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Abstract. In this short note, we outline the application of a higher-dimensional
partial Legendre transform in the study of Monge-Ampère equations. The main
focus includes presenting interior regularity results for certain degenerate Monge-
Ampère equations established by Rios, Sawyer, and Wheeden [RSW1], the global
smoothness of the eigenfunctions of the Monge-Ampère equation obtained by Le
and Savin [LS2], and a Bernstein-type theorem for some singular Monge-Ampère
equations due to Huang, Tang, and Wang [HTW]. Additionally, we discuss possible
extensions of this approach to fourth-order equations at the end of the note.

1. Introduction

In this short note, we introduce a higher-dimensional partial Legendre transform
associated with a convex solution u. This transform is a natural generalization of the
classical two-dimensional partial Legendre transform and serves as a powerful tool for
deriving interior estimates for certain degenerate Monge-Ampère equations.

The two-dimensional partial Legendre transform has been widely applied in the
study of Monge-Ampère equations, including Monge-Ampère type fourth-order equa-
tions and linearized Monge-Ampère equations [WZ1, Wa]. For a comprehensive
overview of these applications, we refer to the survey by the author and Zhou [WZ2].
However, the study of the higher-dimensional partial Legendre transform remains
relatively sparse. One possible reason is that, unlike the two-dimensional case, the
transformed equations in higher dimensions often retain some nonlinearity, mak-
ing their analysis still more challenging. Nevertheless, by imposing certain nonde-
generacy conditions on part of the Hessian matrix of the convex function u, some
progress has been made using the higher-dimensional partial Legendre transform; see
[RSW1, RSW2, LS2, HTW]. The main purpose of this note it to outline the role of
the higher-dimensional partial Legendre transform in these works. Before presenting
the main results, we first define the higher-dimensional partial Legendre transform
and derive some useful identities that will aid our analysis.

We consider a convex solution u to the Monge-Ampère equation

(1.1) detD2u = f(x, u,Du), x ∈ Ω,

where f is smooth and nonnegative in Ω×R×Rn, and Ω is a convex domain in Rn.
The partial Legendre transform in the x′-variable is given by

u⋆(y′, yn) = sup (x′ · y′ − u(x′, yn)) ,
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where the supremum is taken with respect to x′ for fixed yn, i.e., for all x′ such
that (x′, yn) ∈ Ω. This definition is generalized two-dimensional partial Legendre
transform. When u ∈ C2(Ω) is strictly convex in the x′-variable, the mapping

P : (x′, xn) 7→ (Dx′u(x), xn)

is injective, and we denote the image of Ω under P as Ω⋆. In this case, we have

u⋆(y) = x′ ·Dx′u− u(x) in Ω⋆.

This follows directly from the strict convexity of u with respect to the x′-variable
[GP].

By direct computations, we have

∂yn
∂x′

= 0,
∂yn
∂xn

= 1,

∂y′

∂x′
= D2

x′u,
∂y′

∂xn
= D2

x′xnu,

and
∂xn
∂y′

= 0,
∂xn
∂yn

= 1,

∂x′

∂y′
= (D2

x′u)
−1,

∂xi
∂yn

= Uni(detD2
x′u)

−1, i = 1, 2, · · · , n− 1,

where {U ij} is the cofactor matrix of D2u.
Using these transformations, we find that

u⋆yn = −uxn and u⋆yi = xi, i = 1, 2, · · · , n− 1,

and

D2
y′u

⋆ = (D2
x′u)

−1, u⋆ynyn = −
n∑
i=1

∂uxn
∂xi

∂xi
∂yn

= −uxnxn −
n−1∑
i=1

uxixn
Uni

detD2
x′u

.

Since
detD2

y′u
⋆ = (detD2

x′u)
−1 = 1/Unn,

it follows that

−u⋆ynyn
detD2

y′u
⋆
=

(
uxnxn +

n−1∑
i=1

uxixn
Uni

detD2
x′u

)
detD2

x′u

=
n∑
i=1

uxixnU
ni = detD2u.

Then combining (1.1), we have

(1.2) f(Dy′u
⋆, yn, y

′ ·Dy′u
⋆ − u⋆, y′,−uyn) detD2

y′u
⋆ + u⋆ynyn = 0.
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The organization of this note is as follows. In Section 2, we present the interior reg-
ularity of degenerate Monge-Ampère equations arising from prescribed Gaussian cur-
vatures. Next, in Section 3, we demonstrate the global smoothness of the eigenfunc-
tions of the Monge-Ampère operator. Then, a Bernstein-type theorem is established
in Section 4. Finally, in Section 5, we discuss possible extensions to Monge-Ampère
type fourth-order equations.

2. Regularity of degenerate Monge-Ampère equations

In this section, we investigate the regularity of solutions to the generalized Monge-
Ampère equation,

(2.1) detD2u = f(x, u,Du) ∼
(
|xn|2m + ψ(x)

)
K(x, u,Du),

where K is a smooth and positive function defined on Ω× R× Rn, ψ is smooth and
positive on Ω, m is a positive integer, and ψ1/2m is Lipschitz continuous. This type of
equation arises in prescribed Gaussian curvature problems, which have been exten-
sively studied using various methods. We briefly review some historical developments
here.

When f > 0, equation (2.1) is elliptic, and its theory is well developed. For instance,
if f = f(x), Caffarelli, Nirenberg, and Spruck [CNS] established the existence of a
unique smooth convex solution u to the Dirichlet problem for (2.1) in Ω with smooth
data, provided that ∂Ω has positive Gaussian curvature. However, if f is allowed to
vanish in Ω, regularity may fail dramatically. For example, if u(x) = |x|2+ 2

n , then by
rotation invariance and homogeneity, (2.1) holds with f = cn|x|2. Consequently, u

is a C2, 2
n solution and cannot possess higher regularity, even though f is an analytic

function that vanishes to the least possible order. The best possible regularity for
the degenerate Dirichlet problem was established by Guan [Gu2] and later refined by
Guan, Trudinger, and Wang [GTW]; for nonnegative and smooth f , they proved the
existence of a unique convex solution u ∈ C1,1(Ω) to the Dirichlet problem for (2.1)
in the Alexandrov sense.

