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Abstract. In this note, we classify solutions to a class of Monge-Ampère equations
whose right hand side may be degenerate or singular in the half space. Solutions to these
equations are special solutions to a class of fourth order equations, including the affine
maximal hypersurface equation, in the half space. Both the Dirichlet boundary value
and Neumann boundary value cases are considered.

1. Introduction

The main purpose of this paper is to investigate Liouville theorems for the following
class of Monge-Ampère equations

(1.1) detD2u = (a+ bxn)
α, α ∈ R

in the half space Rn
+ := {(x′, xn) ∈ Rn : xn > 0}, where a ≥ 0 and b > 0. A motivation to

consider (1.1) comes from the study of the following class of fourth order equations

(1.2) U ijwij = 0,

where (U ij) denotes the cofactor matrix of (uij) and w = (detD2u)−θ, θ ∈ R (θ ̸= 0). In
particular, when θ = n+1

n+2
, it is the affine mean curvature equation in affine geometry [Ch]

and when θ = 1, it is Abreu’s equation [Ab]. A first breakthrough for the study of this
class of equations is the Chern conjecture, also known as the affine Bernstein theorem
now, solved by Trudinger-Wang [TW1], which says an entire strictly, uniformly convex
solution to (1.2) on R2 when θ = 3

4
must be a quadratic polynomial. Later, it is shown

that the Bernstein theorem also holds when 3
4
< θ ≤ 1 [JL, Z] and θ < 0 [TW2]. One

of our motivations of the study on (1.1) is for the affine maximal hypersurfaces in the
half space. In a subsequent work, we are going to study the Liouville type theorem (1.2)
under the boundary condition

(1.3)

 u =
1

2
|x′|2 on ∂Rn

+,

w = 1 on ∂Rn
+.
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One can easily find solutions that are not quadratic polynomials. In particular, solutions
to (1.1) with α = −1

θ
, a = b = 1 give a class of special solutions to (1.2), (1.3). The

classification of all solutions to (1.1) can help us to study (1.2), (1.3). We also expect
this classification will be useful in the blow-up analysis in the investigation of boundary
regularity of the affine maximal surface equation as well as the Monge-Ampère equation
[S1, TW3, JT2].

When a = 0, (1.1) may be degenerate (α > 0) or singular (α < 0) on ∂Rn
+. When α ≥ 0,

Savin [S1, S2] proved that if the Dirichlet boundary value u(x′, 0) = 1
2
|x′|2 is assigned,

any convex continuous solution to (1.1) with the growth condition u = O(|x|3+α−ε) as
|x| → +∞ must be the form of

u(Ax) = Bxn +
1

2
|x′|2 + x2+α

n

(2 + α)(1 + α)

for some sliding A along xn = 0, and some constant B. In particular, when α = 0,
the solution is a quadratic polynomial. This result was later extended to the singular
case with α ∈ (−1, 0) by Savin and Zhang [SZ]. There are examples show that the
growth condition at infinity is necessary in general dimensions. When α = −1, the local
asymptotic behavior of the solution near the boundary in dimension two was studied in
[Ru].

In this paper, we concentrate on the two dimensional case. Our first result classifies all
solutions to (1.1) with Dirichlet condition in dimension two when α > −2.

Theorem 1.1. Let u(x, y) ∈ C2(R2
+) ∩ C(R2

+) be a convex solution to

(1.4)


detD2u = (a+ by)α in R2

+,

u(x, 0) =
1

2
x2 on ∂R2

+,

where a ≥ 0, b > 0, and α > −2. Then there exist A, B, C ∈ R with A ≥ 0 such that

(1.5) u(x, y) =



(b− aA)(a+ by)2+α

b3(1 + α)(2 + α)
+

A(a+ by)3+α

b3(2 + α)(3 + α)
−By

− (b− aA)a2+α

b3(1 + α)(2 + α)
− Aa3+α

b3(2 + α)(3 + α)
+

(x− Cy)2

2(1 + Ay)
, α ̸= −1;

b− aA

b3
(a+ by) ln(a+ by) +

A

2b
y2 −By

− (b− aA)a ln a

b3
+

(x− Cy)2

2(1 + Ay)
, α = −1.

Remark 1.2.

(1) When a = 0, we improve the exponent in the results of [S1, S2, SZ] to α > −2
in two dimensional case. This exponent is sharp since (1.4) admits no solutions
continuous up to the boundary for α ≤ −2 (see details in Remark 3.2). When
α = 0, Theorem 1.1 can be also found in [Fi, Page 145-148].
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(2) If we assume u = O(|(x, y)|3+α−ε) as |(x, y)| → +∞, then we have that A must be
0 in (1.5). Hence we can recover some of the results in [S2, SZ] in dimension two.

The main idea to prove Theorem 1.1 is as follows. Let u(x, y) be a strictly convex C2

solution to (1.1). Then its partial Legendre transform (see definition in Section 3) in the
x-variable is

(1.6) u⋆(ξ, η) = xux(x, y)− u(x, y),

where (ξ, η) = (ux, y). It is easy to check that u⋆ is a solution to

(1.7) (a+ bη)αu⋆
ξξ + u⋆

ηη = 0.

