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ABSTRACT. In this paper we study the inverse problem of determining an elec-
trical inclusion in a multi-layer composite from boundary measurements in 2D.
We assume the conductivities in different layers are different and derive a sta-
bility estimate for the linearized map with explicit formulae on the conductivity
and the thickness of each layer. Intuitively, if an inclusion is surrounded by
a highly conductive layer, then, in view of “the principle of the least work”,
the current will take a path in the highly conductive layer and disregard the
existence of the inclusion. Consequently, a worse stability of identifying the
hidden inclusion is expected in this case. Our estimates indeed show that the
ill-posedness of the problem increases as long as the conductivity of some layer
becomes large. This work is an extension of the previous result by Nagayasu-
Uhlmann-Wang[15], where a depth-dependent estimate is derived when an in-
clusion is deeply hidden in a conductor. Estimates in this work also show the
influence of the depth of the inclusion.

1. Introduction. Electrical impedance tomography (EIT) arises in medical imag-
ing given that human organs and tissues have quite different conductivities [12].
It has been developed to be an inverse method which consists in determining the
electrical properties of a medium by making voltage and current measurements at
the boundary of the medium. In the mathematical literature, this is also known
as Calderén’s problem [7]. More precisely, let Q be an open bounded domain with
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smooth boundary in R?. The conductivity equation can be described by the follow-
ing second order elliptic equation of divergence form:

(1) V-(y(x)Vu) =0, ze€,

where y(z) > 0.

It is known that for an appropriate function f given on 02, there exists a unique
solution u(z) to the Dirichlet boundary value problem for (1) with u|spq = f [10].
Thus, we can define a Dirichlet-to-Neumann operator A, : H/2(9Q) — H~1/2(9Q),
by

ou
ovlaq’

Ay (f) = ()

where v is unit exterior normal vector of 9. Here the boundary information is
encoded in the map A,. The map A, depends nonlinearly on <, even though
equation (1) is linear. The famous Calderén problem [7] is to determine + from the
knowledge of A, meanwhile the EIT problem is notoriously known to be ill-posed.
A log-type stability was obtained by Alessandrini[l, 3] for the interior determination
and a Lipschitz-type stability was by Alessandrini [2], and Alessandrini-Gaburro
[4, 5], Sylvester-Uhlmann[17] for the boundary determination. The log-type stability
estimate was proved to be optimal by Mandache [14].

In several practical situations, the conductivity function is of the type v(z) =
Yo () +71(2)xp, where D CC € is an inclusion with abnormal conductivity v, (z).
Assuming that g is known, we are interested in determining the shape of D by the
Dirichlet-to-Neumann map, denoted by Ap. Under some appropriate conditions,
the uniqueness was proved by Isakov[l1]. Numerical results, e.g. [8, 9, 18, 19],
showed that the deeper the inclusion, the worse the numerical reconstruction. Na-
gayasu, Uhlmann and Wang [15], by studying the linearized Dirichlet-to-Neumann
map, obtained a quantitative description of this phenomenon in a model case that
v(z) =1+ (k—1)xp, k> 0, k # 1, and showed that the ill-posedness increases
when the depth of inclusion hidden in the conductor increases.

However, it is known that the crustal structure is multi-layered. Furthermore, in
practice, there are many multi-layered composite materials as well. The properties
in different layers are always different. Inspired by the result of [15], in this paper,
we show that when the conductivity in some middle layer increases, the ill-posedness
will increase as well. This result is an extension of Nagayasu-Uhlmann-Wang’s work,
where the two-layer case was studied. We will follow the method implemented in
[15] and use the Fourier series to analytically express the Dirichlet-to-Neumann
linearized map for three-layer and n-layer inclusions and then to derive stability
estimates. We would like to mention that there are some interesting results related
to the linearized map and the stability obtained in [13, 16]. Also, in [6], Alessandrini
and Scapin considered the depth dependent resolution in 2D.

To describe precisely the problem we have in mind, we set d = 2 and first consider
the three-layer case. Let Q := Bg(0), B; := B,,(0), 0 <711 <719 < R, and

v(z) = k1xB, + k2XBo\B, + XO\Bs>

where k; > 0 are different with k; # 1. Define

Lp, B,up:=V- ((leBl + kaXBo\B;, T XQ\Bz)VU())-



STABILITY ESTIMATES IN MULTI-LAYER STRUCTURE 3

Given a smooth function ¢ : 9B; — R, we introduce a perturbation B of B; as in
[15], namely, the boundary dBj is defined by

y=2x+ s¥(x)v,, on OBy,

where v, is the unit exterior normal vector at z € dB;. For f € HY?(9Q), let ug
be the solution to the reference problem

Lp, B,uo =0, in £,
ug = f, on 0f).

Likewise, let us be the solution to the perturbed problem

LBiBzus = O, in Q,
us:f7 on 8(2

We define the linearized map of the Dirichlet-to-Neumann map at the direction
¥, by
1

(2) dAp, (¢) := lim S(AspB — AB, B,)

where Ap, p, and AB% B, are the Dirichlet-to-Neumann maps corresponding to
Lp, B,uo = 0 and LBfnguS = 0 in , respectively. Now, we state the stability
estimate in the case of three-layer inclusions.