In two dimensions, Guan [Gu1] demonstrated that a C1,1(Ω) solution u to (2.1) is
smooth if f vanishes to finite order in a specific sense and if one principal curvature
of u is bounded away from zero. This result highlights the rank of the Hessian of u as
a crucial obstacle to regularity, even in subelliptic cases. In higher dimensions, Rios,
Sawyer, and Wheeden [RSW1] extended Guan’s regularity theorem by employing a
higher-dimensional partial Legendre transform. They showed that a convex solution
u ∈ C2,1(Ω) to (2.1) is smooth if f vanishes to finite order in a certain sense and if
at least n− 1 of the principal curvatures of u remain bounded away from zero (fewer
than n− 1 nonvanishing principal curvatures are insufficient).
In the following, we present the method developed by Rios, Sawyer, and Wheeden,

which employs the higher-dimensional partial Legendre transform to establish specific
regularity properties of solutions. The main result is stated as follows.
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Theorem 2.1. Let u ∈ C2,1(Ω) be a convex solution to (2.1). If we further assume
that the determinant of the Hessian with respect to the variables x′ = (x1, . . . , xn−1),
denoted by detD2

x′u, is positive everywhere in Ω, then u ∈ C∞(Ω).

In proving Theorem 2.1, we follow the approach of Rios, Sawyer, and Wheeden
[RSW1], which extends Guan’s two-dimensional result [Gu1]. To proceed, we first
introduce some definitions and theorems.

Definition 2.2. Let A(x) = [aij(x)]
n
i,j=1 be a symmetric nonnegative matrix with

bounded measurable coefficients defined in a domain Ω ⊂ Rn. We say that a vector
field T =

∑n
i=1 αi(x)

∂
∂xi

, with bounded coefficients αi, is subunit with respect to A(x)
in Ω if (

n∑
i=1

αi(x)ξi

)2

≤
n∑

i,j=1

aij(x)ξiξj, x ∈ Ω, ξ ∈ Rn.

Definition 2.3. Let A(x) = [aij(x)]
n
i,j=1 be a symmetric nonnegative Lipschitz matrix

defined in a domain Ω ⊂ RN . We say A(x) is subordinate in Ω if

(2.2)
n∑
j=1

(
n∑
i=1

∂

∂yℓ
aij(y)ξi

)2

≤ C
n∑

i,j=1

aij(x)ξiξj, y ∈ Ω, ξ ∈ Rn, 1 ≤ ℓ ≤ N.

Note that (2.2) can be rephrased as

[∂ℓA(y)]
2 ≤ CA(y), y ∈ Ω,

where B ≤ A means A − B is nonnegative semidefinite. We will use (2.2) mainly
when N = n, in which case A(x) is subordinate in Ω if and only if there is c > 0 such
that the vector fields associated to the rows of∂ℓA(x), namely c

∑n
i=1

∂
∂xℓ
aij(x)

∂
∂xi

, are

subunit with respect to A(x) in Ω for 1 ≤ j ≤ n, 1 ≤ ℓ ≤ n.

Definition 2.4. Let A(x) = [aij(x)]
n
i,j=1 be a symmetric nonnegative semidefinite

matrix with bounded measurable coefficients defined in a domain Ω ⊂ Rn. We say
that

Lu :=
n∑

i,j=1

∂

∂xi

Å
aij(x)

∂

∂xj
u

ã
is α-subelliptic in Ω for α > 0, if there is a positive function C(·, ·, ·, ·, ·) defined
on P(Ω) × [0,∞) × [0,∞) × [0,∞) × [0,∞), increasing in each variable separately,
such that for all m-tuples T = (T1, · · · , Tm) of bounded subunit (with respect to A(x))
vector fields, all bounded functions f, g, and all compact subsets K of Ω, every weak
solution u ∈ W 1,2(Ω) to the divergence form equation

Lu = f +T · g
satisfies

∥u∥Cα(K) ≤ C
(
K, ∥u∥L2(Ω), ∥f∥L∞(Ω), ∥g∥L∞(Ω),m

)
.



A HIGHER-DIMENSIONAL PARTIAL LEGENDRE TRANSFORM 5

Definition 2.5. We say that L = ∇′A(x)∇ is α-elliptic extendible in Ω for α > 0, if
for every x0 and Ω1 with x0 ∈ Ω1 ⊂⊂ Ω, there exists a symmetric smooth nonnegative
subordinate matrix B(x) in Ω satisfying:

(1) B(x) vanishes in a neighborhood N ⊂⊂ Ω1 of x0,
(2) B(x) is elliptic in Ω \ Ω1,
(3) The perturbed operator

Lε = ∇′ (A(x) +B(x) + εI)∇

is α-subelliptic in Ω, uniformly for 0 < ε < 1.

We will need the following extension of a theorem in [Gu1].

Theorem 2.6. Suppose p = (pℓ)1≤ℓ≤N , v = (vℓ)1≤ℓ≤N0 ∈ C0,1(Ω), and that p is a
weak solution of the system

(2.3)
n∑

i,j=1

∂

∂xi

Å
aij(x,v,p)

∂

∂xj
pℓ

ã
= hℓ(x,v,p, Dp), 1 ≤ ℓ ≤ N,

where aij ∈ C∞(Γ), Γ is a subdomain of Ω×RN0 ×RN , A(x,v,p) = [aij(x,v,p)]
n
i,j=1

is symmetric, nonnegative semidefinite, and subordinate in relatively compact subdo-
mains of Γ, h = (hℓ)1≤ℓ≤N ∈ C∞(Γ× RnN) and where

Dv = Ψ(x,v,p),

for Ψ ∈ C∞(Γ). Let

L̃ := ∇′Ã(x)∇ =
n∑

i,j=1

∂

∂xi

Å
ãij(x)

∂

∂xj

ã
be the scalar linear operator with ãij(x) = aij(x,v(x),p(x)). Suppose that L̃ is α-
elliptic extendible in Ω for some α > 0, that

(2.4) trace Ã(x) ≥ c > 0 in Ω,

and that h has the product decomposition

hℓ(x,v,p, Dp) = Hℓ,0(x,v,p) +
M∑
µ=1

Hℓ,µ(x,v,p)Φℓ,µ(x,v,p, Dp), 1 ≤ ℓ ≤ N,

with Hℓ,µ and Φℓ,µ smooth functions of their arguments, and where the vector fields

Hℓ,µ(x,v(x),p(x))
∂

∂xk

are subunit with respect to Ã for 1 ≤ µ ≤ M , 1 ≤ ℓ ≤ N , 1 ≤ k ≤ n. Then the
functions p and v are both smooth in Ω.
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The reverse Hölder norm ∥a∥RH∞ of a nonnegative function a on the real line is
given by the least constant C such that

sup
s∈I

a(s) ≤ C
1

|I|

∫
I

a(s) ds,

for all intervals I.