When a = 0, this Grushin type equation was studied in [CS]. By a change of variables
v(x1, x2) = u⋆ (x1, f(x2)), where

ξ = x1, η = f(x2) = b
−α
α+2

(
α + 2

2
x2

) 2
α+2

− a

b
,

we know that v solves the following divergence type equation

(1.8) div
(
x

α
α+2

2 ∇v
)
= 0,

which may be degenerate or singular. A Liouville theorem for (1.8) on the upper half
space has been obtained recently by [WZ]. However, in our case, the domain may shift
after the transformations. Hence, we need to extend the result in [WZ] to general upper
half spaces. In this situation, we may consider the solution of (1.8) in the weak sense. A
result of [YD] will also be used in the proof of our extension.

The above approach also works for the case of Neumann problem. Recently, Jhaveri
and Savin [JS] obtained a Liouville theorem for the following degenerate Monge-Ampère
equation with Neumann boundary value

detD2u =
xα
n

uβ
n

in {xn > 0} and un = 0 on {x0 = 0}

when they investigate the regularity of optimal transports, where α, β ≥ 0. They show
that that any convex solution (viscosity, Alexandrov, and Brenier solutions are equivalent
in this case) must be

u(x) = p0 + p′ · x′ + P ′x′ · x′ + pnx
1+α+1

β+1
n

for some p0 ∈ R, p′ ∈ Rn−1, positive definite matrix P ′, and constant pn > 0. The case of
α = β = 0 is also included in [JT1]. Next, we partially extend these results in dimension
two, but with a more general α, i.e. α > −1.

Theorem 1.3. Let u(x, y) ∈ C2(R2
+) ∩ C1(R2

+) be a convex solution to

(1.9)

{
detD2u = yα in R2

+,

uy(x, 0) = 0 on ∂R2
+,
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where α > −1. Then there exist a constant A > 0, and a linear function l(x) such that

(1.10) u(x, y) =
1

2A
x2 +

A

(2 + α)(1 + α)
y2+α + l(x).

Remark 1.4.

(1) When α = 0, Theorem 1.3 is included in [JT1, Theorem 1.1]. In fact, it is proved
in [JT1] that any convex solution to Neumann problem of Monge-Ampère equations
in the half plane must be a quadratic polynomial for two dimensional case, and the
conclusion still holds for dimension n ≥ 3 if either the boundary value is zero or
the solution restricted on some n− 2 dimensional subspace is bounded from above
by a quadratic function. Here we extend this to the degenerate case.

(2) The same conclusions in Theorem 1.1 and Theorem 1.3 are also true for Alexan-
drov or viscosity solutions, it suffices to prove first that those weak solutions should
be classical, which use the similar arguments as in [S2, SZ, JS, JT1, JX], etc. But
to make our ideas clearly, we only consider classical convex solutions in Theorem
1.1 and Theorem 1.3.

Finally, we turn to the Liouville theorem on the whole space. The celebrated result
of Jörgens [Jö], Calabi [Ca] and Pogorelov [Po] states that any entire classical convex
solution to the Monge-Ampère equation

detD2u = 1 in Rn

must be a quadratic polynomial. Caffarelli [Caf2] extended this result to viscosity so-
lutions (the proof can be also found in [CL, Theorem 1.1]). For another direction of
extension, Jin and Xiong [JX] studied the class of equations

(1.11) detD2u(x, y) = |y|α

on the whole plane R2, and established a Liouville theorem.

Theorem 1.5 ([JX, Theorem 1.1]). Let u(x, y) be convex generalized (or Alexandrov)
solution to (1.11) with α > −1. Then there exist some constants A > 0, B ∈ R and a
linear function l(x, y) such that

(1.12) u(x, y) =
1

2A
x2 +

AB2

2
y2 +Bxy +

A

(2 + α)(1 + α)
|y|2+α + l(x, y).

At the end of this paper, we use the approach above to give a new proof of this result
in the case of α ≥ 0. The main idea of Jin and Xiong in [JX] is that using the partial
Legendre transform to change (1.11) into a class of linearized Monge-Ampère equations,
then applying the Harnack inequality for linearized Monge-Ampère equations derived by
Caffarelli and Gutiérrez [CG] and the scaling argument to classify all solutions of the
transformed equation. Our new proof is similar to Theorem 1.1 and Theorem 1.3.

The structure of this paper is as follows. In Section 2, we derive the Liouville theorems
for a class of linear elliptic equations in divergence form including (1.8). Then we prove
Theorem 1.1, Theorem 1.3 and Theorem 1.5 in Section 3.
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2. Liouville theorems for linear elliptic equations in divergence form

In this section, we establish a Liouville theorem for a class of linear elliptic equations
in divergence form, which may be degenerate or singular cases, in the half space. This
theorem can be viewed as an extension of [WZ, Theorem 1.1]. The proof is very similar
to [WZ, Theorem 1.1], where the method of moving sphere will be used. Denote Rn

l =
{x = (x′, xn) : x

′ ∈ Rn−1, xn > l} for l ≥ 0.

