
FINAL EXAM

LING WANG

1. Final exam (12.28)

Problem 1.1. Calculate the following limitations.

(1) lim
n→∞

n∑
k=1

(
k

n2

)1+ k
n2

;

(2) lim
n→∞

1

nk

∫ 1

0

lnk(1 + enx) dx;

(3) lim
x→0

[1 + ln(1 + x)]
1

tan x − e(1− x)

x2
.

Solution. (1) Firstly, we have(
k

n2

)1+ k
n2

≤ k

n2
, k = 1, 2, · · · , n,

since
k

n2
≤ 1. Then there is

n∑
k=1

(
k

n2

)1+ k
n2

≤
n∑

k=1

k

n2
=

n(n+ 1)

2n2
=

n+ 1

2n
→ 1

2
, as n → ∞.

On the other hand, we have(
k

n2

)1+ k
n2

≥
(

k

n2

)1+ 1
n

, k = 1, 2, · · · , n.

Since un(x) = x1+ 1
n is increasing on (0, 1), we know that

n∑
k=1

(
k

n2

)1+ 1
n

=
1
n
√
n
· 1
n

n∑
k=1

un

(
k

n

)

≥ 1
n
√
n

n∑
k=1

∫ k
n

k−1
n

un(x) dx

=
1
n
√
n

∫ 1

0

un(x) dx
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=
n1− 1

n

2n+ 1
→ 1

2
, as n → ∞.

Hence

lim
n→∞

n∑
k=1

(
k

n2

)1+ k
n2

=
1

2
.

(2) By changing of variables and the Stolz theorem, we have

lim
n→∞

1

nk

∫ 1

0

lnk(1 + enx) dx
y=nx
===== lim

n→∞

1

nk+1

∫ n

0

lnk(1 + ey) dy

Stolz
==== lim

n→∞

∫ n+1

n
lnk(1 + ey) dy

(n+ 1)k+1 − nk+1

= lim
n→∞

lnk(1 + eθn)

(k + 1)nk

(∗)
===

1

k + 1
,

where we used lim
n→∞

ln(1 + eθn)

n
= 1 in (∗) since

ln(1 + en)

n
≤ ln(1 + eθn)

n
≤ ln(1 + en+1)

n
.

(3) By Taylor’s formula, we have

lim
x→0

[1 + ln(1 + x)]
1

tan x − e(1− x)

x2
= lim

x→0

e
1

tan x
ln(1+ln(1+x)) − e(1− x)

x2

= lim
x→0

e
1

tan x
ln(1+x− 1

2
x2+ 1

3
x3) − e(1− x)

x2

= lim
x→0

e
(x− 1

2x2+1
3x3)− 1

2 (x− 1
2x2)2+1

3x3

x+1
3x3 − e(1− x)

x2

= lim
x→0

e
x−x2+7

6x3

x+1
3x3 − e(1− x)

x2

= lim
x→0

e1−x+ 5
6
x2 − e(1− x)

x2

= lim
x→0

e(1− x+ 5
6
x2 + 1

2
x2)− e(1− x)

x2

= lim
x→0

4e
3
x2

x2

=
4e

3
.
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□

Problem 1.2. Calculate the following integrals.

(1)

∫ 1

−1

1√
1 + x+

√
1− x+ 2

dx;

(2)

∫ 2

1

x2 − 1

x3
√
2x4 − 2x2 + 1

dx;

(3)

∫
x sin(lnx) dx, where x > 0;

(4)

∫
1

x+
√
x2 − x+ 1

dx.

Solution. (1) By changing of variables, we have∫ 1

−1

1√
1 + x+

√
1− x+ 2

dx = 2

∫ 1

0

1√
1 + x+

√
1− x+ 2

dx

x=sin 4t
====== 8

∫ π
8

0

cos 4t√
1 + sin 4t+

√
1− sin 4t+ 2

dt

= 8

∫ π
8

0

cos 4t√
1 + 2 sin 2t cos 2t+

√
1− 2 sin 2t cos 2t+ 2

dt

= 8

∫ π
8

0

cos 4t

sin 2t+ cos 2t+ cos 2t− sin 2t+ 2
dt

= 4

∫ π
8

0

cos 4t

cos 2t+ 1
dt

= 2

∫ π
8

0

cos 4t

cos2 t
dt

= 2

∫ π
8

0

2 cos2 2t− 1

cos2 t
dt

= 2

∫ π
8

0

2(2 cos2 t− 1)2 − 1

cos2 t
dt

= 2

∫ π
8

0

8 cos4 t− 8 cos2 t+ 1

cos2 t
dt

= 2

∫ π
8

0

8 cos2 t dt− 2

∫ π
8

0

8 dt+ 2

∫ π
8

0

1

cos2 t
dt

= 16

∫ π
8

0

1 + cos 2t

2
dt− 2π + 2 tan t|

π
8
0

= π + 2
√
2− 2π + 2 tan

π

8
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= 4
√
2− 2− π,

since

1 =
2 tan π

8

1− tan2 π
8

gives us that tan π
8
=

√
2− 1.

