx
) 1

p

≤
(∫

Ω

∣∣|u|p−1 − |u0|p−1
∣∣ p
p−1 dx

) p−1
p

≤
(∫

Ω

|u− u0|p dx
) p−1

p

→ 0, as ∥u− u0∥Lp → 0.

Hence f is F-differentiable at u0 and

f ′(u0) = A(u0).

For p = 1, we need to find all u∗ ∈ X∗ such that

f(u) ≥ f(0) + ⟨u∗, u⟩ ∀u ∈ X.

Indeed, it is easy to see that for |k| ≤ 1

⟨u∗, u⟩ :=
∫
Ω

ku dx ≤
∫
Ω

|u| dx.

Hence we have

∂f(0) =

{
u∗ ∈ X∗|⟨u∗, u⟩ =

∫
Ω

ku dx, |k| ≤ 1.

}
.

�
Problem 3. Let Ω ⊂ Rn be a bounded domain and ϕ(x, ξ), ∂ϕ(x,ξ)

∂ξ
: Ω × R → R be

Carathéodory functions satisfying∣∣∣∣∂ϕ(x, ξ)∂ξ

∣∣∣∣ ≤ b(x) + a|ξ|r, x ∈ Ω, ξ ∈ R

a > 0 be a constant, b ∈ L
2n
n+2 (Ω), 1 ≤ r ≤ n+2

n−2
. Prove the functional

f(u) =

∫
Ω

ϕ(x, u(x))dx, H1(Ω) → R

is F-differentiable and

< f ′(u), h >=

∫
Ω

∂ϕ(x, ξ)

∂ξ
(x, u(x))h(x)dx, h ∈ H1(Ω).

Proof. We first calculate the G-derivative of f . For ∀h ∈ H1(Ω), we have

f(u+ th) =

∫
Ω

ϕ(x, u(x) + th(x)) dx.
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Then

df(u, h) =
d

dt
f(u+ th)

∣∣∣∣
t=0

=

∫
Ω

d

dt
ϕ(x, u(x) + th(x))

∣∣∣∣
t=0

dx

=

∫
Ω

∂ϕ

∂ξ
(x, u(x))h(x) dx.

We define A(u) : H1(Ω) → R by

A(u)h = df(u, h) =

∫
Ω

∂ϕ(x, ξ)

∂ξ
(x, u(x))h(x)dx, h ∈ H1(Ω).

Next, we show that A(u) ∈ L (H1(Ω)) and it is continuous respect to u, hence f is F-
differentiable and f ′(u) = A(u). Indeed, it is clearly that A(u)h is linear respect to h.
Estimate

|A(u)h|=
∣∣∣∣∫

Ω

∂ϕ(x, ξ)

∂ξ
(x, u(x))h(x) dx

∣∣∣∣
≤
∫
Ω

∣∣∣∣∂ϕ(x, ξ)∂ξ
(x, u(x))

∣∣∣∣ |h(x)| dx
≤
∫
Ω

b(x)|h(x)| dx+ a

∫
Ω

|u|r|h(x)| dx.

By Sobolev embedding, we have∫
Ω

|bh| dx ≤ ∥b∥
L

2n
n+2

∥h∥H1 ,

and ∫
Ω

|u|r|h| dx ≤ ∥u∥H1∥h∥H1 .

Hence, A(u) ∈ L (H1(Ω)). By the Theorem 1.1.5 of course book, we have ∂ϕ(x,ξ)
∂ξ

(·, ·):L
2n
n−2

→ L
2n
n+2 is continuous, then we know A(u) is continuous respect to u. �

Problem 4. Let X,Y be Banach spaces and t → A(t) : [0, 1] → L (X, Y ) be continuous.
Suppose that for all t ∈ [0, 1], A(t) is a Fredholm operator from X to Y , prove the Fredholm
index ind(A(t)) is independent of t ∈ [0, 1].

Proof. We denote F = F (X,Y ) be the Fredholm operator from X to Y . Then we know
ind : F → Z is continuous. This can be proved by Theorem 4.6.7 in Kung-Ching Chang’s
functional analysis, which precisely state that if T ∈ F , then there exists a ε > 0 such
that when S ∈ L and ∥S∥ < ε, we have

T + S ∈ F ,

and

ind(T + S) = ind(T ).
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Then by the continuity of A(t) we know ind(A(t)) is continuous. Since [0, 1] is connected,
we have ind(A([0, 1])) is connected in Z, then ind(A([0, 1])) is a constant, which implies
that ind(A(t)) is independent of t ∈ [0, 1]. �
Problem 5. (1) Let ai, x ∈ R with an ̸= 0. Suppose R > 0 such that all real roots

of f(x) = a0 + a1x + · · · anxn = 0 are contained in (−R,R). Compute the degree
deg(f, [−R,R], 0). We can also consider f as a continuous map from S1 = R∪{∞} =
RP 1 into itself. Compute deg (f, S1).

