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Abstract. In this paper, we establish the interior C1,α regularity of minimizers of
a class of functionals with a convexity constraint, which includes the principal-agent
problems studied by Figalli-Kim-McCann (J. Econom. Theory 146 (2011), no. 2, 454-
478). The C1,1 regularity was previously proved by Caffarelli-Lions in an unpublished
note when the cost is quadratic, and recently extended to the case where the cost is
uniformly convex with respect to a general preference function by McCann-Rankin-
Zhang(arXiv:2303.04937v3 ). Our main result does not require the uniform convexity
assumption on the cost function. In particular, we show that the solutions to the

principal-agent problems with q-power cost are C1, 1
q−1 when q > 2 and C1,1 when

1 < q ≤ 2. Examples can show that this regularity is optimal when q ≥ 2.

1. Introduction

In this paper, we will investigate the regularity of minimizers of the functional

(1.1)

∫
X

F (x, u,Du) dx,

over the set of b-convex functions, where X is a bounded, smooth domain in Rn,
F (x, z,p) : Rn × R × Rn → R is a smooth function that is convex in each of the
variables z ∈ R and p = (p1, . . . , pn) ∈ Rn. Here b-convex functions refer to admissible
functions with respect to a function b(x, y)(see Definition 1.1).

Unlike the unconstrained case, the regularity of (1.1) is very subtle, since the typical
techniques in calculus of variations and partial differential equations are no longer appli-
cable. Indeed, due to the convexity constraint, it is generally challenging to write down a
tractable Euler-Lagrange equation for the minimizers of (1.1) [2, 4, 14]. There are some
efforts on constructing approximations of the minimizers satisfying explicit equations for
practical purposes [5, 11, 13, 12], but it is still difficult to obtain the regularity of the
minimizers of (1.1) for general F (x, z,p).
A typical example of (1.1) arises from the principle-agent problems in economics.

Principal-agent problems are a class of economic models with applications in tax policy,
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regulation of public utilities, product line design, and contract theory [9]. We give a
brief introduction as follows.

A monopolist wants to assign the prices of products to gain the maximal profit. Denote
by X, Y ⊂ R the sets of buyers and products, respectively. Let c(y) be the cost of the
product of y ∈ Y and b(x, y) be function that measures the preference of the buyer
x ∈ X to y ∈ Y . Let X be the closure of X ⊂ Rn. In order to investigate the strategy
of pricing products to maximize the profit, Figalli, Kim and McCann [9] introduced the
following conditions for each fixed (x0, y0) ∈ X × Y (See also [6, 7, 16]):

(B0) b ∈ C4(X × Y ), where X ⊂ Rn and Y ⊂ Rn are open and bounded;
(B1) (bi-twist) both x ∈ X 7→ Dyb(x, y0) and y ∈ Y 7→ Dxb(x0, y) are diffeomorphisms

onto their ranges;
(B2) (bi-convexity) both Xy0 := Dyb(X, y0) and Yx0 := Dxb(x0, Y ) are convex subsets

of Rn.
(B3) (non-negative cross-curvature)

∂4

∂s2∂t2

∣∣∣∣
(s,t)=(0,0)

b(x(s), y(t)) ≥ 0

whenever either of the two curves s ∈ [−1, 1] 7→ Dyb(x(s), y(0)) and t ∈ [−1, 1] 7→
Dxb(x(0), y(t)) forms an affinely parameterized line segment (in Xy0 , or in Y x0 ,
respectively).

Now we consider the utility function

(1.2) u(x) := sup
y∈Y

{b(x, y)− v(y)},

instead of the price function v : Y → R. To formulate the profit functional and admis-
sible functions, we need the definitions of b-convexity and b-exponential map.

Definition 1.1 (b-convexity). A function u : X → R is called b-convex if u = (ub∗)b,
where

ub(x) = sup
y∈Y

{b(x, y)− u(y)}, and ub∗(y) = sup
x∈X

{b(x, y)− u(x)}.

Definition 1.2 (b-exponential map). For each p ∈ Y x we define yb(x,p) as the unique
solution to

Dxb(x, yb(x,p)) = p,

where the uniqueness is guaranteed by (B1).

Remark 1.3. For the classical convexity, i.e. b(x, y) = x · y, it is easy to see that
yb(x,p) = p.