Theorem 2.1. For n ≥ 2 and a ∈ R, let u ∈ C2(Rn
l ) ∩ C0(Rn

l ) be a solution to{
div (xa

n∇u) = 0, u > −C0 in Rn
l ,

u(x′, l) = 0, on Rn−1 × {xn = l},

where l ≥ 0 and C0 > 0. Then u = C∗ (x
1−a
n − l1−a) for some nonnegative constant C∗.

In particular, when a ≥ 1, C∗ = 0.

Remark 2.2. When l = 0, Theorem 2.1 is just the Theorem 1.1 of [WZ].

Proof of Theorem 2.1. We extend u to Rn
+ by letting u (x′, xn) = 0 in Rn−1 × [0, l), and

denote it by ũ. Hence, we know that ũ(x) ∈ C
(
Rn

+

)
.

Firstly, we show that ũ is weakly differentiable in Rn
+ and

∇ũ =

{
∇u, Rn

l ,

0, Rn−1 × (0, l).

Indeed, ∀φ ∈ C∞
0 (Rn

+), by integration by parts, we have∫
Rn
+

ũ ∂xi
φ dx =

∫
Rn−1×(l,+∞)

u ∂xi
φ dx = −

∫
Rn−1×(l,+∞)

∂xi
uφ dx

for i ≤ n− 1 and∫
Rn
+

ũ ∂xnφ dx =

∫
Rn−1×(l,+∞)

u ∂xnφ dx

= −
∫
Rn−1×{xn=l}

uφ dx′ −
∫
Rn−1×(l,+∞)

∂xnuφ dx

= −
∫
Rn−1×(l,+∞)

∂xnuφ dx,

where we used u(x′, l) = 0 in the last equality.
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Next, we show that ũ ∈ W 1,2
loc

(
Rn

+

)
∩ C

(
Rn

+

)
is a weak solution to

(2.1)

{
div (xa

n∇ũ) = 0, ũ > −C0 in Rn
+,

ũ = 0, on ∂Rn
+.

Indeed, for any φ ∈ C∞
0 (Rn

+), there is∫
Rn
+

div (xa
n∇ũ)φ dx =

∫
Rn−1×(l,+∞)

div (xa
n∇ũ)φ dx+

∫
Rn−1×(0,l)

div (xa
n∇ũ)φ dx

= −
∫
Rn−1×(l,+∞)

xa
n∇u · ∇φ dx−

∫
Rn−1×{xn=l}

∂xnuφ dx′

=

∫
Rn−1×(l,+∞)

div (xa
n∇u)φ dx = 0.

It’s clear that ũ > −C0 in Rn
+ and ũ = 0 on ∂Rn

+. Hence, ũ ∈ W 1,2
loc

(
Rn

+

)
∩ C

(
Rn

+

)
is a

weak solution to (2.1).
For any fixed x ∈ ∂Rn

+ and λ > 0, by Kelvin transformation

yx,λ = x+
λ2(y − x)

|y − x|2
, ∀y ∈ Rn

+,

we define

ũx,λ(y) =
λn−2+a

|y − x|n−2+a
ũ
(
yx,λ
)
, ∀y ∈ Rn

+.

By [YD, Theorem 2.1], we know that ũx,λ(y) ∈ W 1,2
loc

(
Rn

+

)
satisfies div (yan∇ũx,λ) = 0 in

the weak sense, i.e. ũx,λ satisfies the same equation.
For a > 2 − n, we consider ū = ũ + C0 instead of ũ. Then lim

|y|→0
ū(x + y) = C0 for

x ∈ ∂Rn
+. Let

wx,λ(y) = ū(y)− ūx,λ(y), ∀ y ∈ Rn
+.

We have

lim
|y|→+∞

wx,λ(y) ≥ 0− lim
|y|→+∞

λn−2+a

|y − x|n−2+a
ū

(
x+

λ2(y − x)

|y − x|2

)
= 0.

By the maximum principle, we have ũx,λ(y) ≤ ũ(y), ∀ y ∈ Rn
+\Bλ(x). Hence by Lemma

2.3 below, we know that ũ(y′, yn) = ũ(yn). Then solving the corresponding ODE gives us
the desired result.

For a < 2−n, we consider ū = ũ−1 instead of ũ. Then lim
|y|→0

ū(x+y) = −1 for x ∈ ∂Rn
+.

Let

wx,λ(y) = ū(y)− ūx,λ(y), ∀ y ∈ Rn
+.
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We have

lim
|y|→+∞

wx,λ(y) = lim
|y|→+∞

ū(y)− lim
|y|→+∞

|y − x|2

λ2
ū

(
x+

λ2(y − x)

|y − x|2

)
≥ −1− C0 + lim

|y|→+∞

|y − x|2

λ2

= +∞.