(2) By changing of variables, we have∫ 2

1

x2 − 1

x3
√
2x4 − 2x2 + 1

dx
x= 1

t2=====
1

2

∫ 1

1
4

1− t√
t2 − 2t+ 2

dt

=
1

2

∫ 1

1
4

1− t√
(t− 1)2 + 1

dt

= −1

2

√
(t− 1)2 + 1

∣∣∣1
1
4

=
1

8
.

(3) By integral by parts, we have∫
x sin(lnx) dx =

1

2
x2 sin(lnx)− 1

2

∫
x cos(lnx) dx

=
1

2
x2 sin(lnx)− 1

2

(
1

2
x2 cos(lnx) +

1

2

∫
x sin(lnx) dx

)
=

1

2
x2 sin(lnx)− 1

4
x2 cos(lnx)− 1

4

∫
x sin(lnx) dx,

which yields ∫
x sin(lnx) dx =

2

5
x2 sin(lnx)− 1

5
x2 cos(lnx) + C.

(4) By changing of variables, we have∫
1

x+
√
x2 − x+ 1

dx
t=x+

√
x2−x+1

=========== 2

∫
t2 − t+ 1

t(2t− 1)2
dt

=

∫
2

t
dt−

∫
3

2t− 1
dt+

∫
3

(2t− 1)2
dt

= ln t− 3

2
ln(2t− 1)− 3

2

1

2t− 1
+ C

= ln(x+
√
x2 − x+ 1)

− 3

2
ln(2(x+

√
x2 − x+ 1)− 1)

− 3

2(2(x+
√
x2 − x+ 1)− 1)

+ C.

□
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Problem 1.3. Suppose that a curve L can be given by y = y(x) ∈ C4(R) in the xy-
coordinate system. Rotate the xy-coordinate system against the clockwise π/4 to get the
new coordinate system, say (t, s). Assume that L can be given by s = s(t) ∈ C4(R) in the
st-coordinate system. If y′(x) > −1 and y′′(x) ̸= 0, prove that s′′(t) ̸= 0 and there is[

s′′(t)−
2
3

]′′
(t) =

[
y′′(x)−

2
3

]′′
(x),

where (x, y(x)) and (t, s(t)) are the same point in the curve.

Proof. Note that  t = x cos
π

4
+ y sin

π

4
,

s = −x sin
π

4
+ y cos

π

4
.

By y = y(x), we know that L can be given by
t =

√
2

2
x+

√
2

2
y(x),

s = −
√
2

2
x+

√
2

2
y(x).

Hence, there is 
dt =

√
2

2
(1 + y′(x))dx,

ds =

√
2

2
(−1 + y′(x))dx.

Then we have

s′(t) =
−1 + y′(x)

1 + y′(x)
and

dx

dt
=

√
2

1 + y′(x)
.

Taking derivative yields

s′′(t) =
y′′(x)dx

dt
(1 + y′(x))− y′′(x)dx

dt
(−1 + y′(x))

(1 + y′(x))2
=

2
√
2y′′(x)

(1 + y′(x))3
.

Since y′′(x) ̸= 0, it is clear that s′′(t) ̸= 0. What’s more, since

s′′(t)−
2
3 = y′′(x)−

2
3
(1 + y′(x))2

2
,

we have [
s′′(t)−

2
3

]′
(t) =

[
y′′(x)−

2
3

]′ dx
dt

(1 + y′(x))2

2
+ y′′(x)−

2
3 (1 + y′(x))y′′(x)

dx

dt

=
[
y′′(x)−

2
3

]′ 1 + y′(x)√
2

+
√
2y′′(x)

1
3 .

Then[
s′′(t)−

2
3

]′′
(t) =

[
y′′(x)−

2
3

]′′
(x) +

[
y′′(x)−

2
3

]′ y′′(x)√
2

dx

dt
+

√
2

3
y′′(x)−

2
3y′′′(x)

dx

dt
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=
[
y′′(x)−

2
3

]′′
(x) +

[
y′′(x)−

2
3

]′
y′′(x)

1

1 + y′(x)
+

2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)

=
[
y′′(x)−

2
3

]′′
(x)− 2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)
+

2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)

=
[
y′′(x)−

2
3

]′′
(x).