By (B1), u(x) = b(x, yb(x,Du(x)))− v(yb(x,Du(x))) for any differentiable point x of
u. Then the monopolist’s profit is −L(u), where

(1.3) L(u) =

∫
X

[c(yb(x,Du(x)))− b(x, yb(x,Du(x))) + u] η0(x) dx.
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Here η0 is the nonnegative relative frequency of buyers in the population. Equivalently,
the principal-agent problem is to minimization problem

(1.4) min
u∈U0

L(u),

where the admissible set

U0 := {u : X → R |u is b-convex, u(x) ≥ a0 + b(x, y0)},
for a constant a0, and a constant vector y0 ∈ Y from the assumption of “null” product.

In a special case when b(x, y) = x · y and the cost c(y) is a quadratic function |y|2
2
, it

reduces to the famous Rochet-Choné model [17], which corresponds to (1.1) with

(1.5) F (x, z,p) =
(
|p|2/2− x · p+ z

)
η0(x).

In this case, the C1 regularity of the minimizer was proved by Carlier and Lachand-
Robert [3]. Later, the interior C1,1 regularity result was derived by Caffarelli and Lions
through a very elegant argument in an unpublished note [1] (see [16, Theorem 6] for a
restatement). Very recently, under the assumption of uniformly convexity of the cost
function, the C1 and C1,1 regularities for general b(x, y) were extended by Chen [6, 7],
and McCann, Rankin and Zhang [16], respectively. The main technique in both results
is still from Caffarelli and Lions [1], while the uniform convexity of the cost plays an
important role in the proofs.

In this paper, we are concerned with functionals of more general form

(1.6) L(u) :=

∫
X

[
F 1(x, yb(x,Du(x))) + F 0(x, u(x))

]
dx,

with certain conditions on F 1(x,p) and F 0(x, z). One of the main purposes is to relax
the uniform convexity assumption of the cost function and to include the Rochet-Choné
model with of q-power cost(q > 1), where

(1.7) F (x, z,p) = (|p|q/q − x · p+ z) η0(x).

See [17, P790]. To make our results more general, we make the following assumptions:

(H1) Fixed q > 1, there exists a δ > 0 such that

G(x,p) := F 1(x, yb(x,p))− δ|p|q

is convex respect to p;
(H2) There exists M > 0, such that |DzF

0(x, z)| ≤ M for all x ∈ X and z ∈ R;
(H3) There exists C0 > 0, such that

|DpG(x,p)| ≤ C0(|yb(x,p)|q−1 + 1), |DxipiG(x,p)| ≤ C0(|yb(x,p)|q−1 + 1)

for all x ∈ X, p ∈ Y x, and for each i.

The main theorem is stated as follows:

Theorem 1.4. Assume b(x, y) satisfies (B0)-(B3). Suppose F 1(x,p) and F 0(x, z) sat-
isfy (H1)-(H3). Let u be a minimizer of the functional (1.6). Then u ∈ C1,α

loc (X), where
α = 1

q−1
for q > 2 and α = 1 for 1 < q ≤ 2.
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Remark 1.5. When q = 2, we recover the results derived in [1, 16]. When q ≥ 2,
examples can show that the regularity is optimal(Section 4).

The basic idea for the proof of Theorem 1.4 is a perturbation argument used in the
unpublished note [1], and there are some extensions in the recent paper [16]. In [16], the
authors simplified Caffarelli and Lions’s argument and extended it to the principal-agent
problem by combining some results and methods from the optimal transport literature.
Therefore, we will follow a similar framework as in the proof of [16] to give the proof of
Theorem 1.4, using a key lemma(Lemma 2.1).

The main new idea in this paper is that we are more meticulous in the choice of the
comparison function with more delicate analysis. Specifically, in [16], the authors perturb
a support function of the minimizer to make the geometry of the section controllable, but
the magnitude of the perturbation is not a concern for them. However, in our proof we
need to introduce a family of perturbations (2.5) to a support function of the minimizer
in order to refine the section geometry. The small size of the perturbation is a crucial
step in our proof (see the proof of Lemma 2.1 for details). This comparison function
allows us to handle more general functionals that may be degenerate. Precisely, we can
make assumptions (H1)-(H3) that cover all q-power cost (1 < q < ∞) functions in the
Rochet-Choné models, while the assumption of certain types of uniform “convexity” is
required in both [1] and [16].