Theorem 2.7. Let A(x) = [aij(x)]
n
i,j=1 with aij ∈ L∞(Ω), satisfying for some c, C >

0:

c
(
ξ2n + a(x)2|ξ′|2

)
≤ ⟨A(x)ξ, ξ⟩ ≤ C

(
ξ2n + a(x)2|ξ′|2

)
, ∀x ∈ Ω, ξ = (ξ′, ξn) ∈ Rn

where the coefficient a(x) satisfies ∥a∥C0,1(Ω) ≤ C, ∥a(x′, ·)∥RH∞ ≤ C, and the non-
degeneracy ∥a(x′, ·)∥L∞ ≥ c > 0 for x′ = (x1, · · · , xn−1) ∈ Rn−1. Then the operator
L = ∇′A(x)∇ is α-subelliptic in Ω with α > 0 depending only on c, C.

Proof of Theorem 2.1. Denote v = ∂
∂yℓ
u⋆ for some ℓ ∈ {1, 2, . . . , n−1}. Differentiating

(1.2) with respect to yℓ yields

∂

∂yℓ

(
f detD2

y′u
⋆
)
+ vynyn = 0.

Since

δiℓ detD
2
y′u

⋆ =
n−1∑
k=1

U⋆ik
y′ u

⋆
yℓyk

,

we obtain

0 =
∂

∂yℓ

(
f detD2

y′u
⋆
)
+ vynyn

=
∂

∂yi

(
fδiℓU

⋆ik
y′ u

⋆
yℓyk

)
+ vynyn

=
∂

∂yi

(
fU⋆ik

y′ vyk
)
+ vynyn .

Hence we know

A :=

Ç
fU⋆

y′ 0

0 1

å
,

where U⋆
y′ denote the cofactor matrix of D2

y′u
⋆. Thus, U⋆

y′ = (detD2
x′u)

−1D2
x′u. In

order to apply Theorem 2.6 with x there replaced by y, we consider the linear operator

∇′Ã∇ =
∂

∂yi

Å
f(Dy′u

⋆(y), yn, y
′ ·Dy′u

⋆(y)− u⋆(y), y′,−uyn(y))U
⋆ij
y′ (y)

∂

∂yj

ã
+

∂2

∂y2n
,

here Ã is given by

Ã =

Ç
f(Dy′u

⋆(y), yn, y
′ ·Dy′u

⋆(y)− u⋆(y), y′,−uyn(y))U⋆
y′(y) 0

0 1

å
,
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and the function f satisfies

f ∼
(
|yn|2m + ψ(Dy′u(y), yn)

)
K(Dy′u

⋆(y), yn, y
′ ·Dy′u

⋆(y)− u⋆(y), y′,−uyn(y)).

We now verify the hypotheses of Theorem 2.6. The lower bound c = 1 in the trace
(2.4) is obvious. Note that since U⋆

y′ = (detD2
x′u)

−1D2
x′u is positive definite by as-

sumption, the quadratic form of A has a lower bound

ξ · Aξ ≥ cf |ξ′|2 + ξ2n, ∀ ξ = (ξ′, ξn) ∈ Rn.

The standard inequality |Df | ≤ C
√
f now shows that A is subordinate in relatively

compact subdomains of its domain. Thus in order to apply Theorem 2.6, it only

remains to prove that ∇′Ã∇ is α-elliptic extendible in Ω⋆.
So for fixed point y0 ∈ Ω⋆, without loss of generality, we may suppose that f = 0

at y0 and that in fact y0 = 0. We choose δ > 0 sufficiently small and a smooth
nonnegative function η(y′), such that η = 0 for |y′| < δ, η > 0 for |y′| > 2δ and

η(y′)
1

2m is Lipschitz (i.e. all zeroes of η vanish to order at least 2m). Then we define

B :=

Ç
η(y′)In−1 0

0 0

å
,

where In−1 denotes the (n − 1) × (n − 1) identity matrix. Clearly the operator

∇′(Ã + B)∇ is elliptic in Ω⋆ \ B3δ since |yn|2m + η(y′) is positive there, and ∇′(Ã +

B)∇ = ∇′Ã∇ in Bδ. The inequality |Dη| ≤ C
√
η shows that B is subordinate in Ω⋆.

We further observe using (2.1) that

c
(
ξ2n + aε(y)

2|ξ′|2
)
≤ ξ′(Ã+B + εI)ξ ≤ C

(
ξ2n + aε(y)

2|ξ′|2
)

for 0 ≤ ε < 1, where

(2.5) aε(y) =
»
|yn|2m + ψ(Dy′u⋆(y), yn) + η(y′) + ε

since U⋆
y′ is positive definite and K is positive in Ω⋆. We now claim that aε(y) satisfies

the hypotheses of Theorem 2.7 uniformly in 0 ≤ ε < 1, namely that

∥aε∥C0,1(Ω⋆) ≤ C,

∥aε(y′, ·)∥RH∞ ≤ C,(2.6)

∥aε(y′, ·)∥L∞ ≥ c > 0.

With this established, Theorem 2.7 completes the proof that ∇′Ã∇ is α-elliptic
extendible in Ω⋆. Then Theorem 2.6 shows that ∂ℓu

⋆, 1 ≤ ℓ ≤ n − 1 are smooth in
Ω⋆. Since ∂y

∂x
= detD2

x′u > 0, we conclude that u is smooth in Ω, and this completes
the proof of Theorem 2.1.

So it remains to prove (2.6). It is enough to prove the case ε = 0 since we may
replace ψ by ψ+ ε in (2.5). We now write a(y) for aε(y). The first inequality in (2.6)
follows immediately from the fact that Dy′u

⋆ is Lipschitz, since then so also are the



8 LING WANG

functions |yn|, ψ(Dy′u
⋆, yn)

1
2m and η(y′)

1
2m , and hence their ℓ2m length as a vector in

R3; a(y) is the mth power of this length. The RH∞ inequality,

sup
s∈I

a(y′, s) ≤ C
1

|I|

∫
I

a(y′, s) ds,

for all intervals I and points y′, is easier to check separately in the two cases

sup
s∈I

|s|m ≥ sup
s∈I

»
ψ̃(y′, s),

sup
s∈I

|s|m ≤ sup
s∈I

»
ψ̃(y′, s),

where we have set ψ̃(y′, yn) = ψ(Dy′u
⋆(y), yn) + η(y′). Indeed, in the first case

sup
s∈I

a(y′, s) ≤ C sup
s∈I

|s|m ≤ C
1

|I|

∫
I

|s|m ds ≤ C
1

|I|

∫
I

a(y′, s) ds.