□

Problem 1.4. Suppose that f ∈ C∞(R) and for any k ∈ N, there is

sup
x∈R

∣∣|x|k|f(x)|+ |f (k)(x)|
∣∣ < +∞.

Prove that for any k, l ∈ N, there is

sup
x∈R

∣∣|x|k|f (l)(x)|
∣∣ < +∞.

Proof. We prove the conclusion by induction. For l = 0, it’s clear that sup
x∈R

∣∣|x|k|f(x)|∣∣ <
+∞ for any k ∈ N. Assume that for any 0 ≤ l ≤ n and k ∈ N, there is

sup
x∈R

∣∣|x|k|f (l)(x)|
∣∣ < +∞.

We will show that sup
x∈R

∣∣|x|k|f (n+1)(x)|
∣∣ < +∞ for any k ∈ N. Indeed, by Taylor’s formula,

we have for any x > 0 that

f(x+ h) = f(x) + f ′(x)h+ · · ·+ f (n+1)(x)

(n+ 1)!
hn+1 +

f (n+2)(ξ)

(n+ 2)!
hn+2.

Taking h = |x|−k, we have∣∣|x|k|f (n+1)(x)|
∣∣ ≤ (n+ 1)!

(
|x|(n+2)k|f(x+ |x|−k)|+ |x|(n+2)k|f(x)|

+ |x|(n+1)k|f ′(x)|+ · · ·+ 1

n!
|x|2k|f (n)(x)|+ |f (n+2)(ξ)|

(n+ 2)!

)
.

By sup
x∈R

∣∣|x|k|f(x)|+ |f (k)(x)|
∣∣ < +∞, sup

x>0

x

x+ |x|−k
< +∞ and the assumption, we know

that

sup
x>0

∣∣|x|kf (n+1)(x)|
∣∣ < +∞ for any k ∈ N.

For any x < 0, we just need to take h = −|x|−k. For x = 0, it’s clear. Hence we know
that for any k, l ∈ N, there is

sup
x∈R

∣∣|x|kf (l)(x)|
∣∣ < +∞.

□
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Problem 1.5. Suppose that f(x) is twice differentiable on [−2, 2], |f(x)| ≤ 1 and [f(0)]2+
[f ′(0)]2 = 4. Prove that there exists ξ ∈ (−2, 2) such that f ′′(ξ) + f(ξ) = 0.

Proof. Let

F (x) = f(x)2 + f ′(x)2, ∀x ∈ [−2, 2].

Then F (0) = 4. By the Lagrange Mean Value Theorem, we know that there exists
x1 ∈ (−2, 0) such that

f ′(x1) =
f(0)− f(−2)

2
.

Since |f(x)| ≤ 1, we have that |f ′(x1)| ≤ 1. Similarly, we know that there exists x2 ∈ (0, 2)
such that |f ′(x2)| ≤ 1. Then F (x1) ≤ 2 and F (x2) ≤ 2. Note that x1 < 0 < x2 and
F (0) = 4 > 2, we know that there must be at least a maximum point in (x1, x2). Hence,
there exists ξ ∈ (−2, 2) such that F ′(ξ) = 0, i.e. f(ξ) + f ′′(ξ) = 0 since f ′(ξ) ̸= 0. To
prove f ′(ξ) ̸= 0, it suffices to note that F (ξ) ≥ 4 and f(ξ)2 ≤ 1. Then we are done. □

Problem 1.6. Suppose that f(x) is nonnegative convex function on [−1, 1], satisfying
f(0) = 0 and f(−1) = f(1) = 1. Define S(h) = {x|f(x) ≤ h}, ∀h ∈ [0, 1].

(1) If there exists ε > 0 such that ∀x ∈ [−1, 1], there is f
(x
2

)
≤ 1− ε

2
f(x). Prove

that there exist α > 0 and C > 0 such that f(x) ≤ C|x|1+α, ∀x ∈ [−1, 1].

(2) If there exists ε ∈ (0, 1/2) such that ∀h ∈ [0, 1], there is l

(
h

2

)
≤ (1− ε)l(h),

where l(h) is the length of S(h). Prove that there exist β > 0 and C > 0 such that
f(x) ≥ C|x|1+β, ∀x ∈ [−1, 1].

Proof. (1) By f
(x
2

)
≤ 1− ε

2
f(x), we have

f
( x

2k

)
≤

(
1− ε

2

)k

f(x), ∀x ∈ [−1, 1], k ≥ 0.