Again by the maximum principle, we have ũx,λ(y) ≤ ũ(y), ∀ y ∈ Rn
+\Bλ(x). Similarly, by

Lemma 2.3, we also have ũ(y′, yn) = ũ(yn), then we can obtain the conclusion.
As for a = 2− n, we need to modify ũx,λ(y) to be

ũx,λ(y) = ũ
(
yx,λ
)
+ ln

λ

|y − x|
.

Then by similar arguments, we also have ũx,λ(y) ≤ ũ(y), ∀ y ∈ Rn
+\Bλ(x). The result

follows by applying Lemma 2.4. □

In the proof of Theorem 2.1, we used two crucial lemmas of moving spheres [WZ]. For
readers’ convenience, we include a proof here, which is very similar to the proof of [Li,
Lemma 5.7].

Lemma 2.3 ([WZ, Lemma 3.3]). Assume f(y) ∈ C0
(
Rn

+

)
, n ≥ 2, and τ ∈ R. Suppose

(2.2)

(
λ

|y − x|

)τ

f

(
x+

λ2(y − x)

|y − x|2

)
≤ f(y)

for λ > 0, x ∈ ∂Rn
+, y ∈ Rn

+ satisfying |y − x| ≥ λ. Then

f(y) = f (y′, yn) = f (0′, yn) , ∀y = (y′, yn) ∈ Rn
+.

Proof. For any fixed y′, z′ ∈ Rn−1 with y′ ̸= z′ and yn > 0, we denote y = (y′, yn) and
z = (z′, zn), where zn = b−1

b
yn for b > 1. Then we have

x = y + b(z − y) ∈ ∂Rn
+

and

z = x+
λ2(y − x)

|y − x|2
,

where λ =
√
|z − x| · |y − x|. By (2.2), we have

(2.3)

(
λ

|y − x|

)τ

f(z) ≤ f(y).

Since

lim
b→+∞

λ

|y − x|
= lim

|x|→∞

√
|z − x|
|y − x|

= 1, lim
b→+∞

zn = lim
b→+∞

b− 1

b
yn = yn.

and f is continuous, we have f(z′, yn) ≤ f(y′, yn). By the arbitrariness of y′ ̸= z′, the
proof is completed. □



8 L. WANG & B. ZHOU

Lemma 2.4. Suppose that f ∈ C0
(
Rn

+

)
satisfies that for all x ∈ ∂Rn

+ and λ > 0,

f(y) ≥ f

(
x+

λ2(y − x)

|y − x|2

)
+ ln

λ

|y − x|
, ∀y ∈ Rn

+\Bλ(x).

Then

f(y) = f (y′, yn) = f (0′, yn) , ∀y = (y′, yn) ∈ Rn
+.

Proof. The proof is the same as Lemma 2.3. It suffices to replace (2.3) by

ln
λ

|y − x|
+ f(z) ≤ f(y).

□

A Liouville theorem for the Neumman boundary value is also derived in [WZ].

Theorem 2.5 ([WZ, Theorem 1.2]). Assume n ≥ 2 and max{−1, 2 − n} < a < 1.
Suppose u(x) ∈ C2

(
Rn

+

)
∩ C1

(
Rn

+

)
satisfies

(2.4)

{
div (xa

n∇u) = 0, u > 0, in Rn
+,

xa
n

∂u
∂xn

= 0 on ∂Rn
+.

Then u = C for some positive constant C. The boundary condition in (2.4) holds in the
following sense:

lim
xn→0+

xa
n

∂u

∂xn

= 0.

Remark 2.6. From the proof of Theorem 1.2 in [WZ], we know that the codition on u
can be weaken to ∂u

∂xi
∈ C

(
Rn

+

)
, i = 1, 2, · · · , n− 1 and xa

n
∂u
∂xn

∈ C
(
Rn

+

)
.

3. Proof of main theorems

In this section, we first derive the new equation under the partial Legendre transform.
Let Ω ⊂ R2 and u(x, y) be a convex function on Ω. The partial Legendre transform in
the x-variable is

(3.1) u⋆(ξ, η) = sup{xξ − u(x, η)},

where the supremum is taken respect to x on the slice η is the fixed constant, namely
for all x such that (x, y) ∈ Ω. This definition is from [Liu]. Hence, when u ∈ C2(Ω) is a
strictly convex function, we will have a injective mapping P satisfying

(3.2) (ξ, η) = P(x, y) := (ux, y) ∈ P(Ω) := Ω⋆.

In this situation, we know that

u⋆(ξ, η) = xux(x, y)− u(x, y).
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Indeed, it just needs u to be strictly convex respect to x-variable [GP]. Then a direct
calculation yields

∂(ξ, η)

∂(x, y)
=

(
uxx uxy

0 1

)
, and

∂(x, y)

∂(ξ, η)
=

(
1

uxx
−uxy

uxx

0 1

)
.