(2) Let ai, z ∈ C with an ̸= 0. Suppose R > 0 such that all complex roots of f(z) =
a0+a1z+ · · · anzn = 0 are contained in D(R) = {z ∈ C∥z |< R}. Compute the degree
deg(f,D(R), 0). We can also consider f as a continuous map from S2 = C ∪ {∞} =
CP 1, the Riemannian sphere, into itself. Compute deg (f, S2).

Solution of (1). We define the following homotopy of f :

F (x, t) : [−R̃, R̃]× [0, 1] −→ R, (x, t) 7→ anx
n + t(an−1x

n−1 + · · ·+ a0),

where R̃ > R is large enough such that F (±R̃, t) ̸= 0. Hence by the homotopy invariance
of degree and all real roots of f(x) are contained in (−R,R)., we have

deg(f, [−R,R], 0) = deg(f, [−R̃, R̃], 0)

= deg(anx
n, [−R̃, R̃], 0)

=

{
sign(an), n is odd,

0, n is even.

When we consider f as a continuous map from S1 into itself, it no needs to choose large

R̃, hence we have

deg(f, S1) = deg(anx
n, S1) =

{
sign(an), n is odd,

0, n is even.

�
Solution of (2). Similar to (1), and note that complex Jacobi of holomorphic function is
the square of real Jacobi one, we have

deg(f,D(R), 0) = deg(anz
n, D(R), 0) = n.

Also,

deg(f, S2) = deg(anz
n, S2) = n.

�

Problem 6. Let B =
{
x = (x1, · · · , xn) ∈ Rn |

∑n
1 | xi|2 ≤ 1

}
. Assume that f : B → R

be a C2 function such that

∇f(x) · x =
n∑
1

∂f

∂xi

xi ̸= 0, x ∈ ∂B
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Determine the degree

deg(∇f,B, 0), ∇f =

(
∂f

∂x1

, · · · , ∂f

∂xn

)
: B → Rn

Solution. Since ∇f(x) · x ̸= 0, ∀ x ∈ ∂B, we know

t(∇f(x) · x)x+ (1− t)∇f ̸= 0, ∀ (x, t) ∈ ∂B × [0, 1].

Then by the homotopy invariance of degree, we have

deg(∇f,B, 0) = deg((∇f(x) · x)x,B, 0).

Since f is C2 on ∂B, we know ∇f(x) · x is continuous on ∂B. Then by ∇f(x) · x ̸= 0,
∀x ∈ ∂B, we get either ∇f(x) · x > 0 or ∇f(x) · x < 0, ∀ x ∈ ∂B.

For ∇f(x) · x > 0, ∀ x ∈ ∂B, we know

t+ (1− t)∇f(x) · x > 0, ∀ (x, t) ∈ ∂B × [0, 1].

Hence
deg((∇f(x) · x)x,B, 0) = deg(x,B, 0) = 1.

For ∇f(x) · x < 0, ∀ x ∈ ∂B, we know

−t+ (1− t)∇f(x) · x < 0, ∀ (x, t) ∈ ∂B × [0, 1].

Hence
deg((∇f(x) · x)x,B, 0) = deg(−x,B, 0) = (−1)n.

Combing above, we get

deg(∇f,B, 0) =

{
1, ∇f(x) · x > 0,

(−1)n, ∇f(x) · x < 0.

�
Problem 7. Let

Q =
{
(x1, x2, x3) ∈ R3 | x3 = 0, x2

1 + x2
2 ≤ 1

}
,

∂Q =
{
(x1, x2, x3) ∈ R3 | x3 = 0, x2

1 + x2
2 = 1

}
,

S =
{
(x1, x2, x3) ∈ R3 | x1 = 0, (x2 − 1)2 + x2

3 = 1
}
, ϕ : Q → R3

be continuous with ϕ(x) = x, x ∈ ∂Q. Prove ϕ(Q) ∩ S ̸= ∅.
Proof. First by the homotopy invariance of degree, we have

deg(ϕ,Q, 0) = ( x,Q, 0) = 1 ̸= 0.