Since f(x) is convex and f(−1) = f(1) = 1, we know that f(x) ≤ 1, ∀x ∈ [−1, 1].

Choosing α > 0 such that 2−α = 1− ε, i.e. α = − ln(1− ε)

ln 2
. Then there is

f
( x

2k

)
≤

(
1− ε

2

)k

=

(
1

2k

)1+α

, ∀x ∈ [−1, 1], k ≥ 0.

Hence, for ∀x′ ∈ [−1, 1], we know that there exists k = k(x′) such that

1

2k+1
< |x′| ≤ 1

2k
.

Then taking x = 2kx′ ∈ [−1, 1], we have

f(x′) = f
( x

2k

)
≤

(
1

2k

)1+α

=

(
1

2k+1

)1+α

21+α ≤ 21+α|x′|1+α, ∀x′ ∈ [−1, 1].
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i.e. there exist α = − ln(1− ε)

ln 2
and C = 21+α such that

f(x) ≤ C|x|1+α, ∀x ∈ [−1, 1].

(2) Similar to (1), we have

l(h) ≤ 21+αhα, ∀h ∈ [0, 1],

where α = − ln(1− ε)

ln 2
. Next, we prove that ∀x ∈ [−1, 1], there is

f(x) ≥ 2−(
2
α
+1)|x|

1
α .

We prove the claim by contradiction. Assume that there exists x0 ∈ [−1, 1] such that

f(x0) < 2−(
2
α
+1)|x0|

1
α .

Without loss of generality, we may assume that x0 > 0, and it’s similar for x0 < 0. Since
f(x) is a convex function, we know that ∀x ∈ [0, x0], there is

f(x) ≤ λf(x0) + (1− λ)f(0) ≤ f(x0) < 2−(
2
α
+1)|x0|

1
α .

Hence [0, x0] ⊂ S(h0), where h0 = 2−(
2
α
+1)|x0|

1
α < 1. Then

|x0| ≤ l(h0) ≤ 21+α
(
2−(

2
α
+1)|x0|

1
α

)α

= 21+α · 2−(2−α)|x0| =
1

2
|x0|,

contradiction. Hence, ∀x ∈ [−1, 1], there is

f(x) ≥ 2−(
2
α
+1)|x|

1
α .

Therefore, we can take C = 2−(
2
α
+1) and β =

1

α
− 1. Since ε ∈ (0, 1/2) and α =

− ln(1− ε)

ln 2
, we know that α ∈ (0, 1), then β > 0. □

Problem 1.7. Suppose that f(x) ∈ C1(R) satisfying sup
x∈R

|f(x)| ≤ A ∈ (0,+∞) and

sup
x∈R,y>x

∣∣∣∣f ′(y)− f ′(x)

y − x

∣∣∣∣ ≤ B ∈ (0,+∞). Prove that ∀x ∈ R, there is |f ′(x)| ≤
√
2AB.

Proof. By the Newton-Leibniz formula, we have

f(x+ h) = f(x) + f ′(x)h+

∫ x+h

x

(f ′(t)− f ′(x)) dt,

f(x− h) = f(x)− f ′(x)h+

∫ x

x−h

(f ′(t)− f ′(x)) dt.

Hence there are

|f(x+ h)− f(x)− f ′(x)h| ≤ B

∫ x+h

x

(t− x) dt =
B

2
h2,
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|f(x− h)− f(x) + f ′(x)h| ≤ B

∫ x

x−h

(x− t) dt =
B

2
h2.

Then
|2hf ′(x) + f(x− h)− f(x+ h)| ≤ Bh2,

which yields

|f ′(x)| ≤ 1

2h

(
Bh2 + |f(x+ h)− f(x− h)|

)
≤ A

h
+

Bh

2
.

Choosing h =

√
2A

B
, we have

|f ′(x)| ≤
√
2AB.

□

Problem 1.8. Suppose f(x) ∈ C[0, 1] is positive, and

∫ 1

0

f(x) dx = A,

∫ 1

0

f 2(x) dx = B.

(1) Prove that for any n ∈ N+, there exists a partition ∆ : 0 = x0 < · · · < xn = 1

such that

∫ xk

xk−1

f(x) dx =
A

n
, k = 1, 2, · · · , n.

(2) Find lim
n→∞

1

n

n∑
k=1

f(xk).

Proof. (1) Since f(x) is continuous and positive, we know that

∫ x

0

f(t) dt is continuous

and increasing. By the intermediate value theorem, we have that there exist 0 = x0 <

· · · < xn = 1 such that

∫ xk

0

f(t) dt =
kA

n
, hence

∫ xk

xk−1

f(x) dx =
A

n
, k = 1, 2, · · · , n.