Hence,

u⋆
ξ = x, u⋆

η = −uy,(3.3)

u⋆
ξξ =

1

uxx

, u⋆
ηη = −detD2u

uxx

, u⋆
ξη = −uxy

uxx

.(3.4)

Then if u ∈ C2(Ω) is a strictly convex solution to

detD2u = (a+ bx)α,

we know that u⋆ ∈ C2(Ω⋆) is a solution to

(a+ bη)αu⋆
ξξ + u⋆

ηη = 0.

We will apply the results in Section 2 related to this equation to prove the main theorems.

3.1. The case of Dirichlet boundary value. We use Theorem 2.1 to prove Theorem
1.1. We consider the the partial Legendre transform u⋆ of u on R2

+. First, by [Fi, Theorem
2.19] we know that any solution to (1.4) is strictly convex in R2

+. Note that ξ = ux, η = y
and ux = x on {y = 0} by (1.4), which gives us that P({y = 0}) = {η = 0}. Hence, we

have P
(
R2

+

)
= R2

+. Then if u ∈ C2(R2
+) ∩ C(R2

+) is a strictly convex solution to (1.4),

we have that u⋆ ∈ C2(R2
+) ∩ C(R2

+) is a solution to

(3.5)


(a+ bη)αu⋆

ξξ + u⋆
ηη = 0 in R× (0,+∞),

u⋆(ξ, 0) =
ξ2

2
on R× {0},

where we used the fact that the Legendre transform of x 7→ 1
2
x2 is ξ 7→ 1

2
ξ2. To use

Theorem 2.1, we first need to differentiate (3.5) twice respect to ξ. Hence, we first show
the following lemma:

Lemma 3.1. u⋆
ξξ ∈ C2(R2

+) ∩ C(R2
+).

Proof. It is easy to see that u⋆
ξξ ∈ C2(R2

+). Indeed, for any point (ξ, η) ∈ R× (0,+∞), we
know that there exists a sufficiently small neighborhood of (ξ, η) such that (3.5) becomes a
uniformly elliptic equation with smooth coffecients, then the classical theory of uniformly
elliptic equations gives us that u⋆ is C4 at (ξ, η) (even C∞) [GT], and thus u⋆

ξξ is C2 at
(ξ, η).

Next, we show u⋆
ξξ ∈ C(R2

+). The argument is very similar as Lemm 2.4 in [DS] and
Proposition 3.2 in [JX]. It suffices to prove u⋆

ξξ is continuous at (0, 0), other points on

∂R2
+ are similar. When a > 0, we can see that (3.5) becomes a uniformly elliptic equation

with smooth coffecients in the neighborhood of (0, 0) in R2
+, hence u⋆

ξξ is continuous at
(0, 0). Then it only needs to consider the case for a = 0. For simplicity, we may assume
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b = 1. First we prove that u⋆
ξ is bounded in B+

1 := B1((0, 0)) ∩ R2
+. Since u⋆

ξ ∈ C2(B+
1 )

(we already show u⋆
ξξ ∈ C2(R2

+) in the above), u⋆
ξ satisfies Lu⋆

ξ := ηα(u⋆
ξ)ξξ + (u⋆

ξ)ηη = 0.
We only show u⋆

ξ is bounded. The same argument applied inductively would imply that
the derivatives of u⋆ with respect to ξ of any order are bounded in the neighborhod of
(0, 0), which will imply u⋆

ξξ is continuous at (0, 0).

To establish the bound on u⋆
ξ , we consider z := λ(u⋆)2 + φ2(u⋆

ξ)
2, where λ > 0 is to be

determined later, φ is a cutoff function in B+
2 satisfying φ = 1 in B+

1 , φ = 0 in B+
2 \B+

3/2,

φη = 0 for 0 ≤ η ≤ 1
4
, and |φη| ≤ Cη

α
2 . First we show that Lz ≥ 0 in B+

2 . Indeed, a
direct computation shows that

L(u⋆2) = 2[ηα(u⋆
ξ)

2 + (u⋆
η)

2],

and

L(φ2(u⋆
ξ)

2)) = L(φ2) · (u⋆
ξ)

2 + φ2 · L((u⋆
ξ)

2) + 2(φ2)η · ((u⋆
ξ)

2)η + 2ηα(φ2)ξ · ((u⋆
ξ)

2)ξ

= L(φ2)(u⋆
ξ)

2 + 2φ2[ηα(u⋆
ξξ)

2 + (u⋆
ξη)

2] + 8(φηu
⋆
ξ) · (φu⋆

ξη)

+ 8ηα(φξu
⋆
ξ) · (φu⋆

ξξ),

hence
Lz ≥ 2(ληα + φ2L(φ2)) · (u⋆

ξ)
2 + 2φ2[ηα(u⋆

ξξ)
2 + (u⋆

ξη)
2]

+ 8(φηu
⋆
ξ) · (φu⋆

ξη) + 8ηα(φξu
⋆
ξ) · (φu⋆

ξξ).