Theorem 1.1. Let m >0, My > 0,79 > 0 and Xy > 1 be fized. Suppose

R
MZM@, r1§r0 fZXO
1

Then there exists a positive constant k such that for ks > k and for any ¢ €
H™(0By) satisfying

[l zrmo5,) <M and  ||dAp, (V)| £ <1,
we have

3) [¥l20m) < CM ke + 1) [1n ()] wllde, ()12

where the positive constant C' depends only on m, My, rq, Xo, k1. Here and after,
I - |l denotes the operator norm on the space of bounded linear operators from
HY2(0Q) into H1/2(0Q).

Remark 1. Actually, we can take
k = max {2%+%7r_%, ((— Inc)/(In Xo) + 16) } ,

for some constant ¢ to be determined in the proof (see (27)). Moreover,

4% 5510873 (k+ k)
< T .
(k— ki)
In particular, if Xy > e and MZry® > %(%)_2’”, then ¢ = § and so 16™ < k <
177n.
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Remark 2. Estimate (3) clearly indicates that the determination of an inclusion
by boundary measurements is getting increasingly ill-posed when the inclusion is
hidden deeper inside of the conductor, i.e., R/r; is large, and also when the con-
ductivity ko becomes large. In particular, if ks = oo, then us will be a constant
in By \ Bf. Thus, it is impossible to uniquely determine 0Bj even using the full
Dirichlet-to-Neumann map Ap: g, .

Next, for n-layer inclusions, we set 2 := Br(0), B; := B, (0), 0 < 1 < ro <
s <1 < R, and
(4) LBy B,u0 =V ((’leBl +> kixpaB .t XBR\BH)VUO) =0,
i=2

where k; > 0 and k; # 1,4 = 1,2,--- ,n. Let up and us be the solutions to the
problems

LBl,Bz,m,B,LUO = 0, in Q,
ug = f, on 01,

and
LBi’B%..Aan’LLS = 0, in Q,
us = f, on 0f).
respectively. The linearized map dAp, (¢) is defined similarly as (2), namely,
o1
dAp, (1/)) = 21_1}1(1) E(AvaB2v“' B, — ABI’B%.A. ,Bn)»

where Ap, B, .. B, and Ag: p, .. p, are the Dirichlet-to-Neumann maps corre-
sponding to Lp, B,,....B, %o = 0 and LBf’B%.. B, s = 01in 2, respectively. Then

Theorem 1.2. Let m >0, My > 0,79 > 0 and Xo > 1 be fized. Suppose
R
M > My, r <ro — > Xo.
1

Then for any v € H™(0B1) satisfies
[¥llzrmop) <M and  |dAp, (V)]z <1,
the following inequality

Ry\1m o
(5) [llz20m,) < OM |1 ()] n ldAp, ()] 2|~

holds, where C' depends only on m, My, ro, Xo, k1, k2, -+ , kn. Moreover, if for some
1€{2,3,---,n}, k; satisfies

k; > max {2%m+%7r_%, ((— Inc)/(In Xo) + 16)m}

with some appropriate constant ¢, then (5) can be written explicitly as

1l L2cam,) < bz + k1) (ks + ka) - (kn +1)
(0B1) = (k2 _ k1)2

(©) Ry
x M| ()] I las, ()12

where C), only depends on n.

Remark 3. Estimate (6) shows that the inverse inclusion problem in a multi-layer
medium is more unstable whenever the conductivity in any outside layer becomes
larger.
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The rest of the paper is organized as follows. In Section 2, we consider the
problem in the case of three-layer medium. The extension to the n-layer medium is
studied in Section 3.

2. The case of three-layer medium. In this section, we will derive the solution
to the conductivity equation with piecewise constant coefficients and estimate the
norm of linearized map dAp, (¢). We then give a proof of Theorem 1.1.

2.1. Preliminary results for Fourier expression. In this subsection, we will
find the series solution to the Dirichlet problem, preparing for the expression of
dA(¢). Since we are working in two dimensions, it is convenient to use the polar
coordinates: (z,y) = (pcosd, psind) € R? with p > 0 and 0 € [0,27). For any
function f € L2(99), we denote f(6) := f(Rcosf, Rsinf). Define the Fourier
coefficients and the H™(9))-norm
— o ~9 7il9d9 2 _ R 1 12 m 2
fi= ; f(@)e ; I 1 m o0 *gé( + )"l

We can also write f(f) = (2m)~' 3, fie?. For functions on other boundaries,
they are defined in the same way.

For f € H'Y?(99), suppose that wug is the solution of the following Dirichlet
problem

(7)

LBl,BQUO = 0, in Q,
ug = f, on 0N.