The organization of the paper is organized as follows. First, we will state a crucial
technical lemma and give its proof in Section 2. Then, we use this key lemma to prove
Theorem 1.4 in Section 3. Finally, an example is provided in Section 4 to demonstrate
the optimal regularities of the minimizer of (1.6) when q ≥ 2.

2. A crucial technical lemma for proving Theorem 1.4

The main technique used to prove the main theorem is the following lemma analogous
to [1, 16]. In this section, we show it holds under the conditions in Theorem 1.4.

Lemma 2.1. Assume b(x, y) satisfies (B0)-(B3), F 1(x,p) and F 0(x, z) satisfy (H1)-
(H3). Let X ′ ⊂⊂ X and d = dist(X ′, ∂X). Then there exist r0 > 0 and constants
C1, C2 > 0 depending only on b, d, q, δ, C0, and M such that the following property
holds: If u : X → R is b-convex and x0 ∈ X ′, y0 ∈ yb(x0, Du(x0)), then for any r < r0
and

h := sup
Br(x0)

{u(x)− (b(x, y0)− b(x0, y0) + u(x0))} > 0,

there is a b-affine function py(x) = b(x, y) + a such that

(1) The section S := {x ∈ X |u(x) < py(x)} has positive measure.
(2) On S, we have

(2.1) sup
x∈S

{py(x)− u(x)} ≤ h.
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(3) There holds

(2.2)
1

|S|

∫
S

(
F 1(x, y)− F 1(x, yb(x,Du(x))

)
dx ≤ C1h− C2

hq

rq
.

Proof. (1) For simplicity, we assume that x0 = 0, y0 = 0 and u(0) = 0. Otherwise, we
apply the following transformations as in [16]

ũ(x̃) = u(x)− [u(x0) + b(x, y0)− b(x0, y0)],

b̃(x̃, ỹ)= b(x, y)− [b(x0, y) + b(x, y0)− b(x0, y0)]

for x = x(x̃) and y = y(ỹ), where

x̃(x) := by(x, y0)− by(x0, y0),

ỹ(y) := bx(x0, y)− bx(x0, y0).

By [16, Lemma 7], we know that ũ is convex, ũ(0) = 0 and

(2.3) b̃(x̃, ỹ) = x̃ · ỹ + aij,klx̃
ix̃j ỹkỹl

for smooth functions aij,kl on X × Y . We will continue to use the notations x, y, u, and
b for the sake of brevity. Furthermore, we can assume that u is convex and b satisfies
(2.3).

Without loss of generality, we assume that

h = sup
Br

u.

It is clear that u attains its maximum over Br at some point re1 ∈ ∂Br, and its tangential
derivatives equal 0 at re1. Then by the convexity of u, we have Du(re1) = κe1 for some
κ ≥ h/r. Here κ ≤ ∥b∥C1 . Since the gradient of the b-support of u at re1 agrees with
the gradient of u, we have yb(re1, κe1) = κe1. Note that yb(re1, 0) = 0. We denote

yε := yb

(
re1,

εh

r
e1

)
for some ε ∈ (0, 1) to be determined later. By the definition of yb (Definition 1.2), we
know that

(2.4) bx(re1, yε) =
εh

r
e1.

Hence, by (2.3) and (B1) we have that∣∣∣∣yε − εh

r
e1

∣∣∣∣ ≤ Cr
(εh)2

r2
.

That is, for sufficiently small h, it holds |yε| ≤ C εh
r
. Combining this with (2.3) and

h ≤ r∥b∥C1 , we can show that

|bx(x, yε)| ≤ C
εh

r
.
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Now we choose the b-affine function

(2.5) pyε(x) = b(x, yε)− b(re1, yε) + u(re1),

with

(2.6) |Dpyε(x)| = |bx(x, yε)| ≤ C
εh

r
.

Note that

pyε(0)− u(0)≥−Cre1 ·
εh

r
e1 + h− Cr2|yε|2

≥h− Cεh− C ′ε2h2 > 0(2.7)

for sufficiently small ε. (2.7) implies that the section S := {x ∈ X |u(x) < pyε(x)} has
positive measure. Hence, (1) is proved.