In the second case,

sup
s∈I

a(y′, s) ≤ C sup
s∈I

»
ψ̃(y′, s).

Let s1 ∈ I be such that
»
ψ̃(y′, s1) = sups∈I

»
ψ̃(y′, s). Then we observe that

|I|m ≤ C sup
s∈I

|s|m ≤ C
»
ψ̃(y′, s1)

implies

ψ̃(y′, s1)
1

2m ≥ c|I|.

Since ψ̃(y′, yn)
1

2m = [ψ(Dy′u
⋆(y), yn) + η(y′)]

1
2m is Lipschitz, we have

ψ̃(y′, yn)
1

2m ≥ 1

2
ψ̃(y′, s1)

1
2m

for yn in an interval J of length at least c|I| that contains s1 and is contained in I.
Then we conclude,

1

|I|

∫
I

a(y′, s) ds ≥ 1

|I|

∫
J

»
ψ̃(y′, s) ds

≥ |J |
|I|

…
1

22m
ψ̃(y′, s1)

≥ c
|I|
|I|

sup
s∈I

a(y′, s)

≥ c sup
s∈I

a(y′, s).

The nondegeneracy inequality in (2.6) follows from a(y) ≥ |yn|m. □
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3. Smoothness of the eigenfunctions of Monge-Ampère equations

In this section, we prove the global smoothness of the eigenfunctions of the Monge-
Ampère operator (detD2u)1/n. The eigenvalue problem for this operator was first
investigated by Lions [Li], who demonstrated that there exists a unique (up to positive
multiplicative constants) nonzero convex eigenfunction u ∈ C1,1(Ω)∩C∞(Ω) satisfying
the problem

(3.1)

{(
detD2u

) 1
n = λ|u| in Ω,

u = 0 on ∂Ω.

We note that λ, called the Monge-Ampère eigenvalue of Ω, has an interesting sto-
chastic interpretation given by Lions [Li]. The question of obtaining global higher
derivative estimates up to the boundary for the eigenfunction u is a well-known open
problem, see for example Trudinger and Wang’s survey paper [TW3].

In the two-dimensional case, Hong, Huang, and Wang [HHW] resolved this ques-
tion affirmatively. In higher dimensions, Savin [Sa] established the global C2(Ω)
estimate for the eigenfunction u. Later, using Savin’s C2-estimate from [Sa] and per-
turbation arguments [Ca, CC], Le and Savin [LS2] obtained basic boundary Hölder
second derivative estimates for solutions to detD2u ∼ dα∂Ω, which in turn led to global
C2,β estimates up to the boundary for eigenfunctions of the Monge-Ampère operator
(detD2u)1/n. Finally, by employing the higher-dimensional partial Legendre trans-
form, they resolved the problem of global smoothness of the eigenfunction u in all
dimensions.

In the following, we will present their arguments related to the higher-dimensional
partial Legendre transform. We begin by stating the main theorem.

Theorem 3.1. Let Ω be a bounded and uniformly convex domain in Rn. Assume
∂Ω ∈ C∞ and u satisfies (3.1). Then u ∈ C∞(Ω).

As stated earlier, we first need to establish the global C2,β estimates for the eigen-
function u, which is both essential and intricate. For the details, we refer to the
original paper [LS2], and we simply state the result here for later use.

Theorem 3.2 ([LS2, Theorem 1.3]). Let Ω be a bounded and uniformly convex domain

in Rn. Assume ∂Ω ∈ C2,β with β ∈
Ä
0, 2

n+2

ä
, and u satisfies (3.1). Then u ∈ C2,β(Ω).

To prove Theorem 3.1, we first perform a Hodograph transform and reduce (3.1)
to a similar equation in the upper half-space. Then, we apply the partial Legendre
transform in the nondegenerate x′ coordinates. The structure of the equation satisfied
by the transformed function allows us to utilize the C2,β estimates for the Monge-
Ampère eigenfunctions obtained in Theorem 3.2, along with Schauder estimates for
linear equations with Hölder coefficients modeled by a degenerate Grushin-type op-
erator. These steps yield the desired global C∞ regularity.

We first write an equation in the upper half-space that is locally equivalent to (3.1).
After a dilation we may assume that λ = 1. The Monge-Ampère eigenfunctions are
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C∞ in the interior of Ω, so it remains to prove their C∞ smoothness near the boundary
∂Ω. Assume that 0 ∈ ∂Ω and en is the inner normal of ∂Ω at 0. We make the rotation
of coordinates

yn = −xn+1, yn+1 = xn, yk = xk (1 ≤ k ≤ n− 1).

In the new coordinates, the graph of u near the origin can be represented as yn+1 =
ũ(y) in the upper half-space Rn

+ = {y ∈ Rn : yn > 0}. The tangent plane at 0 is
given by

xn+1 − unxn − ukxk = 0.

After the above rotation of coordinates, it is given by

−yn − unyn+1 − ukyk = 0, or yn+1 +
yn
un

+
uk
un
yk = 0.

Hence

ũyn = − 1

uxn
> 0 (near 0), ũyk = −uk

un
.

Note that the Gauss curvature is invariant under the transform, hence

K =
detD2ũ

(1 + |Dũ|2)n+2
2

=
detD2u

(1 + |Du|2)n+2
2

=
|u|n

(1 + |Du|2)n+2
2

.

Now, we obtain the following equation in a neighborhood of the origin in the upper
half-space {yn > 0}:

detD2ũ = K(1 + |Dũ|2)
n+2
2 = |yn|n

Å
1 + |Dũ|2

1 + |Du|2

ãn+2
2

= |yn|n
Å

1

u2n

ã 1
n+2

= ynnũ
n+2
n .

Near the origin, the boundary ∂Ω is given by xn = ϕ(x′) in the original coordinates.
Thus, the boundary condition for ũ is ũ = ϕ on {yn = 0}. Thus, locally, we have for
some small r0 > 0 (now relabeling y by x)

(3.2)

®
detD2ũ = xnnũ

n+2
n in B+

r0
,

ũ = ϕ on {xn = 0} ∩Br0 .