The Dirichlet-to-Neumann map Ap, p, : H/2(9Q) — H~1/2(09) associated with
Lp, B, is defined by

8’&0
ABl,BQ(f) = (kIXBl +k2XBQ\Bl +XBR\B2>$‘BQ
Notice that (7) can be rewritten as the following transmission problem
AUO :0, in Bl U(BQ\Bl)U(Q\BQ),
gl = wo|—, on 0B;, i=1,2,
(8) kz% = ki-i—l% , on aBia 1= 1a 2a
+ —
ug = f, on 09,

where k3 = 1 and =+ stands for taking limit from outside or inside of the inclusion.
Next, we plan to express the solution of (8) in terms of the Fourier series. For
1 € Z*, we denote

—(ky — k)1t (kg + ko) 0 0
1| (ke 4+ 1)y —(ke—Drgt =275 0

—1 =
ST (ky — )rh  —(ka +D)ryt 0 2ry!
0 0 R' R
1 l,.—1 l,.—1 —1,.1
:ﬂ R 7”2 ((kQ — k])(kz — 1)7‘1T2 - (kl + k2)(k2 + 1)7"1 7"2>
(9) - R*lrlz( — (kg — k1) (kg + 1)riry ' + (kg + ko) (ko — 1)rllrl2)).

Then
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Lemma 2.1. The series solution of (8) can be written explicitly as
ug(pcos, psin )
(10)

SIRee

1 o0
o7 2

=1

[( — k1) (ko — 1)r1r2 — (k1 + ko) (k2 + 1)7fl)pl

((k1 +ko)(ko — L) 'r 2l — (kg — k1) (ko + 1)Tll)pfl]

R fae )+ fo, rs<p<R,
RERs St —1 1 1 -l ilo —ilo
5= 2 2 = Gk ko)t = (ke = k)] [ + foie™] + fo,
=1
r1 < P <72,
1 o5 io il
727( 2ka)ry ' p [f + fe }Jrfo, 0<p<ry.

™
Recall that

1

2m
fi= F()e™ " do.

0
Remark 4. We remark that if k5 = 1, then 0B> coincides 92 and

1
S7t=1 ((k1 —DR™'rh — (b + 1)er1’>,

which is the same formula derived in [15]. In this paper we are mainly concerned
about the instability caused by a large k.

Proof. To simplify the notation, we denote u := ug. Note that
u(pcosf, psinf) = Z w(p)e®, 6 e o,2m).
€7
By Fourier series, we obtain the following ordinary differential equation for u;, [ # 0,
1 12
(11) w'(p) + ;ui(p) — gulp) =0.

Clearly, p' is a solution of (11). Thus, its general solution is

w(p) = ap' +bp~",

for arbitrary constants a and b. Next, we will try to determine the values of a and
b in each layer. We set

11
wy(ry)r , >0, .
w(p) = ( )llel if 0<p<ory,
’LLl( )7"1,0 ) I < 07
and
u ( o alpl + blp_la if < p<Tg,
: agpl + bgp_l, if 79 < p<R.
We firstly consider the case where I > 0. Since u|_ = u|4 and ki% = kit1 %
- +

on 0B;, it follows that
(12) wy(r) = a1rl1 + blrfl, on OBj,
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and

klul(rl)% = ko (allrll* — bllTlilil), on 831,

(13) arrh + 517“24 = agrh + 52T§l7 on 0B,

ko (a1l7“21_1 — bll’l“g_l_l) = CLQl’r‘gl_l — bgl’l“g_l_l, on 0B,.

When p = R, we have
1 —1 L 1
(14) asR' + bR~ = w(R) = — (@)e " dd = — f;, on OBg.
21 Jo 2m

Combining (12), (13) with (14) yields the following linear system

—(k2 - k1)rlla1 + (]{11 + kz)rl_lbl =0, ceeeeeen @
rhay + 150y —rhag —rytby =0, oooon @
(15) korbay — kgr;lbl —rbag + 7"2_152 =0, eeeeeee- @

1
Rlas+ Ry = —fi.
2T

Then, @ + @ and @ — @ yields

—(ka — k1)7“lla1 + (k1 + kz)?‘flb1 =0,
(kg + 1)7"%0,1 - (kg - 1)T2_lb1 - 2Tl2&2 == O,
(ky — 1)rhay — (ko + 1)ry'oy + 215 by = 0,

1
Rlag + R7'by = —fy.
2T

Hence, recalling the definition of S, (9), and by the Cramer’s law, we have

0 (k1 + k?Q)T;l 0 0
Sl 0 —(ka—Dry' =2 0 1, S .
=T =——f-—ki1+k
aj 4] 0 —(k‘g +1)’I"2_l 0 2T2_l 27.(.fl ] ( 1+ 2)7”1 s
5=/ 0 R R
— (k2 — k1)rt 0 0 0
. S (k’Q + 1)Tl2 0 727‘12 0 . 1 S; .
bl - _Zl (kg o 1)7/.[2 0 0 27"2_l - 27fl T(kQ k])’l"l,
0 =fi R R

—(ky — k)ry (kb + ko)t 0 0
Si| (ke +1)rh  —(ka—1Dry" 0 0
4l | (k= 1)k —(ka+Dryt 0 21y
0 0 =fi R
1, S

= %ﬁ . 2—[((1{:2 — kl)(kg — 1)Tl17"2_21 — (/ﬁ + kg)(kz + l)T’l_l),
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—(k‘Q — k‘l)Tll (k‘1 + k‘g)’/‘l_l 0