(2) By Loeper’s maximum principle [15, Theorem 3.2], we have

b(x, yε)− b(re1, yε) ≤ max{0, b(x, κe1)− b(re1, κe1)} ≤ u(x), x ∈ S.

Hence
pyε(x)− u(x) = b(x, yε)− b(re1, yε) + h− u(x) ≤ h, x ∈ S,

which yields (2.1).

(3) First, by a further transformation

x̃(x) := by(x, yε), u(x̃) := u(x), pyε(x̃) := pyε(x),

we can assume that S is convex.

Next, we show that

(2.8) S ⊂ {x ∈ Rn | − C̄ε−1r ≤ x1 ≤ C̄r}.
Indeed, by the proof of Lemma 9 in [16, P12-P13], we already have S ⊂ {x |x1 ≤ C̄r}.
Then it suffices to show S ⊂ {x |x1 ≥ −C̄ε−1r}. Using (2.3) and (2.4), we know that

εh

r
= bx(re1, yε) · e1 ≤ yε · e1 + Cr|yε|2,

i.e.

yε · e1 ≥
εh

r
− Cr|yε|2.(2.9)

Combining (2.3) and (2.9) then gives

pyε((1− 2ε−1)re1) = b((1− 2ε−1)re1, yε)− b(re1, yε) + u(re1)

≤ (1− 2ε−1)re1 · yε − re1 · yε + Cr2|yε|2 + u(re1)

= −2ε−1re1 · yε + Cr2|yε|2 + u(re1)

≤ −2h+ Cε−1r2|yε|2 + Cr2|yε|2 + h
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≤ −2h+ h+ Ch2 < 0

for sufficiently small h, which implies that {x ∈ Rn | pyε(x) ≥ 0} has a boundary point
te1 for some t ∈ ((1− 2ε−1)r, 0). Note that by (2.4),

Dxpyε(te1) = bx(te1, yε) = bx(te1, yε)− bx(re1, yε) + bx(re1, yε)

= bxx(ξ, yε) · (te1 − re1) +
εh

r
e1

= O(ε−1r) +
εh

r
e1.

So we know that the outer normal Dxpyε(te1) makes an angle with the negative axis e1,
say θ, which satisfies sin θ ≤ Cε−1r. This means that

{x ∈ Rn | 0 ≤ pyε(x)} ⊂ {x ∈ Rn |x1 ≥ (1− 2ε−1)r − Cε−1r · diam(X)}

⊂ {x ∈ Rn |x1 ≥ −C̄ε−1r}.
Therefore, we have

S ⊂ {x ∈ Rn | 0 ≤ pyε(x)} ⊂ {x ∈ Rn |x1 ≥ −C̄ε−1r}.

Now we are ready to prove (2.2). Let G(x,p) = F 1(x, yb(x,p))− δ|p|q. Then we have∫
S

(
F 1(x, yb(x,Dpyε))− F 1(x, yb(x,Du))

)
dx

= δ

∫
S

(|Dpyε |q − |Du|q) dx+

∫
S

(G(x,Dpyε)−G(x,Du)) dx.(2.10)

By (H1), we know that G(x,p) is convex respect to p. Hence, we have

G(x,Du) ≥ G(x,Dpyε) +DpG(x,Dpyε) · (Du−Dpyε).

By an elementary inequality1, we obtain

|Du|q ≥ 1

2q−1
|Du−Dpyε|q − |Dpyε|q.

Combining these inequalities with (2.10), we conclude that∫
S

(
F 1(x, yb(x,Dpyε))− F 1(x, yb(x,Du))

)
dx

≤ δ

∫
S

(
2|Dpyε|q −

1

2q−1
|Du−Dpyε|q

)
dx+

∫
S

DpG(x,Dpyε) · (Dpyε −Du) dx.

Hence, to prove (2.2), it suffices to estimate

(2.11)

∫
S

|Du−Dpyε|q dx

1|ξ + η|q ≥ 1
2q−1 |ξ|q − |η|q for ξ, η ∈ Rn.
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and

(2.12)

∫
S

DpG(x,Dpyε) · (Dpyε −Du) dx.