Note that
L(φ2) ≥ −C1η

α, |φη| ≤ C1η
α
2 .

By Cauchy’s inequality, we obtain Lz ≥ 0 if λ is suffficiently large. Note that u⋆ is

continous in B+
2 and u⋆(ξ, 0) = ξ2

2
on B+

2 ∩ ∂R2
+. Therefore by the maximum principle,

u⋆
ξ is bounded in B+

1 . Similarly, we have u⋆
ξξ is bounded in B+

1/2, and u⋆
ξξξ is bounded in

B+
1/4 and so on, which implies u⋆

ξξ is continuous at (0, 0). Using the same argument for

other points on ∂R2
+, we have u⋆

ξξ ∈ C(R2
+). Hence, u

⋆
ξξ ∈ C2(R2

+) ∩ C(R2
+). □

Proof of Theorem 1.1. Since Legendre transform does not change the convexity, we have
that u⋆

ξξ ≥ 0. Denote v := u⋆
ξξ − 1. By Lemma 3.1, differentiating (3.5) twice respect to

ξ, we have that v ∈ C2(R2
+) ∩ C(R2

+) and v ≥ −1 solves

(3.6)

{
(a+ bη)αvξξ + vηη = 0 in R× (0,+∞),

v(ξ, 0) = 0 on R× {η = 0}.

Let ξ = x1, η = f(x2) = b
−α
α+2

(
α+2
2
x2

) 2
α+2 − a

b
and

ṽ(x1, x2) = v (x1, f(x2)) .

A direct calculation yields

ṽ11 = vξξ,

ṽ2 = b
−α
α+2

(
α + 2

2
x2

) −α
α+2

vη,
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ṽ22 = − α

α + 2
x−1
2 ṽ2 + (a+ bη)−αvηη.

Note that η = 0 gives us that x2 = 2
b(α+2)

a
α+2
2 . Denote l = 2

b(α+2)
a

α+2
2 . Hence by (3.6),

we know that ṽ ∈ C2(R2
l ) ∩ C(R2

l ) and ṽ ≥ −1 solves

ṽ11 + ṽ22 +
α

α + 2
x−1
2 ṽ2 = 0 in R× (l,+∞),

ṽ(x1, 0) = 0 on R× {x2 = l},

i.e., div
(
x

α
α+2

2 ∇ṽ
)
= 0 in R× (l,+∞),

ṽ(x1, 0) = 0 on R× {x2 = l}.

Applying Theorem 2.1 with n = 2 and a = α
α+2

< 1, we know that ṽ(x1, x2) =

C∗

(
x2

2
α+2 − l

2
α+2

)
for some nonnegative constant C∗. Transforming back to (ξ, η), we

have v(ξ, η) = Aη for some A ≥ 0, i.e., u⋆
ξξ(ξ, η) = 1 + Aη. Then

u⋆(ξ, η) = h1(η) + ξh2(η) +
ξ2

2
(1 + Aη)

for some functions h1, h2 : [0,+∞) → R. Recalling (3.5), we have h1(0) = h2(0) = 0 and

h′′
1(η) + ξh′′

2(η) + (1 + Aη)(a+ bη)α = 0

on R × (0,+∞). This implies that h′′
1(η) + (1 + Aη)(a + bη)α = 0 and h′′

2(η) = 0. By
solving the ODEs, we obtain

u⋆(ξ, η) =



Bη − (b− aA)(a+ bη)2+α

b3(1 + α)(2 + α)
− A(a+ bη)3+α

b3(2 + α)(3 + α)
+ Cξη

+
(b− aA)a2+α

b3(1 + α)(2 + α)
+

Aa3+α

b3(2 + α)(3 + α)
+

ξ2

2
(1 + Aη), α ̸= −1;

Bη − b− aA

b3
(a+ bη) ln(a+ bη)− A

2
η2 + Cξη

+
(b− aA)a ln a

b3
+

ξ2

2
(1 + Aη), α = −1,
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for some constants B,C ∈ R. Recalling that the Legendre transform is an involution on
convex functions, we recover u by taking the partial Legendre transform of u⋆ :

u(x, y) =



(b− aA)(a+ by)2+α

b3(1 + α)(2 + α)
+

A(a+ by)3+α

b3(2 + α)(3 + α)
−By

− (b− aA)a2+α

b3(1 + α)(2 + α)
− Aa3+α

b3(2 + α)(3 + α)
+

(x− Cy)2

2(1 + Ay)
, α ̸= −1;

b− aA

b3
(a+ by) ln(a+ by) +

A

2b
y2 −By

− (b− aA)a ln a

b3
+

(x− Cy)2

2(1 + Ay)
, α = −1.