0
b SU| (et Drh =k =D)ry' —2r) 0
27U (ba—1)rh —(ka+ 1yt 00

0 0 R\ Ly
1, S _
= —5fi- 5 (ke = k) + 1)rf = (k1 + ko) (ke — r7'ra).
Thus, when [ > 0, we have for ro < p < R,
1 S| _ _
w(p) = =i+ 57| (ke = ka) (k= rirg™ = (ks + ko) + 1)ri )
(= (s = k) + 1)) o+ (b + ) (s — D) o]
for r1 < p < 7y,
1 S _ _
wlp) = o= fi- T = O+ ka)rip! = (ke = k)rtp™]

and for 0 < p < 7y,

]. Sl —1 1
%flT( 2]{72)7’1 p

For | < 0, we have u;(p) = w(r1)rip~!, for 0 < p < ry, which is the only term
different from the case of [ > 0. Consequently, we obtain

-l
le(ﬁ)(*) = ko <111l7”1l71 - b1l7”17171) on 9B,
)
S0 @ in (15) becomes

(kl + kg)rllal - (kz - kl)T;lbl =0.

Thus, it suffices to replace —(ko — k1) by (k1 + k2) in the expression of u for [ > 0.
It follows that, for 7o < p < R,

w(p) = 5fi- St (= O+ k) (ks = g™ = (k= ) o+ D)

+ ((k1 ¥ ko) (ko + 1) — (ko — k) (ko — 1)r;lr22l)pﬂ,

w(p) =

and
1 S_ _ _
Ul(p) = ﬂfl . Tl [(k’g — k’l)’l”l l,Ol + (k’l + k’z)’l”llp l}, r<p<ry,
and
1 S_y P\ -l
u(p) = %fl T (2k2)(a) , O0<p<ry.
The proof of Lemma 2.1 is completed. O

2.2. Estimates of the linearized map dAg, (v)). In this subsection, we will de-
rive the expression of dAp, () and obtain the estimate of ||dAp, (¢)]». We now

introduce a function
. Ug — U
U := lim ,

s—0 S

where ug is the solution of

LBf,Bzus = 07 in Qa
us = f, on JN).
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By (2), we have

ou

- HY2(09).
A Vfe (0%2)

(16) dAp, (¥)(f) =

By the computation on [15, Page 5|, using y = x + s¢»(z)v,, on 0B;, we have that,
as s — 0,

1 ou,
= (us @)l — wo(@)]s) = U@)| + (@) 52@)|  on 0B,
+ +
and
1 ( Ous dug _ =207 2
. (ayy< )|, = me@ i) SO = Ol )|, + 20320,
on 0Bj;. Notice that
0? 1 0 1 03 0B
puo( )’:i: - = E UO( ) N 71172 QUO(J?) . on 1.
Hence, we can show that U is the solution of
AU =0 in Q\ 0By,
U|+—U|_—k2 Eaho o) (a )8"°| on B,
kg 68%|+ - k‘l D | = 7’1 kl)ag (1/1( )89u0\+) on 8B1,
U=0 on 01,

where 1;(0) = (2m)~ ! Y ez ettt
Noticing that

/{22 6’&0
k1 Sy G

:_%2251(% Lt + Yprf- )

pEZ =1

and
7y % (ka — k1)0p @(9)39uo|+) k22;2k12 S Z Si (%—zfz - ¢p+zf—z>eip0
peEZ 1=

we rewrite the Dirichlet problem above as

(17)
AU =0, in Q\ 0B,
(k2 — k1)
- Ul- B
Uly = U| 2 %:lelsl (wp Lfi + Ypyi f- ) on OB,
ou| 4 ou| _ (k2—Fki)ko ipo
k25 + ko - 222 %:Z ;Sl (7% ufi— ¢'p+lffz)e , on 0B,
U=0, on Of).

Similar as the above, we can obtain the series solution of (17) when r < p < R.
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Lemma 2.2. When r; < p < R, the series solution of (17) is given by

— > T
U(pcosf, psin) z% Z Tl(Rlp_l —R7ph
1=1

X Z Sp {(/ﬁ + k2) (wfl+pf7p e 4oty eize)

p=1
= (ko = k) (Yot 7 i fp ) .

where
-1

T, = —— -
(ke — k1)rt R=V + (k1 + ko)ry "R

Proof. Let
U(pcosf, psinf) = ZU el € [0, 2m).
lez
Similar to Lemma 2.1, we obtain when [ > 0,

Ulp) =c1p' +cp™!, m<p<R,
l
Uilp) = Un(r) (L) 0<p<m,
1

where ¢y, co are arbitrary constants.
Set

oo

SJ(¢Z ]fj +¢l+jf )

j=1

(kg — k1)ky
B = 227T2 1 2[;5 (1/11 ]fl 'L/Jijfj).