We first estimate the second term (2.12). By the divergence theorem, we have∫
S

DpG(x,Dpyε) · (Dpyε −Du) dx =

∫
S

DpG(x,Dpyε) ·Dx(pyε − u) dx

=

∫
∂S∩∂Ω

(pyε − u)DpG(x,Dpyε) · n dS −
∫
S

(pyε − u)div x (DpG(x,Dpyε)) dx,(2.13)

where n is the unit outer normal vector. By (H2) and (H3), we know

|DpG(x,Dpyε)| ≤C0 |yb(x,Dpyε)|
q−1 + C0

=C0|yε|q−1 + C0,

and
|div x(DpG(x, yε))| ≤ C0 |yb(x,Dpyε)|

q−1 + C0 = C0|yε|q−1 + C0,

where we have used the fact yb(x,Dpyε) = yε. Indeed, by the definition of yb and
Dpyε(x) = bx(x, yε), we have

bx(x, yb(x,Dpyε)) = Dpyε = bx(x, yε).

Then by (B1), we obtain yb(x,Dpyε) = yε. By |yε| ≤ C εh
r
, (2.1) and (2.13), we have∫

S

DpG(x,Dpyε) · (Dpyε −Du) dx ≤ Ch|S|+ C
hq

rq−1
|S|,(2.14)

where we used the estimate |∂S∩∂Ω| ≤ C|S|, which was proved by Carlier and Lachand-
Robert [3], and Chen [6, P82].

Next, we estimate (2.11). For x = (x1, x
′), we let P (x) := (0, x′) be its projection

onto {x ∈ Rn |x1 = 0}. Denote 1
K
S as the dilation of S by a factor 1

K
with respect to

the origin. Choose K = 2diam(Ω)/d, where d = dist(Ω′, ∂Ω). Hence, P
(

1
K
S
)
+ d

2
e1 ⊂

int Ω. Choose r0 sufficiently small depending on d such that S ⊂
{
x : x1 ≤ d

2

}
. For

(0, x′) ∈ P
(

1
K
S
)
, we let lx′ be the line segment with greater x1 component of the set

(P−1
(

1
K
S
)
∩ S)\

(
1
K
S
)
and write

lx′ = [ax′ , bx′ ]× {x′}, where bx′ > ax′ .

Then the point (bx′ , x′) satisfies bx′ ≤ d
2
. Hence, (bx′ , x′) ∈ ∂S ∩ int Ω.

By (2.7) and u(Kax′ , Kx′) − pyε(Kax′ , Kx′) ≤ 0, we use the convexity of u − pyε to
obtain

u(ax′ , x′)− pyε(ax′ , x′) ≤ −K − 1

K

(
3

4
− Cε

)
h.

Since (bx′ , x′) ∈ ∂S ∩ int Ω, it is clear that

u(bx′ , x′)− pyε(bx′ , x′) = 0.
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Then by Jensen’s inequality, we have∫ bx′

ax′

|Dx1u(t, x
′)−Dx1pyε(t, x

′)|q dt

≥ 1

dx′
q−1

(∫ bx′

ax′

Dx1u(t, x
′)−Dx1pyε(t, x

′) dt

)q

≥ 1

dx′
q−1

[
K − 1

K

(
3

4
− Cε

)
h

]q
≥
[
K − 1

K

(
3

4
− Cε

)]q
hq

(Cr)q−1
,

where dx′ = bx′ − ax′ ≤ Cr. Hence, it holds∫
S

|Du−Dpyε|q dx≥
∫

1
K
S

|Du−Dpyε|q dx

=

∫
P ( 1

K
S)

∫ bx′

ax′

|Dx1u(t, x
′)−Dx1pyε(t, x

′)|q dt dx′

≥
∫
P ( 1

K
S)

[
K − 1

K

(
3

4
− Cε

)]q
hq

(Cr)q−1
dx′

=

[
K − 1

K

(
3

4
− Cε

)]q
hq

(Cr)q−1

∣∣∣∣P ( 1

K
S

)∣∣∣∣
=

(K − 1)q
(
3
4
− Cε

)q
Kq+n−1

hq

(Cr)q−1
|P (S)|.

By (2.8), we have
C̄(1 + ε−1)r|P (S)| ≥ |S|.