This gives us a complete classification of all solutions to (1.4). □

Remark 3.2. α > −2 in Theorem 1.1 is sharp since (1.4) has no convex solutions
continuous up to boundary in R2

+ when α ≤ −2. Indeed, if there exists a convex function

u ∈ C2(R2
+) ∩ C(R2

+) solves (1.4), by [S2, Theorem 5.1], we will have a Pogorelov type
estimate

(1− u)uxx ≤ C(max |ux|)
in S1, where Sh = {x ∈ R2

+ : u(x) < u(0) + ∇u(0) · x + h} for h > 0. Since u(x, 0) =
1
2
x2on ∂R2

+, we know that |ux| is bounded in S1 (depends on ∥u∥L∞(S2)). Then there exists
a small c0 > 0 such that uxx ≤ C(∥u∥L∞(S2)) in B+

c0
. Hence, we have

Cuyy ≥ uxxuyy ≥ uxxuyy − u2
xy = yα in B+

c0
,

i.e. in B+
c0
, it holds

u(x, y) ≥


1

C(1 + α)(2 + α)
y2+α +D(x)y + E(x), α < −2,

− 1

C
ln y +D(x)y + E(x), α = −2,

which means that lim
y→0+

u(x, y) = +∞. This contradicts with u ∈ C(R2
+).

3.2. The case of Neumann boundary value. We prove Theorem 1.3 in this section.

Proof of Theorem 1.3. First, we know that u is strictly convex in {y ≥ 0} as in [JS,
Section 4] when α > 0 and by [Fi, Theorem 2.19] when −1 < α ≤ 0, and also by the
classical regularity theory for the Monge-Ampère equation [Fi], we have u ∈ C∞(R2

+).

Similarly as in the last section, we know that if u ∈ C∞(R2
+) ∩ C1(R2

+) is a solution to

(1.9), u⋆ ∈ C∞(R2
+) ∩ C1(R2

+) is a solution to

(3.7)

{
ηαu⋆

ξξ + u⋆
ηη = 0 in R× (0,+∞),

u⋆
η(ξ, 0) = 0 on R× {0}.
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Denote v := u⋆
η, then v ∈ C∞(R2

+) ∩ C(R2
+). Note that v = u⋆

η = −uy by (3.3) and

uy(x, 0) = 0, we have by the strict convexity that v < 0 in R2
+. Differentiating (3.7) once

respect to η and noting that u⋆
ξξ = −ηαvη, we have that v < 0 solves

(3.8)

ηαvξξ + vηη −
α

η
vη = 0 in R× (0,+∞),

v(ξ, 0) = 0 on R× {η = 0}.

Let ξ = x1, η =
(
α+2
2

) 2
α+2 x

2
α+2

2 and

ṽ(x1, x2) = v

(
x1,

(
α + 2

2

) 2
α+2

x
2

α+2

2

)
.

Then (3.8) gives us that ṽ ∈ C∞(R2
+) ∩ C(R2

+) and ṽ > 0 solvesṽ11 + ṽ22 −
α

α + 2
x−1
2 ṽ2 = 0 in R× (0,+∞),

ṽ(x1, 0) = 0 on R× {x2 = 0},

i.e., {
div
(
x
− α

α+2

2 ∇ṽ
)
= 0 in R× (0,+∞),

ṽ(x1, 0) = 0 on R× {x2 = 0}.

Applying Theorem 2.1 with n = 2 and a = − α
α+2

∈ (−1, 1), we know that ṽ = Cx
1+ α

α+2

2

for some negative constant C. Transforming back to (ξ, η), we have v(ξ, η) = −C1η
1+α

for some C1 > 0, i.e., u⋆
η(ξ, η) = −C1η

1+α for some C1 > 0. Then

u⋆(ξ, η) = h(ξ)− C1

2 + α
η2+α

for some functions h : R → R. Recalling (3.7), we have

ηαh′′(ξ)− C1(1 + α)ηα = 0 in R× (0,+∞).

This implies that h′′(ξ) = C1(1 + α). By solving the ODE, we obtain

u⋆(ξ, η) =
A

2
ξ2 +Bξ − Aη2+α

(1 + α)(2 + α)
+ C

for some constants A = C1(1 + α) > 0, and B, C ∈ R. Recalling that u = (u⋆)⋆, we have

u(x, y) =
1

2A
(x−B)2 +

Ay2+α

(1 + α)(2 + α)
− C,

which yields (1.10). □
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3.3. The entire space case. Before proving Theorem 1.5, we first recall a definition and
two theorems for (1.11) in [JX].

Definition 3.3. [JX, Definition 3.1] Let Ω be a bounded C2-domain in R2 with Ω ∩
{(x, y) ∈ R2 | y = 0} ̸= ∅. A function u is the strong solution to the Grushin type
equation

|y|αuxx + uyy = 0

in Ω if u ∈ C1(Ω) ∩ C2(Ω\{y = 0}) and satisfies |y|αuxx + uyy = 0 in Ω\{y = 0}.