Since u ∈ C2,β(Ω) by Theorem 3.2, we have ũ ∈ C2,β(B
+

r0
) for some small β > 0, and

ũn > c. It remains to show that solutions of (3.2) with ϕ ∈ C∞ are smooth up to the
boundary in a neighborhood of the origin. For simplicity of notation, we relabel ũ
from (3.2) as u. Now, we apply the partial Legendre transformation to the solutions
u of (3.2). Combining (1.2), we know that if u satisfies (3.2), then u⋆ (which is convex
in y′ and concave in yn) satisfies

(3.3)

®
yαn(−u⋆n)n+2 detD2

y′u
⋆ + u⋆nn = 0 in B+

δ ,

u⋆ = ϕ⋆ on {yn = 0} ∩Bδ,

where α = n. Moreover u⋆ ∈ C2,β(B
+

δ ), −u⋆n > c and ϕ⋆ ∈ C∞.
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In order to obtain the smoothness of u⋆ from (3.3), we should establish Schauder
estimates for its linearized equation. We consider linear equations of the form

(3.4) xαn

n−1∑
i,j=1

aijvij + vnn = xαnf(x)

with aij uniformly elliptic

λIn−1 ≤ (aij)1≤i,j≤n−1 ≤ ΛIn−1.

We define the distance dα between two points y and z in the upper half-space by

dα(y, z) := |y′ − z′|+
∣∣∣y 2+α

2
n − z

2+α
2

n

∣∣∣ .
If function w is Cγ respect to dα (with γ ∈

Ä
0, 2

2+α

ä
), we write

w ∈ Cγ
α(B

+

δ )

and define

[w]
Cγ

α(B
+
1 )

= sup
y,z∈B+

1
y ̸=z

|w(y)− w(z)|
(dα(y, z))γ

, ∥w∥
Cγ

α(B
+
1 )

= ∥w∥
L∞(B

+
1 )

+ [w]
Cγ

α(B
+
1 )
.

Then we have

Proposition 3.3 (Schauder estimate). Assume that v solves (3.4) in B
+

δ and

v = φ(x′) on {xn = 0} ∩B+

δ .

If aij, f ∈ Cγ
α(B

+

δ ) with
γ
2
≤ min{1,α}

2+α
, and φ ∈ C2,γ, then

Dv, D2v ∈ Cγ
α(B

+

δ/2).

The proof of Proposition 3.3 is standard, and we refer to Section 6.3 of [LS2] for
the detailed proof. By repeatedly differentiating (3.4) in the x′ direction, we readily
obtain Schauder estimates for higher derivatives. Below, m = (m1, . . . ,mn−1) denotes
a multi-index with mi being nonnegative integers.

Corollary 3.4. If in Proposition 3.3 φ ∈ Ck+2,γ for some integer k ≥ 0 and

Dm
x′a

ij, Dm
x′f ∈ Cγ

α(B
+

δ ) ∀m with |m| ≤ k,

then
DDm

x′v, D
2Dm

x′v ∈ Cγ
α(B

+

δ/2) ∀m with |m| ≤ k.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Recall u⋆ satisfies (3.3):®
yαn(−u⋆n)n+2 detD2

y′u
⋆ + u⋆nn = 0 in B+

δ ,

u⋆ = ϕ⋆ on {yn = 0} ∩Bδ,
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with α = n, u⋆ ∈ C2,β(B
+

δ ), −u⋆n > c and ϕ⋆ ∈ C∞.
Fix k < n. Then v = u⋆k solves the linearized equation

(3.5) yαn

n−1∑
i,j=1

aijvij + vnn = yαnf(y) in B+
δ

where
aij = (−u⋆n)n+2U⋆ij

y′ , f(y) = (n+ 2)(−u⋆n)n+1u⋆nk detD
2
y′u

⋆,

and U⋆
y′ denotes the cofactor matrix of D2

y′u
⋆. Since u⋆ ∈ C2,β(B

+

δ ) we obtain

Du⋆, D2u⋆ ∈ Cγ
α(B

+

δ ) for some small γ > 0, hence aij, f ∈ Cγ
α(B

+

δ ).

By Proposition 3.3, D2v ∈ Cγ
α up to the boundary in B

+

δ/2 which in turn implies

Dy′a
ij, Dy′f ∈ Cγ

α(B
+

δ/2). Now we may apply Corollary 3.4 and iterate this argument

to obtain that Dm
y′D

l
ynu

⋆ with l ∈ {0, 1, 2} are continuous up to the boundary in B
+

δ/2

for all multi-indices m ≥ 0. In order to obtain the continuity of these derivatives for
all values of l we differentiate the equation for u⋆ and use that α = n is a nonnegative
integer. Then each derivative Dm

y′D
l
ynu

⋆ with l ≥ 3 can be expressed as a polynomial

involving powers of yn and derivatives Dq
y′D

s
ynu

⋆ with s < l, thus u⋆ ∈ C∞(B
+

δ/2) as
desired. □

4. Bernstein theorem for a singular Monge-Ampère equation

In this section, we prove a Bernstein theorem for the singular Monge-Ampère type
equation in the half-space, as established by Huang, Tang, and Wang [HTW]. This
type of Bernstein theorem arises from investigating the regularity of the free boundary
in the Monge-Ampère obstacle problem. Specifically, Huang, Tang, and Wang [HTW]
studied the regularity of free boundaries for the fully nonlinear elliptic equation of
Monge–Ampère type:

(4.1)

®
detD2v = fχ{v>0} in Ω,

v = v0 on ∂Ω,

where Ω is a bounded domain in Rn, f and v0 are positive functions on Ω, and χ is
the characteristic function.

After applying the classical Legendre transform,

u(x) := sup
y∈Ω

{x · y − v(y)}, x ∈ Ω∗ := Dv(Ω),

equation (4.1) transforms into the following Monge-Ampère equation with a point
singularity:

(4.2) detD2u = g(Du) + c∗δ0 in Ω∗,

where g(Du(x)) = 1
f(y)

at y = Du(x), and c∗ = |{v = 0}| is a constant. By duality,

we know
∂u(0) = {v = 0}.
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Hence, heuristically, to establish the regularity of the free boundary ∂{v = 0}, it
suffices to obtain the regularity of u in the spherical coordinates (since u is most
likely singular at 0).