Therefore, we obtain

(2.15)

∫
S

|Du−Dpyε|q dx ≥
(K − 1)q

(
3
4
− Cε

)q
Cq−1Kq+n−1C̄(ε+ 1)

εhq

rq
|S|.

Substituting (2.6), (2.14) and (2.15) into (2.10), we have

1

|S|

∫
S

(
F 1(x, yb(x,Dpyε))− F 1(x, yb(x,Du))

)
dx

=
δ

|S|

∫
S

(|Dpyε|q − |Du|q) dx+
1

|S|

∫
S

(G(x,Dpyε)−G(x,Du)) dx

≤ δ

|S|

∫
S

(
2|Dpyε |q −

1

2q−1
|Du−Dpyε|q

)
dx+

1

|S|

∫
S

(G(x,Dpyε)−G(x,Du)) dx
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≤ 2Cδ

(
εh

r

)q

−
δ(K − 1)q

(
3
4
− Cε

)q
(2C)q−1Kq+n−1C̄(ε+ 1)

εhq

rq
+ Ch+ C

hq

rq−1

=

(
2Cεq−1 −

(K − 1)q
(
3
4
− Cε

)q
(2C)q−1Kq+n−1C̄(ε+ 1)

)
δε

hq

rq
+ Ch+ C

hq

rq−1
.

We choose ε > 0 sufficiently small such that

2Cεq−1 −
(K − 1)q

(
3
4
− Cε

)q
(2C)q−1Kq+n−1C̄(ε+ 1)

≤ −C̃

for some constant C̃ > 0 depending only on b, d and q. Then we choose r sufficiently

small such that Cr ≤ 1
2
C̃δε. In conclusion, there exist C1, C2 > 0 depending on b, d, q,

δ, C0 and M such that

1

|S|

∫
S

(
F 1(x,Dpyε)− F 1(x,Du(x))

)
dx ≤ C1h− C2

hq

rq
,

i.e. (2.2) holds. □

Remark 2.2. From the proof of Lemma 2.1, we can see that C1 is identical 0 if G(x,p) ≡
0, i.e., F 1(x, yb(x,p)) = δ|p|q. Hence, (2.2) becomes

(2.16)
1

|S|

∫
S

(|y|q − |Du(x)|q) dx ≤ −C2
hq

rq
.

In the rest of this section we assume that u is convex in the classical sense, i.e.
b(x, y) = x · y. From Remark 2.2, we can obtain an interesting corollary of Lemma 2.1,
which is also mentioned in [1] for the case q = 2.

Corollary 2.3. Let F 1(x,p) = |p|q and F 0(x, z) = f(x)z in (1.6). Let u be a convex
minimizer of (1.6). Then a non-trivial section of u cannot be contained in the region
where f ≤ 0. In particular, u is a ruled surface in the region where f ≤ 0.

Before presenting the proof, we first review the definition of extreme points [10, 18].
Let Ω be a bounded convex domain in Rn, n ≥ 2. A boundary point z ∈ ∂Ω is an
extreme point of Ω if there exists a hyperplane L such that {z} = L ∩ ∂Ω, namely z is
the unique point in L ∩ ∂Ω. It is known that any interior point of Ω can be expressed
as a linear combination of extreme points of Ω.

Proof of Corollary 2.3. We prove this corollary by contradiction. Suppose that there
exists a non-trivial section of u is contained in {x ∈ X : f(x) ≤ 0}. Then there exists a
point x′ such that the contact set

Tx′ := {x ∈ X : u(x) = u(x′) +Du(x′) · (x− x′)}
contains at least one extreme point x0 lying in the interior of {x ∈ X : f(x) ≤ 0}. Thus,
for sufficiently small r > 0, we have

h := sup
Br(x0)

(u− lx0) > 0
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and
{x ∈ X : u(x) < lx0(x) + h} ⊂ {x ∈ X : f(x) ≤ 0},

where
lx0(x) = u(x0) +Du(x0) · (x− x0).