Hence, by the transmission and boundary conditions on dB; and 052, we have

(k2 — k1)

A:=—
S om2p,

art + oyt = Ui(r) = A4, on 0B,
kg (Cﬂ?"iil — Cglrflil) - klUl(Tl)% = Ba on aBla
R + RV =0, on 01,

that is,

7(]'{}2 — kl)T%61 —+ (kl + kg)Tl_lCQ = klA — TTIB, on 6‘B1,
Rlcl + RilCQ =0, on 89,

which gives

c1 = (klA - —B)
o= H(- ) (- 15)
Hence,
Ul(p)—%(klA—%B)(R R! ) m<p<R
Since
kA — TTlB _ (k;w;r]?) f: Si( = (er + ko) f = (kr = o)t -5)
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it follows that for r; < p < R,

= M i %(Rl ) i ( (k1 + k2)thi—p fp + (k1 k2)wl+pf—p)eil9

Similarly, when [ < 0, we have, for r; < p < R,

i Ui(p)e'™®

I=—1

,(k2 k1) — T l _ >

Tontr 1:2;1 T(R ;S ( (k1 + k2)igp f-p — (k2 — k1)t— pfp)
_(kg — kl) > Tz — > —il@
. ; TR ; o (b + k2o ripfp — (k2 — k)i fy ) e,
Thus, we obtain Lemma 2.2. O

Therefore, we have the series expression of dA g, (¢) thanks to Lemma 2.2, which
is
ou

(18) dAp, (V) (f)(Rcosf, Rsinf) = 8p

Z el € [0, 2m),

IEZ

where A\g := 0 and for [ >0

Ay = kl (R’I‘l lTl Z S { kl —+ kQ)’(/) l+;0f— (kQ - kl)w—l—pfp:|a
p=1
N Bk g )T S, | (K + k —k
L= (Rry) lz:l [ 1+ k) Uipfp — (k2 1)¢l+pf—p]~
p=

Then, with the help of the expression of dA g, (1)), we can estimate its norm. The
method used in next lemma is similar to that of [15]. Lemma 2.3 and Corollary 1
below will not be used in the proof of Theorem 1.1. But it is interesting to see how
the norm of the linearized Dirichlet-to-Neumann map depends on conductivities
and radii.

Lemma 2.3. The bounded operator dAp, (1)) : HY/?(0Q) — H~Y2(0Q) satisfies
the following estimate:
(19)

25/2Cky — k Rry)~!
1A By () () L1750 < = kol (Rr)

(k1 + k2)(k2 + D)7 (1 — (r1/R)?)

N . 1/2
: [Zl (%)2 Z‘:p (%1)21’ ([V—1p® + 10—t + [1pl* + [Y14p]%)

=1 p=

X fll /2 a0)) »

where C is explicitly given in (20). Note that C remains bounded as ko — 0.
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Proof. First by (9) we have

21|57t | = ‘er;l (k2 = ) (ks = V)rbrg! = (ks + ko) (ko + 17174 )

+ R (= (k= ko) (b + Drbrg 4 (b + ko) ke — D 'rh)

R l
= (k1 + ko) (k2 + 1) (T>
1
klfkg 71 21 klfkgk‘gf]. T1 2 kg*]. T2 21
1- ] 1) - A
x ki + ko (R) +k‘1+k‘2k‘2+1<7‘2> k’g—‘rl(R)

7k‘1*k‘2(ﬁ>21+/€1*k2k2*1 T 2t kz*l( )
ki +ky \R ki+kokos+1 \ro ko+1\R

which means that there exists a sufficiently large iy € Z*, such that for [ > I,

Noticed that

lim =
l— 400

)

1_7411—1412 (ﬁ)21+k1—k2k2—1 r1 21_k2—1<r2)21 >1
ki+ks \R ki +koko+1 \ry ko +1\R 2"
Let
co := min L el (ri)Ql—}—kl_kaQ_l n 2l_k2_1(m>2l
0 1<I<lp ki+ ko \R ki+koko+1 \ry ks +1\R ’

and for Sfl = 0 for all [ > 0, we know ¢y > 0. Setting

(20) C := (min{1/2, co}) 7},
we obtain 01 l
1
S| < — .
151l < (ki + ko) (kz + 1) (R>

Similarly, we can prove

l ™ l 1
ITi| = T+ ko (E) 1— ((ky — ko) /(k1 + k2))(r1/R)%

< l 1 (1;1)1
_k1+k21—(7’1/R)2 R ’
So, it follows from (18) that
2C|k1 —ka|  (Rr1)~'I( rl/R
k)t s O (L /B)?) Z (%) (Waipll ol + il o),

(e o]

A1) <

for any positive integer [. Hence, we have

48, (4 D)-172 0 = 2TR (14 E2) 72N < 20R Y17 (] + A2
IEZ =1

< 8C2|k1 — k2|2 1 _2 il (7”1)
= (k1 + k2)? (k2 + 1)2m3 (1— T1/R )? =

o 2
x [Zp (52 Qmtopll ol + [ripll =l + [ llfol + sl )|

p=1
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By the Cauchy-Schwarz inequality, we then derive

00 2
[Zp () (0-r-pllfol + 1orapllfpl + 11l + |wl+p||f_p|>]

p=1

< [Z ( ) |"/} - P|2+|/(/) l+p|2+|'¢/}l p|2+|’(/)l+p| )‘|

[Z (fol? + 1 f=p® + [ fol* + | =] )]

= [Zp(;{) (O e A e L R T ]QZIPIprlz

p=1 pEZ

IN

T 7200y -

s} - 2%
[ZP (ﬁ) (|¢7l7p|2 + |1/}fl+p|2 + |1/’lfp|2 + |wl+p|2)
p=1
which concludes the proof of this lemma. O
Corollary 1. We have the estimate