In spherical coordinates (θ, r), we make the change

ζ(θ, r) :=
u(θ, r)

r
, s = r

n
2 ,

which transforms (4.2) into
(4.3)

det

á(
n
2

)2
ζss +

n(n+2)
4

ζs
s

n
2
ζsθ1 · · · n

2
ζsθn−1

n
2
ζsθ1 ζθ1θ1 + ζ + n

2
sζs · · · ζθ1θn−1

...
...

. . .
...

n
2
ζsθn−1 ζθ1θn−1 · · · ζθn−1θn−1 + ζ + n

2
sζs

ë
= g.

Then the regularity of the free boundary ∂{v = 0} is thus reduced to that of ζ in
(4.3). A standard approach to obtain regularity is to use a blowup argument, which
simplifies equation (4.3) to the following equation:

det

á
ψxnxn + n+2

n
ψxn

xn
ψxnx1 · · · ψxnxn−1

ψxnx1 ψx1x1 · · · ψx1xn−1

...
...

. . .
...

ψxnxn−1 ψx1xn−1 · · ·ψxn−1xn−1

ë
= constant in Rn

+,

where Rn
+ = Rn ∩ {xn > 0}. Hence, a key step is to classify all solutions to the above

equation in the half-space.
For simplicity, we relabel ψ as u and assume the right-hand side constant is 1, i.e.,

we consider the following singular Monge-Ampère equation in the half-space:

(4.4) det

á
uxnxn + buxn

xn
uxnx1 · · · uxnxn−1

uxnx1 ux1x1 · · · ux1xn−1

...
...

. . .
...

uxnxn−1 ux1xn−1 · · ·uxn−1xn−1

ë
= 1 in Rn

+.

We now state the following Bernstein theorem.

Theorem 4.1. Let u ∈ C1,1(Rn
+) be a solution to (4.4) with constant b > −1. Assume

that Du(0) = 0, uxn(x
′, 0) = 0 ∀x′ ∈ Rn−1, and equation (4.4) is uniformly elliptic.

Then u is a quadratic polynomial of the form

(4.5) u(x) =
1

2

n−1∑
i,j=1

cijxixj +
1

2
cnnx

2
n,

where {cij}n−1
i,j=1 is positive definite and cnn > 0.
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To prove the Bernstein theorem, we should make use of the Hölder continuity for
the following degenerate elliptic equation:

(4.6) ∂n(xn∂nv) +
n−1∑
i,j=1

∂i(aij(x)∂jv) +
n∑
i=1

bi(x)∂iv = f(x) in Rn
+.

We assume that the coefficients aij and bi satisfy the following conditions:

(i) aij are measurable and satisfy

C−1
∗ |ξ|2 ≤ aijξiξj ≤ C∗|ξ|2, ∀ ξ ∈ Rn−1,

where C∗ is a positive constant.
(ii) b1 = · · · = bn−1 = 0 and bn is a positive constant.

Proposition 4.2. Let v ∈ C2(B+
1 ) ∩ L∞(B+

1 ) be a solution to (4.6). Assume condi-
tions (i), (ii), and f ∈ Lq(B+

1 ) for some q > (n + 1)/2. Then v is continuous up to
{xn = 0}, and there exists α ∈ (0, 1) such that

(4.7) |u(x)− u(x̃)| ≤ C

(
sup
B+

1

|u|+ ∥f∥Lq(B+
1 )

)
|x− x̃|α ∀x, x̃ ∈ B+

1/2,

where α and C are positive constants depending only on n, b, q, C∗.

The Hölder continuity of solutions for degenerate elliptic equations has been studied
by many authors. For proofs of Proposition 4.2, we refer the reader to [FP] and
[HHH]. To apply Proposition 4.2 to the singular Monge-Ampère equation (4.4), we
make a higher-dimensional partial Legendre transform to change equation (4.4) to
the form (4.6).

We know that u⋆ satisfies

(4.8) u⋆ynyn + b
u⋆yn
yn

+ detD2
y′u

⋆ = 0 in Rn
+.

In equation (4.8), the singular term
u⋆yn
yn

is separate from the nonlinear part detD2
y′u

⋆.

This is a very helpful property. Moreover, the Monge-Ampère operator detD2
y′u

⋆ is
of divergence form. Hence equation (4.8) is of the same form as (4.6). Moreover, we
assume that u ∈ C1,1 such that (4.4) is uniformly elliptic. We have the following key
estimate.

Lemma 4.3. Let u⋆ ∈ C1,1(Rn
+) be a solution to (4.8) with b > −1. Assume that

u⋆yn(y
′, 0) = 0, ∀ y′ ∈ Rn−1, and D2

y′u
⋆ is positive definite. Then

u⋆yn
yn

∈ Cα(Rn
+) for

some α ∈ (0, 1), and we have the estimate

(4.9)

∥∥∥∥u⋆ynyn
∥∥∥∥
Cα(Rn−1×[0,1])

≤ C

for a constant C depending only on b, n,
∥∥D2

y′u
⋆
∥∥
L∞(Rn

+)
, and

∥∥(D2
y′u

⋆)−1
∥∥
L∞(Rn

+)
.
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Proof. Let zn = 1
4
y2n, z

′ = y′. Then equation (4.8) is changed to

znu
⋆
znzn +

b+ 1

2
u⋆zn + detD2

zu
⋆ = 0 in Rn

+.

Denote v = u⋆zn . Differentiating the above equation in zn gives

∂zn(znvzn) +
n−1∑
i,j=1

∂zi(aijvzj) +
b+ 1

2
vzn = 0 in Rn

+.

Here {aij}n−1
i,j=1 is the cofactor matrix of D2

z′u
⋆. By assumption, D2

y′u
⋆ is positive

definite. Hence λI ≤ {aij} ≤ ΛI for two positive constants λ, Λ depending only on∥∥D2
y′u

⋆
∥∥
L∞(Rn

+)
and

∥∥(D2
y′u

⋆)−1
∥∥
L∞(Rn

+)
. Moreover,

v(z) = u⋆zn =
2u⋆yn
yn

= 2

∫ 1

0

u⋆ynyn(y
′, tyn) dt ∈ L∞(Rn

+).

Therefore, all the conditions in Proposition 4.2 are satisfied.