Then, by Lemma 2.1 we choose an affine function py(x) with the associated section
S = {x : u(x) < py(x)} and set

uh := max{u, py}.
It is clear that uh is convex, then there is L(uh) ≥ L(u) since u is a minimizer of (1.6).
Note that uh is different from u only on S. By (2.1), (2.16) in Remark 2.2 and

S ⊂ {x ∈ X : u(x) < lx0(x) + h} ⊂ {x ∈ X : f(x) ≤ 0},
we have

0 ≤ L(uh)− L(u) =

∫
S

[(|y|q + f(x)py(x))− (|Du(x)|q + f(x)u(x))] dx

=

∫
S

(|y|q − |Du(x)|q) dx+

∫
S

(py(x)− u(x))f(x) dx

≤ −C2
hq

rq
|S|

< 0,

which makes a contradiction. Hence, any non-trivial section of u can not be contained
in the region where f ≤ 0. This implies that the contact sets of u have no extreme
points inside {x ∈ X : f(x) ≤ 0}, which gives us that u should be a ruled surface in
{x ∈ X : f(x) ≤ 0}. □

3. Proof of Theorem 1.4

In this section, we will use Lemma 2.1 to prove Theorem 1.4.

Proof of Theorem 1.4. Fix X ′ ⊂⊂ X, x0 ∈ X ′ and y0 ∈ yb(x0, Du(x0)). First, we show
that for any r less than a given r0 (independent of u) there exists C > 0, such that

(3.1) sup
Br(x0)

|u(x)− u(x0)− b(x, y0) + b(x0, y0)| ≤ Cr1+
1

q−1 ,

where p0(x) := u(x0) + b(x, y0)− b(x0, y0) is a b-support function of u at x0. Indeed, let

h = sup
Br(x0)

(u− p0).

We assume h > 0. Otherwise, the proof is finished. Then we choose a b-affine function
py with the associated section S = {x : u(x) < py(x)} by Lemma 2.1 and set

uh := max{u, py}.
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It is clear that uh is b-convex, then L(uh) ≥ L(u) since u is a minimizer of (1.6). Note
that uh differs from u only on S. Since py is a b-affine function, we have yb(x,Dpy(x)) = y.
Hence, we can deduce from (H2), (2.1), and (2.2) that

0 ≤ L(uh)− L(u)

=

∫
S

[
(F 1(x, y) + F 0(x, py))− (F 1(x, yb(x,Du)) + F 0(x, u))

]
dx

=

∫
S

(F 1(x, y)− F 1(x, yb(x,Du))) dx+

∫
S

(F 0(x, py)− F 0(x, u)) dx

≤
(
C1h− C2

hq

rq
+Mh

)
|S|,

which gives us that

h ≤ Cr
q

q−1 ,

i.e.

sup
Br(x0)

|u− p0| ≤ Cr1+
1

q−1 .

Next, we show that for any r less than a given r0 there exists

sup
Br(x0)

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ Cr1+α

for α = 1/(q − 1) when q > 2 and α = 1 when 1 < q ≤ 2. Indeed, by Definition 1.2 we
have Du(x0) = bx(x0, y0). Then by (3.1) and Lagrange’s Mean Value Theorem, for any
x, there exists ξ, such that

|u(x)− u(x0)−Du(x0) · (x− x0)|

≤ |u(x)− u(x0)− (b(x, y0)− b(x0, y0))|+ |(b(x, y0)− b(x0, y0))−Du(x0) · (x− x0)|

= |u(x)− u(x0)− (b(x, y0)− b(x0, y0))|+ |bx(ξ, y0) · (x− x0)− bx(x0, y0) · (x− x0)|

≤ C|x− x0|1+
1

q−1 + ∥bxx∥L∞(X×Y )|x− x0|2

≤ C|x− x0|1+α

for α = 1/(q − 1) when q > 2 and α = 1 when 1 < q ≤ 2. Then the proof is completed
by noting that a b-convex function is semi-convex and applying Lemma 3.1. □

In the above proof, we used a criterion for C1,α regularity of convex functions, which
states that if a convex function separates its supporting planes in a C1,α fashion point-
wisely, then it is indeed of class C1,α. This lemma can be found in many references, see,
for example, in Figalli’s book [8, Lemma A.32]. For readers’ convenience, we include it
here.