16C k1 — k2| 1 T1/2 _SH’l/)HL? on
T2(ky + ka) (ka2 + 1) (1 — (r1/R)%)% ! (@50

where C is the constant obtained in Lemma 2.5.

ldAB, (¥)].z <

Proof. First note that

t
i < Z | = ||7/1||L2(631) and Z]tﬂ BETIETER Vit <1.

leZ Jj=1

Hence, it follows from (19) that

25/2C|]€1 - k2| R’f’l \/7 r1
ldAs, Wl < G /R ||¢HL2<331>ZJ( )’

_ 16Clk — k| (Rr)" P /R
(kA ko) (ko + 1)y/7 (1 — (r1/R)?) (1 — (r1/R)?)? 191l L2(o81)
16C] k1 — kol | Vs
- (k1 + ko) (ko +1)y/7 (1 — (r1/R)?)3 371 Il z208,) »
and the corollary is established. 0

2.3. Proof of Theorem 1.1. In this subsection, we will give a detailed proof of
Theorem 1.1 based on the method in [15]. Firstly, we need the following two useful
lemmas.

Lemma 2.4. For any j € Z, we define g; := €% on 00. Then

(21) / dAB1 (w)(gil)gipds = 4(k2 - k1)2T;15lpr$(l+P)v
o0

(22) /ag dA g, (V) (921)9pdS = —4(ka — k1) (k2 + k)17 "SiTpth50—p)s

where l,p are arbitrary integers.
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Proof. We prove this lemma by straightforward calculations. We begin with the
case of f = g;, g = gp. By (18), it yields

27

00 dABl (¢) (gl)gpds =R dABl ('(/J) (gl)gpdﬁ = 27TR/\_p.
0

Then, in view of the formula of )\;, we have
2 2 -1
Aop = (k2 = k)" (Br) S0 ),

. 27 10 i .
since here f; = fo " elPe=i9d9 = 2. In other words, we have derived

/ dABl (w)(gl)gpdS = 27TR)\,p = 4(]{72 — k1)27‘17151Tp’(/J,(l+p).
o0

Next we consider the case where f = g_;, g = g_,. Similarly, by (18), we have
that

27
/ dAp, (0)(g-1)g-pdS = R / A0, (0)(9-1)pdh = 27 R,
onN 0

and
2
Ap = ;(/@ — k1)*(Rr1) ' S Tptusp,

which immediately implies
/ dAg, (1)(g-1)g—pdS = 21 RN, = 4(ka — k1)*r7 ' SiTpibr1p-
o

In conclusion, we have established (21). The relation (22) can be derived similarly.
O

Now we turn to the estimates of 1;’s.

Lemma 2.5. We can show that

R3 R4
0| < C(ka, kz);\\d/\Bl Wl [aa| < Ok, k2)— | dA, ()|l
1

and
C(ky, ko) RHT
Wﬂlﬁ%ﬁ“d/\&(wmx, Vix>2,
1
where
4 x 1017 (ko + k1)2(ko + 1
(23) Olhy ) = 20T 0 2 1)

(k2 — k1)

Proof. For any integer j, we define g; := €% on 9€). Note that
loxill o) = (L+12)4(aR)z, Vi1,

By the duality property, we have

/m dAg, (¥)(97)g9;dS| < |[dAp, (w)(gj)HH—l/Q(BQ)||gj’||H1/2(BQ)

< ||dA g, (). 211951l 11200 1957 1L 111/ 062
= 27(1+ j2) 5 (1 + j*) 1 R|dAp, (¥)|| 2,
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where j,j’ # 0 are arbitrary integers Moreover, we can estimate

2 (kl + kg)(kg + 1) |I€1 k2| ‘k’g — 1| T1 2
< — 1
|l|_ l 7"1 <]€1+]€2 kg—l—l( ) +

e () G

Ak +k2l)(k2 +1) <R>l

1
which gives us

12k +k)(k2+1) (R
(24) e l ( )

and

l l
1 ki+k (R by — k A 2k + ko) (R

(25) - mith RY 2 (%) < Akt ks) (R
T3 l 1 ki + ks \R I -

Then, in (22), we take [ = p =1 and obtain

ol = x !
0 4|ky — k1|(k2 + k1) S1Th

< 2fﬂ (k1 —l—k’g)(kg-i—l)

/ dAp, (w(gl)gldS‘

< 2 Bl D R o )l
Similarly, in (22), choosing [ =2,p =1 gives
| = n 5| s )= ds\
U7 Uky — ky|(ka + k1) TuSs | Joq DV W/MIE2)T71
105 7(ky + ko) (ko + 1) R*
th +k)the 1 1) T dAn, ()]

k1 — ko
Next, letting I = p > 1 in (21), we have
1 1
[Vl = e — )2 ST, /a dAp, (¢)(9iz)gizd5"

27 (kg + k1)? (ko + 1) (14 12)z R¥H1
= (ky — k1)2 RIS |[dAB, (V)]

421 (kg + k1)? (ke +1) 1 R2l+1
- (kg — k1)2 A 21 1 [dA B, ()]