Theorem 3.4 ([JX, Theorem 4.1]). Let Ω be an open bounded convex set in R2, and u
be the Alexandrov solution of

detD2u(x, y) = |y|α in Ω,

with u = 0 on ∂Ω. Then u is strictly convex in Ω, and u ∈ C1,δ
loc (Ω) for some δ > 0

depending only on α. Furthermore, the partial Legendre transform u⋆ of u is a strong
solution of

|η|αu⋆
ξξ + u⋆

ηη = 0 in P(Ω),

where the map P is given in (3.2).

Remark 3.5. From the proof of the above theorem, we can see that u⋆ is in fact in
C2(Ω∗ \ {η = 0}) ∩ C1(Ω∗), and hence is a strong solution of |η|αu⋆

ξξ + u⋆
ηη = 0 in P(Ω).

Theorem 3.6 ([JX, Theorem 4.2]). Let u be a Alexandrov solution of

detD2u(x, y) = |y|α in R2.

Then u is strictly convex.

Hence Theorem 3.4 and Theorem 3.6 give us that u is strictly convex, and by the clas-
sical regularity theory for the Monge-Ampère equation, we know u is smooth away from
{y = 0} [Caf1, Fi]. Furthermore, we know that u ∈ C1,δ

loc (R2) and the partial Legendre
transform u⋆ of u is a strong solution of (3.10) in the sense of Remark 3.5.
Next, we need a Liouville theorem for degenerate elliptic equations in divergence form.

This theorem is a partial extension of [WZ, Corollary 1.4], where they assumed stronger
conditions.

Theorem 3.7. Assume that n = 2 and a ≥ 0. Let u be a positive function satisfying

u ∈ C2(R2\{x2 = 0}), ∂u
∂x1

∈ C(R2) and |x2|a ∂u
∂x2

∈ C(R2) with lim
x2→0

|x2|a
∂u

∂x2

= 0. If u is

a strong solution to

(3.9) div (|x2|a∇u) = 0 in R2\{x2 = 0}.
Then u is a constant function.

Proof. This theorem is a corollary of Theorem 2.5 if we noticed Remark 2.6. Hence we
can repeat the same process as in the proof of Theorem 1.2 in [WZ]. Due to its similarity,
we omit the details here. □
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Now, we are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. Our proof only works for the case α ≥ 0. We consider the partial
Legendre transform u⋆ of u. By Theorem 3.6, we know u⋆ is a strong solution to

(3.10) |η|αu⋆
ξξ + u⋆

ηη = 0 in R2.

Since (3.10) becomes uniformly elliptic with smooth coefficients in any bounded domain
away from {η = 0}, we know u⋆ ∈ C∞(R2\{η = 0}) by the classical theory of elliptic
equations [GT]. By [DS, Lemma 2.4] or [JX, Position 3.2] we know that u⋆ is smooth

respect to ξ and u⋆ ∈ C2,β
loc (R2) when α ≥ 0 for some β > 0 depending only on α. Hence,

we have u⋆
ξ ∈ C2(R2\{η = 0})∩C1(R2) is a strong solution to (3.10). Similarly, we know

that u⋆
ξ ∈ C2,β

loc (R2), which means that u⋆
ξξ ∈ C2(R2\{η = 0}) ∩ C1(R2).

Let v := u⋆
ξξ ≥ 0. Differentiating (3.10) twice respect to ξ, we have that v ≥ 0 is a

strong solution to

(3.11) |η|αvξξ + vηη = 0 in R2.

Note by [DS, Lemma 2.4] that there must be vη(ξ, 0) = 0 since v is C1 near the point
(ξ, 0) and v ≥ 0. By a change of variables, we let

ṽ(x1, x2) =


v

(
x1,

(
α + 2

2

) 2
α+2

x
2

α+2

2

)
, η ≥ 0,

v

(
x1,−

(
α + 2

2

) 2
α+2

(−x2)
2

α+2

)
, η < 0.

A direct calculation yields

ṽ11 = vξξ,

ṽ2 =

(
α + 2

2

) −α
α+2

|x2|
−α
α+2vη

ṽ22 = − α

α + 2
x−1
2 ṽ2 + |η|−αvηη.

By (3.11), we know that ṽ ≥ 0 satisfying ṽ ∈ C2(R2\{x2 = 0}), ṽ1 ∈ C(R2) and

|x2|
α

α+2 ṽ2 ∈ C(R2) with limx2→0 |x2|
α

α+2 ṽ2 = 0 solves

ṽ11 + ṽ22 +
α

α + 2
x−1
2 ṽ2 = 0 in R2,

i.e.,

div
(
|x2|

α
α+2∇ṽ

)
= 0 in R2.

Hence, by Theorem 3.7 with a = α
α+2

≥ 0 in (3.9), we obtain ṽ ≡ constant. Thus u⋆
ξξ ≡ A,

where A is a constant. Similar to the proofs of Theorem 1.1 and Theorem 1.3, by solving
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these ODEs, we have

u⋆(ξ, η) =
A

2
ξ2 − A

(1 + α)(2 + α)
|η|2+α +Bξη + l(ξ, η).

Again by u = (u⋆)⋆, we have (1.12). □
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