Then by Kronecker existence theorem, we know ϕ(Q) ∩ S ̸= ∅. �
Problem 8. Let Ω ⊂ Rn be a bounded regular domain. Given some conditions on f :
Ω× R× Rn → R such that the equation

−△u = f(x, u,∇u), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

possesses a solution u ∈ C2,γ.
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Solution. Assume that f ∈ C1(Ω× R× Rn,R) and satisfies

(1) There exists an increasing function c : R+ → R+ such that

|f(x, η, ξ)| ≤ c(|η|)(1 + |ξ|2), ∀ (x, η, ξ) ∈ Ω× R× Rn.

(2)

∂f

∂η
(x, η, ξ) ≤ 0.

(3) Assume there exists a M > 0 such that

f(x, η, ξ) =

{
< 0, if η > M,

> 0, if η < −M.

Then the equation possesses a unique solution in C2,γ . For proof we refer to Theorem
1.2.10 in Kung-Ching Chang’s Methods in Nonlinear Analysis. �

Problem 9. Let Ω ⊂ Rn be a bounded regular domain with n ≥ 3 and 2 < q < 2n
n−2

.

Suppose u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇ϕdx =

∫
Ω

|u|q−2uϕdx, ∀ϕ ∈ H1
0 (Ω).

Prove that u is C2 via the Lp and Cα estimate of −△.

Proof. Choosing ϕ = u in the integral equation and combing u ∈ H1
0 (Ω) yield∫

Ω

|u|q dx =

∫
Ω

|∇u|2 dx < +∞,

i.e. u ∈ Lq(Ω). By definition, u ∈ H1
0 (Ω) is a weak solution to the Dirichlet problem{

−∆u = |u|q−2u in Ω,

u = 0 on ∂Ω,

with right hand side |u|q−2u ∈ L
q

q−1 (Ω). Since q
q−1

> 1, we have u ∈ W 2, q
q−1 (Ω) by Lp

estimate of elliptic equations. Then by Sobolev imbedding we know u ∈ Lγq(Ω), where

γ = n
nq−2q−n

> 1 (2 < q < 2n
n−2

used here). This means |u|q−2u ∈ L
γq
q−1 (Ω), then by Lp

estimate again we have u ∈ W 2, γq
q−1 (Ω). Also, by Sobolev imbedding we have u ∈ Lγ′γq(Ω),

where γ′ = n
nq−2γq−n

. Since γ > 1, it’s easy to verify that γ′ > γ. Then using Hölder

inequality we get u ∈ Lγ2q(Ω). Repeating the above way, we can obtain u ∈ Lγkq(Ω)
for any k ∈ N. We choose a k0 ∈ N such that γk0q > n

2
, hence the Lp estimate and

Sobolev embedding yield u ∈ Cα(Ω), where α = 1− n
2γk0q

, which implies |u|q−2u ∈ Cα(Ω).

Finally, by classical Schauder estimate we get u ∈ C2,α(Ω). (Actually, we can obtain
u ∈ C∞(Ω).) �
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Problem 10. Let Ω ⊂ Rn be a bounded regular domain and X = W 1,p
0 (Ω) with p > 1,

f : Ω× R be continuous satisfying

|f(x, u)| ≤ C (1 + |u|α) , (x, u) ∈ Ω× R,
α < n+2

n−2
, F (x, u) =

∫ u

0
f(x, s)ds.

(1) Prove the functional

I(u) =
1

p

∫
Ω

|∇u|pdx−
∫
Ω

F (x, u(x))dx

is w.s.l.s.c. in X ;
(2) compute the Euler-Lagrange equation of I(u).

Proof of (1). We refer to Remark 4.3.11 in Kung-Ching Chang’s Methods in Nonlinear
Analysis, and I think there should be 1 < p < n and 0 ≤ α < np

n−p
− 1. �

Solution of (2). Choosing a test function φ ∈ C∞
0 (Ω) yields

I(u+ εφ) =
1

p

∫
Ω

|∇u+ ε∇φ|p dx−
∫
Ω

F (x, u+ εφ) dx.

Since u is the local minimizer, we have

0 =
d

dε
I(u+ εφ)

∣∣∣∣
ε=0

=

∫
Ω

|∇u|p−2∇u · ∇φdx−
∫
Ω

f(x, u)φdx

= −
∫
Ω

div (|∇u|p−2∇u)φdx−
∫
Ω

f(x, u)φdx.

Hence by the arbitrariness of φ ∈ C∞
0 (Ω), we know the Euler-Lagrange equation of I(u)

is
−div (|∇u|p−2∇u) = f(x, u) in Ω.

�
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