Likewise, taking [ > 1,p =1+ 1 in (21) yields

1 1 /
dAp, s
4k —F1) SiTirn | e 8 (V)(9+1)9+41)

o7 (kg + k1)2(ka + 1) (1 +12)3 (1 4 (1 + 1)2)5 REIHDHL

|"/J$(2l+1)| =

=T - k)? (+1) -t [4he, (4)

4 x 1Oi7r(k2 + k1) (ke + 1) 1 RCIHL+1
B (k= k1)? 2(1+1) ;D=

4 x 10%7r(k2 + k)2 (ke +1) 1 R(21+1)+
- 1dA B, (V)] -
(k2 — k1) 20+ 1,201
1

rlldAB, (¥)].«

15
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Hence, we can choose

22 (ky + ko) (ky + 1) 1057 (ky + ko) (ko + 1)

C(ki, ko) = max{

k1 — k2 ’ k1 — ko 7
A2 (kg + k1)2(ka + 1) 4 x 1037 (ky + k1)2(ka + 1)
(=R (k2 = k1)?
A x 1097 (kg + k)2 (k2 + 1)
(k2 — k1)? 7

where v/2 = 47 < 107 and |k2 — k2| < (ks + k1)2 used. The proof is completed. [
By lemmas established above, we are ready to prove Theorem 1.1 similar to [15].

Proof of Theorem 1.1. Repeating the argument used in the proof of [15, Theo-
rem 1.1], we can prove this theorem. For readers’ convenience, we give a sketch of
the argument here. We first consider the case that A := ||[dAg, (¢)||% is sufficiently
small. In this situation, combining Lemma 2.5, estimate Y., (1+ 12)m [ > <
%M 2 and following the computation on [15, page 10], we can derive

1/2mt71/2m+1]

(26) S l? < F(t) = 5C(ka, o) (Rfry) 2LE/m) A+t

ez

where 0 < t < 2 x 37 2™7M?r!. Furthermore, one can show that there exists #,
satisfying 0 < tp < 2 X 3*2m7rM2r1_1 such that

F (to) < CoM?ry " (log(R/r1))*™ (~log A) ™,
where (s is explicitly given by
Cy = 5C(ky, ko) + 2™+ 7r
(see [15, (3.6)]). Next, it follows immediately from (26) that

1/2
1 2 ! 1/2
2 = e — < e—
(KA PRI <2ﬂ E |91] ) < (%F(to))

I1€Z
1/2 m
< <C2> M (ln R) (=InA)™™
27 1

for 0 < A < min{Ap, 1}, where A is the same constant obtained in [15, page 11].
On the other hand, in the case Ay < A < 1, we can use the formula of Ay (see [15,
page 11]) to derive that

¥l 208y) < 1l am @B, <M
R

m
< (—=InAy)" M(—InA)™™ < Cy"M <ln ) (=InA)™™,
T1
where C3 = (—1Ine)/(In Xo) + 16. Recall that X, is the constant satisfying Xo <
R/ri. We thus obtain the estimate (3).
Now we would like to pay attention to how the constant C in (3) is estimated.
Note that

C= max{(C’g/Zw)l/Q,C’gm}
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with
. e\ 9 s om]? 1
(27) ¢ := min { [(%) 5o (InXo) m] 5 (0
and C(kq, ko) is given in (23). From (23), we see that

_ 80 x 101272 (kg + k)% (ko + 1)? L 9bmtl

e (kg — k1)*

Now, if
ko > max{23m+%ﬂ'_%, ((—lnc)/(lnXo) + 16>m} =k,

then

80 x 10Y/2(ky + k)4
(k2 — k1)*

Cgmg(k2+1)<(02/27()1/2 and CQ§27T2' (]f2+1)2.

Hence, we can obtain

o< Ax 5210372 (kg 4 kq)2
(k2 — k1)?

(1{32 + 1).

2
Since Eiiffi; is monotonically decreasing in k3, we immediately conclude that

o< b 5%19%7r%(l?: + k)2
(k — ky)?

(k2+1) for k2>12'.
O

Remark 5. If there is no lower bound assumption for k5 in the proof of Theorem
1.1, we can let ko = 1 and, therefore, ro = R. We observe that the solution in
Lemma 2.1 is the same as in the two-layer case [15]. Estimate (24) becomes

E e
|Sl| - l T1 ’

which implies that C(k1, k2) is same as the estimate in [15]. In other words, in this
situation we obtain the same estimates as those in [15].

3. The case of n-layer inclusions. In this section, we set Q := Bg(0), B; :=
B, (0),0<r;<rg<-- <71, <R,

Lp, By, B, U0 := V- ((k1XB, + kaXB\B, T+ EnXBo\Bn_y + XBr\B.)V0),
where k; > 0, and k; # 1,74 =1,2,--- ,n. Now the Dirichlet boundary problem is

{ LBth,»--,BnuO =0 in Q,

(28) up = f on 0.