Lemma 3.1 ([8, Lemma A.32]). Let Z be an open convex set satisfying

Br(x̄) ⊂ Z ⊂ BR(x̄)
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for some 0 < r ≤ R and x̄ ∈ Rn. Let u : Z → R be a convex function, and assume
that there exist constants K, C, ϱ > 0 and α ∈ (0, 1] such that the following holds: u is
K-Lipschitz in Z, and for every x ∈ Z there exists px ∈ ∂u(x) satisfying

u(z)− u(x)− px · (z − x) ≤ C|z − x|1+α, ∀ z ∈ Z ∩Bϱ(x).

Then u ∈ C1,α(Z) with

∥Du∥Cα(Z) ≤ C̄ = C̄
(
r, R,K,C, ϱ

)
.

4. Optimal regularities of minimizers

In this section, we will provide examples to demonstrate that the regularity in Theorem
1.4 is optimal for q ≥ 2. When q = 2, there is an example constructed in [16, Remark
5] to show that Theorem 1.4 is optimal.

As mentioned in the introduction, we do not have an explicit Euler-Lagrange equation
for the minimizers of (1.1) with convexity constraints. In [14], Lions has shown that the
Euler-Lagrange equation for the minimizers of (1.1) with convexity constraints has the
following form:

(4.1)
n∑

i,j=1

∂2

∂xi∂xj

µij =
∂F

∂z
(x, u(x), Du(x))−

n∑
i=1

∂

∂xi

(
∂F

∂pi
(x, u(x), Du(x))

)
,

where µ = (µij) is a matrix-valued Radon measure and (4.1) holds in the sense of
distribution. See [2] for a different proof and some extensions. Since very little is known
about the measure µ, the regularity of the minimizers of (1.1) with convexity constraints
via (4.1) is still inaccessible. However, in the one-dimensional case it was shown in [2]
by using (4.1) that the minimizers of (1.1) with certain conditions on F must belong to
the class of C1.

Theorem 4.1 ([2, Theorem 3]). Assume that n = 1 and suppose that F (t, x, v) satisfies

(1) F is of class C1 over (a, b)× R× R,
(2) there exists β > 0, α ∈ Lp′((a, b)) and γ ∈ L1((a, b)) such that for all (t, x, v) ∈

[a, b]× R× R, ∣∣∣∣∂F∂v (t, x, v)
∣∣∣∣ ≤ α(t) + β

(
1 + |v|p−1

)
,∣∣∣∣∂F∂x (t, x, v)

∣∣∣∣ ≤ γ(t) + β (1 + |v|p)

where we assume p > 1, and 1
p
+ 1

p′
= 1,

(3) F is strictly convex with respect to v.

Then the minimizers of (1.1) with convexity constraints belongs to C1(a, b).
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The assumptions outlined in (H1)-(H3) are partially inspired by Theorem 4.1 and
have a certain naturalness in their formulation.

Let Ω = [−1, 1], q > 2, we consider the functional

(4.2) L[u] :=

∫ 1

−1

1

q
|u′(x)|q + u(x) dx

over the set

{u : [−1, 1] → R |u is convex and u(1) = u(−1) = 0} .
By Theorem 4.1, we know that the minimizer of (4.2) with convexity constraints is
already C1. What’s more, the minimizer of (4.2) is C1,1/(q−1) for q > 2 according to
Theorem 1.4. Now, we show that when q > 2, the minimizer is at most C1,1/(q−1).
It is easy to see that the Euler-Lagrange equation of (4.2) without convexity constraint

is

(4.3) (|u′|q−2u′)′ = 1.

Solving (4.3) with boundary conditions u(−1) = u(1) = 0 yields

(4.4) u(x) =
q − 1

q

(
|x|1+

1
q−1 − 1

)
.

It is clear that u is a convex function on [−1, 1], which implies that the minimizers of
L(u) with or without a convexity constraint coincide. Then we know that the regularity
of u(x) is at most C1,1/(q−1) when q > 2.
When 1 < q < 2, we can observe that u(x) in (4.4) has higher regularity than

C1,1. This implies the optimal regularity of u remains undetermined in the 1 < q < 2
case. Consequently, at the end of this section, we present two questions for future
consideration. Firstly, what is the optimal regularity for the minimizer of (1.6) when
1 < q < 2? Secondly, can the regularity established in Theorem 1.4 be extended to the
boundary under certain boundary conditions?
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