By Proposition 4.2, we obtain the Hölder continuity of v. Note that v(z) =
2u⋆yn
yn

,

hence we obtain (4.9). □

Lemma 4.4. Let u ∈ C1,1(Rn
+) be a solution to (4.4) with constant b > −1. Assume

that uxn(x
′, 0) = 0, ∀x′ ∈ Rn−1, and equation (4.4) is uniformly elliptic. Then

u ∈ C2,α(Rn
+) for some α ∈ (0, 1).

Proof. Let u⋆ be the partial Legendre transform of u. Then u⋆ satisfies equation (4.8)

and the assumptions of Lemma 4.3. Hence by Lemma 4.3,
u⋆yn
yn

∈ Cα(Rn
+). Recall

that uxn
xn

= −u⋆yn
yn

. We therefore have∣∣∣∣uxn(x)xn
− uxn(x̃)

x̃n

∣∣∣∣ = ∣∣∣∣u⋆yn(y)yn
−
u⋆yn(ỹ)

ỹn

∣∣∣∣ ≤ C|y − ỹ|α.

By the partial Legendre transform, yn = xn, y
′ = Dx′u. It follows that

|y′ − ỹ′| = |Dx′u(x)−Dx′u(x̃)| ≤ ∥D2u∥L∞(Rn
+)|x− x̃|.

Hence uxn
xn

∈ Cα(Rn
+), and we have the estimate∥∥∥∥uxnxn

∥∥∥∥
Cα(Rn−1×[0,1])

≤ C

for a constant C depending only on b, n, and ∥D2u∥L∞(Rn
+).

We make an even extension of u(x) with respect to the variable xn and still denote
it by u(x). Regard uxn

xn
as a known function, which is Hölder continuous. Then we

can write equation (4.4) in the form

F(x,D2u) = 1.
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By our assumption, F is fully nonlinear, uniformly elliptic, and is Cα smooth in x.
Since F 1

n is concave in D2u, by the Evans-Krylov estimate, we also conclude that
u ∈ C2,α(Rn). □

With the aid of Lemma 4.4, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let u be the solution in Theorem 4.1. Let

um(x) :=
u(mx)

m2
, m = 1, 2, · · ·

be a blowdown sequence of u. Since (4.4) is uniformly elliptic for u, it is also uniformly
elliptic for um with the same ellipticity constants. The uniform ellipticity implies that
there is a constant Ĉ > 0 , independent of m, such that

(4.10) Ĉ−1I ≤ Mum ≤ ĈI,

where I is the unit matrix and Mu denotes matrix in equation (4.4). Hence the first
entry in the matrix Mum satisfies

umxnxn + b
umxn
xn

= f̂ ,

for a function f̂ satisfying Ĉ−1 ≤ f ≤ Ĉ. We can solve the above equation, regarding
it as an ode with variable xn,

(4.11) um(x′, xn) = um(x′, 0) +

∫ xn

0

r−b
Å∫ r

0

sbf̂(x′, s) ds

ã
dr.

In (4.11) we have used the initial condition um(x′, 0) = 0. Note that (4.10) implies
that um(x′, 0) = O(|x′|2). Hence from (4.11) we have um(x) = O(|x′|2) near 0.

Hence by the assumptions in Theorem 4.1, um satisfies the conditions in Lemma
4.4, uniformly in m. Therefore, by Lemma 4.4 we have∣∣D2u(x)−D2u(0)

∣∣ = lim
m→+∞

∣∣∣D2um
( x
m

)
−D2um(0)

∣∣∣ = 0

for any given point x ∈ Rn
+. That is, D2u(x) = D2u(0), ∀x ∈ Rn

+. Hence u is
a quadratic polynomial. By the assumption uxn(x

′, 0) = 0, ∀x′ ∈ Rn−1, we have
cin = 0 in the polynomial (4.5). □

The following example shows that the Bernstein Theorem 4.1 is not unconditionally
true.

Example 4.5. Let

u(x) =
1

2
(x22 + · · ·+ x2n−1) +

1

2
x21x

b−1
n +

x3−bn

2(3− b)
,

where b > 1. By direct computation, u satisfies equation (4.4).
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5. Further discussions

In this section, we will explore potential applications of the higher-dimensional par-
tial Legendre transform to Monge-Ampère type fourth-order equations and linearized
Monge-Ampère equations. It is worth noting that successful attempts have already
been made in the two-dimensional case, as demonstrated in works such as [WZ1, Wa].
Building on these results, we aim to extend the application of this transform to higher
dimensions, providing new insights and tools for analyzing these equations.

We study the regularity of the following fourth-order equations of Monge-Ampère
type

(5.1)
n∑

i,j=1

U ijwij = 0,

where {U ij} is the cofactor matrix of D2u for an unknown convex function, wij :=
∂2w

∂xi∂xj
, and

(5.2) w =

{
[detD2u]−(1−θ), θ ∈ [0, 1),

log detD2u, θ = 1.

When θ = 1/(n + 2), this equation corresponds to the *affine maximal hypersurface
equation* in affine geometry [Ch]. When θ = 0, it reduces to *Abreu’s equation*,
which arises in the study of extremal metrics on toric manifolds in Kähler geometry
[Ab] and is equivalent to

∑
i,j

∂2uij

∂xi∂xj
= 0,

where {uij} is the inverse matrix of D2u.
The regularity of (5.1) has been extensively studied (see [TW1, TW2, Do, Zh1,

Zh2, CHLS, Le1, Le2, CW]) and is typically analyzed as a system coupling a Monge-
Ampère equation with a linearized Monge-Ampère equation. As a result, previous
studies heavily rely on the fundamental interior regularity results of Caffarelli and
Gutiérrez [CG] for the linearized Monge-Ampère equation, which were later extended
to boundary regularity and higher-order estimates in [LS1, GN1, GN2].

In this section, we explore the possibility of employing the higher-dimensional par-
tial Legendre transform to establish regularity results. Our primary focus is on the
case θ ∈ [0, 1] due to its rich geometric significance.
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In order to derive the equation under the partial Legendre transform, we consider
the associated functionals of (5.1)

Aθ(u) =



∫
Ω

[detD2u]θ dx, θ ∈ (0, 1),∫
Ω

ln detD2u dx, θ = 0,∫
Ω

(detD2u) ln detD2u dx, θ = 1.

Proposition 5.1. Let u be a uniformly convex solution to (5.1) in Ω. Then in
Ω⋆ = P(Ω), its partial Legendre transform u⋆ satisfies

(5.3)
∂

∂yi

ñÇ
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′

∂

∂yj
w⋆
ô
+

∂2

∂y2n
w⋆ = 0,

where w⋆ =

Å
− u⋆ynyn

detD2
y′u

⋆

ãθ−1

.