From the method used in Section 2, we know that the key step is to evaluate the
determinant of the matrix for the linear system derived from the method of Fourier
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series, i.e.
Rl R*l — 1
Ty + Ty = 5-fi,

rlaoy +rteg —rlas —rilzy, = 0,

l -1 l -1 _
knt1rn 1 — kngary, ‘2 — knrpxs + kpr ' = 0,

l -1 l - _
(29) Tn—173 + Th—1%4a =Ty 15 —Tp_1T6 = 07

kprl @3 —knrotiay — kp_yr! Fep_qr? 0

nTn—123 nTp_1T4 n—1Tp_1%5 + Kkp—17,_1%6 ;

l -1 _
— (kg — k1)rixon—1 + (k1 + k2)r{ ‘2o, = 0,

where we choose k,, ;1 = 1. Denoting the determinant in (29) by D,,(R', R~!), that
is,

D, (R, R7Y) =
R! R 0 0 0 0
rﬁl r;l —rpt —rgl 0 0
kntars, —knﬂr;l — k1t knrgl 0 0
0 0 rho b, 0 0
0 0 kot —knri ! 0 0
0 0 0 0 e —7h —ry
0 0 0 0 e —kaorh keary!
0 0 0 0 v —(ky = k)t (B4 ko)t

Then we can show that

Theorem 3.1. The determinant D, (R', R™") satisfies the following bound:

(30) | D (R, BT] < 27 (hy + ko) (Ko + ks) -+ (ki + Fing1) X',

where X = %.

Proof. We prove (30) by induction. Firstly, calculating Dy, Do, D3 directly, we have
Dy (R, R7Y) = (ky + ko) R (ko — ky)R™UL,

Dy(R',R7")

= R'rg! (= (ka + ko)rh(ky + ko)rr! = (kz — ka)rg" = (ko — ka)r)

— R (= (ks = Ra)rh (ks + )i = ko + k) = (ks — ku)rd)

= R'ry ' Dy (— (ko + ka)rh, (ka — ks)ry') — R Dy (= (ka — ks)rh, (ko + ks)ry '),
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Ds(R', R
= Rirs? ( — (ks + k4)rgr;l( — (ko + k3) (k1 + ka)rbrit — (ko — ks) — (ka — k1)ry 'r
~ (ks — k4)r3_lrl2< — (ks — ks) (k1 + ka)rhry! — (ko + ks) — (k2 — ki)ry 't
- R—lré,( — (ks — ka)ryry! ( — (2 + ks) (k1 + ka)rbryt — (ko — ks) — (ko — ki)ry '
= (ks + Ra)rs "7 (= (2 = ko) (b + Ra)rhry ! = (ko + Ka) — (k2 — ka)ry '}
= R'r3'Da(— (ks + ka)rh, (ks — ka)rs") — R™'rhDo(— (ks — ka)rs, (ks + ka)r3 ).
In general, we can show the recurrence formula:
Dn(RL,R™Y =R'r "Dy 1 (—(kn 4 k1)l (kp — kg1 )
— R, Dy (—(kn = k1)l (B + k) h).

To establish (30), it is easy to see that

(31)

e ()] <20 X!

IDy| = (k1 + ko) X! {1 -
For D5, we have
|Da| = ‘RlT{lDl(*U% + ka)ry, (k2 — ks)ry ') — R™'ry Dy (—(ka — ka)ry, (ks + ks)TSl)‘
< |R'rz ! Da(= (ks + ka)rh, (ks = ka)rg )| + [B'rhDa(= (ks = ka)r, (ha + ko)rs )|

(k2 + ks)T;l
7

1

< Rl’l";l . 2(/431 + k‘z) ( + RilTlg . 2(]61 + k’z)

ko + kg)?"lg
ry
< A(ky + ko) (k2 + k3) X'
By induction and using (31), we obtain

|Dal < 27 (ks + ko) (ka + ka) - (ki + K1) X',

and hence the proof. O

Proof of Theorem 1.2. Combining (30) with k,+1 = 1 and the definition of S
in (9) gives
1 . |Dn| < 2"72(k1 —+ kg)(kg + kg) cee (kn + 1)Xl

B I ’

which is used to replace (24). Estimate (25) remains unchanged. Following the
proof of Lemma 2.5, we can derive similar estimates as in Lemma 2.5 except that

C(kq, ko) is replaced by

Cn(k‘g + k‘l)z(k‘?, + k‘g) s (kn + 1)
(k2 — k1)? 7

C(klak27 e 7kn) =

where C,, is a constant number depends only on n. The rest of the proof of The-
orem 1.2 is similar to that of Theorem 1.1. The only modification is that C5 now
is given by Co = 5C (k1, ko, -+ , kn)? 4+ 26™*T1x. Observe that in the proof of The-
orem 1.1, we estimate Cy, C'5 in terms of ko + 1. Here, ks + 1 is replaced by
(ks + k2) - (kn +1). 0
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4. Conclusion. In this paper, we establish the stability estimates of the linearized
problems for the inverse three-layer and n-layer inclusions problems. Our first result
is the stability estimate for the case of three-layer inclusions. The estimate demon-
strates that the stability deteriorates when the unknown inclusion is hidden deeply
inside the domain or the conductivity outside of the inclusion is large. Following
the same strategy, we also prove a similar estimate for the case of n-layer inclusions
in which the explicit dependence of constant on conductivities k;’s is derived. The
estimate shows the phenomenon of deteriorating stability when the conductivity of
any layer outside of the unknown inclusion increases. Moreover, in our estimates,
like the main conclusion of [15], the influence of the depth of the unknown inclusion
in the stability estimate is also observed.
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