(2) By the mean value theorems for definite integrals, we know that there exists ξk ∈
(xk−1, xk), such that∫ xk

xk−1

f(x) dx = f(ξk)(xk − xk−1) = f(ξk)∆xk =
A

n
, k = 1, 2, · · · , n.

Since f(x) is continuous on [0, 1], we know that f(x) is uniformly continuous. Then for
∀ ε > 0, there exits δ > 0 such that ∀x, x′ : |x−x′| < δ, there is |f(x)− f(x′)| < ε. Hence
for n large enough, we have ∆xk < δ, which gives us that |f(xk)− f(ξk)| < ε. Then∣∣∣∣∣ 1n

n∑
k=1

f(xk)−
B

A

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
k=1

f(xk)−
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

k=1

f(xk)−
1

A

n∑
k=1

f 2(xk)∆xk

∣∣∣∣∣
+

∣∣∣∣∣ 1A
n∑

k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
9



1
n
= 1

A
f(ξk)∆xk

==========

∣∣∣∣∣ 1A
n∑

k=1

f(xk)f(ξk)∆xk −
1

A

n∑
k=1

f 2(xk)∆xk

∣∣∣∣∣
+

∣∣∣∣∣ 1A
n∑

k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
≤ ε

∣∣∣∣∣ 1A
n∑

k=1

f(xk)∆xk

∣∣∣∣∣+
∣∣∣∣∣ 1A

n∑
k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
→ ε, as n → ∞.

Since ε > 0 is arbitrary, we have

lim
n→∞

1

n

n∑
k=1

f(xk) =
B

A
.

□

Problem 1.9. Prove that for any n ∈ N+, there is

∣∣∣∣∫ 2

1

sin

(
nx− 1

x

)
dx

∣∣∣∣ < 2

n
.

Proof. Let

t = x− 1

nx
.

It’s clear that
dt

dx
= 1 +

1

nx2
> 0.

Hence we know that there exists inverse function of t = t(x), i.e. x = x(t). What’s more,
we have

dx

dt
=

(
1 +

1

nx2

)−1

.

By changing of variables, we have∫ 2

1

sin

(
nx− 1

x

)
dx =

∫ 2− 1
2n

1− 1
n

sin(nt)x′(t) dt.

Note that
d2x

dt2
= −

(
1 +

1

nx2

)−2 −2

nx3

dx

dt
=

(
1 +

1

nx2

)−3
2

nx3
> 0,

which gives us that x′(t) is monotonic increasing. Then by the second mean value theorem
for definite integrals, we know that there exists ξ such that∣∣∣∣∫ 2

1

sin

(
nx− 1

x

)
dx

∣∣∣∣ =
∣∣∣∣∣
∫ 2− 1

2n

1− 1
n

sin(nt)x′(t) dt

∣∣∣∣∣
=

∣∣∣∣∣x′
(
2− 1

2n

)∫ 2− 1
2n

ξ

sin(nt) dt

∣∣∣∣∣
10



=

(
1 +

1

4n

)−1
1

n

∣∣∣∣cos(2− 1

2n

)
− cos ξ

∣∣∣∣
≤

(
1 +

1

4n

)−1
2

n

<
2

n
.

□

Problem 1.10. Suppose that f(x) is a nonnegative monotonic increasing function on

[0, π
2
]. Prove that when x ∈ [0, π

2
], there is (1− cosx)

∫ x

0

f(t) dt ≤ x

∫ x

0

f(t) sin t dt.

Proof. Let

g(x) =
1− cosx

x
,

and

h(x) =

∫ x

0

f(t) sin t dt− g(x)

∫ x

0

f(t) dt.

Then

h′(x) = f(x) sinx− g(x)f(x)− g′(x)

∫ x

0

f(t) dt

= f(x) sinx− f(x)
1− cosx

x
− x sinx− 1 + cos x

x2

∫ x

0

f(t) dt

=
x sinx− 1 + cos x

x2

(
xf(x)−

∫ x

0

f(t) dt

)
.

It’s easy to see that x sinx − 1 + cosx ≥ 0 on [0, π
2
] (Leave to the reader). Since f(x) is

nonnegative and monotonic increasing, we have∫ x

0

f(t) dt ≤ xf(x),

which implies
h′(x) ≥ 0

on [0, π
2
]. Note that h(0) = 0, we have h(x) ≥ h(0) = 0, ∀x ∈ [0, π

2
]. Hence

(1− cosx)

∫ x

0

f(t) dt ≤ x

∫ x

0

f(t) sin t dt, ∀x ∈
[
0,

π

2

]
.

□
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