Proof. As

detD2u = −
u⋆ynyn

detD2
y′u

⋆
, dx = detD2

y′u
⋆ dy,

we have

Aθ(u) =

∫
Ω⋆

Ç
−

u⋆ynyn
detD2

y′u
⋆

åθ
detD2

y′u
⋆ dy

=

∫
Ω⋆

(−u⋆ynyn)
θ(detD2

y′u
⋆)1−θ dy =: A⋆θ(u

⋆), θ ∈ (0, 1);

A0(u) =

∫
Ω⋆

ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
detD2

y′u
⋆ dy =: A⋆0(u

⋆);

A1(u) =

∫
Ω⋆

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
detD2

y′u
⋆ dy =: A⋆1(u

⋆).

Since u is maximal with respect to the functional Aθ, u
⋆ is maximal with respect to

the functional A⋆θ. It suffices to derive the Euler-Lagrange equation of A⋆θ.
First, we consider θ ∈ (0, 1). For φ ∈ C∞

0 (Ω⋆), by integration by parts,

dA⋆θ(u
⋆ + tφ)

dt

∣∣∣∣
t=0

=

∫
Ω⋆

[
(1− θ)

Ç
−

u⋆ynyn
detD2

y′u
⋆

åθ
U⋆ij
y′ φij − θ

Ç
−

u⋆ynyn
detD2

y′u
⋆

åθ−1

φynyn

]
dy
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=

∫
Ω⋆

U⋆ij
y′

[
(1− θ)

Ç
−

u⋆ynyn
detD2

y′u
⋆

åθ]
ij

−

[
θ

Ç
−

u⋆ynyn
detD2

y′u
⋆

åθ−1
]
ynyn

φ dy.

Denote w⋆ =

Å
− u⋆ynyn

detD2
y′u

⋆

ãθ−1

. Then the equation, after the transformation, becomes

∂

∂yi

Å
(w⋆)

1
θ−1U⋆ij

y′
∂

∂yj
w⋆
ã
+

∂2

∂y2n
w⋆ = 0,

i.e. (5.3). Similarly, for φ ∈ C∞
0 (Ω∗),

dA⋆0(u
⋆ + tφ)

dt

∣∣∣∣
t=0

=

∫
Ω⋆

−
detD2

y′u
⋆

u⋆ynyn

Ç
−
φynyn detD

2
y′u

⋆ − u⋆ynynU
⋆ij
y′ φij

(detD2
y′u

⋆)2

å
detD2

y′u
⋆

+ ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′ φij dy

=

∫
Ω⋆

φynyn detD
2
y′u

⋆ − u⋆ynynU
⋆ij
y′ φij

u⋆ynyn
+ ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′ φij dy,

and the equation, after the transformation, becomes

∂

∂yi

Å
(w⋆)−1U⋆ij

y′
∂

∂yj
w⋆
ã
+

∂2

∂y2n
w⋆ = 0.

i.e. (5.3). Finally,

dA⋆1(u
⋆ + tφ)

dt

∣∣∣∣
t=0

=

∫
Ω⋆

Ç
1 + ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

ååÇ
−
φynyn detD

2
y′u

⋆ − u⋆ynynU
⋆ij
y′ φij

(detD2
y′u

⋆)2

å
detD2

y′u
⋆

+

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′ φij dy

= −
∫
Ω⋆

Ç
1 + ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

ååÇÇ
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′ φij − φηη

å
+

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
ln

Ç
−

u⋆ynyn
detD2

y′u
⋆

å
U⋆ij
y′ φij dy.

Then the equation after transformation is

∂

∂yi

Å
ew

⋆

U⋆ij
y′

∂

∂yj
w⋆
ã
+

∂2

∂y2n
w⋆ = 0,

which is equivalent to (5.3). □
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Indeed, if we assume a condition analogous to that in Theorem 2.1, we can derive
an interior estimate for fourth-order equations in higher dimensions. This result can
be regarded as a natural extension of [WZ1, Theorem 1.1], which established such
estimates in the two-dimensional setting.

Theorem 5.2. Let u ∈ C2,1(Ω) be a convex solution to (5.1) satisfying

(5.4) 0 < λ ≤ detD2u ≤ Λ.

If we further assume that the determinant of the Hessian with respect to the vari-
ables x′ = (x1, . . . , xn−1), denoted by detD2

x′u, is positive everywhere in Ω. Then
for any Ω′ ⊂⊂ Ω, there exists a constant C > 0 depending on supΩ |u|, λ, Λ, θ and
dist(Ω′, ∂Ω), such that

∥u∥C4,α(Ω′) ≤ C.

Sketch proof of Theorem 5.2. Since

−
u⋆ynyn

detD2
y′u

⋆
= detD2u and U⋆

y′ =
1

detD2
x′u

D2
x′u,

we know by the assumptions that (5.3) becomes a uniformly elliptic equation. Hence,
by the classical De Giorgi-Nash-Moser theory, we conclude that w⋆ is Hölder contin-
uous in Ω⋆. Moreover, since

∂y

∂x
= detD2

x′u > 0,

we deduce that detD2u is also Hölder continuous in Ω.
By combining the Schauder regularity theory for classical Monge-Ampère equa-

tions [Ca] with Caffarelli-Gutiérrez’s Hölder estimates for linearized Monge-Ampère
equations [CG], we obtain that u ∈ C4,α

loc (Ω). □

Finally, we remark that for higher-dimensional linearized Monge-Ampère equations,
a result analogous to [Wa, Theorem 1.1] may hold. However, the situation is more
complicated than in the two-dimensional case, as we do not yet know how to transform
the cofactor matrix of the potential function ϕ in higher dimensions. This may make
it difficult to derive an explicit formula for the equation after the partial Legendre
transform. Nevertheless, inspired by the connection between Monge-Ampère type
fourth-order equations and linearized Monge-Ampère equations, as well as the two-
dimensional transformed equation (see [Wa, (2.7)]), we conjecture that the leading
terms in the higher-dimensional transformed equations might take the form

∂

∂yi

ñÇ
−

ϕ⋆ynyn
detD2

y′ϕ
⋆

å
Φ⋆ij
y′

∂

∂yj
w⋆
ô
+

∂2

∂y2n
w⋆

for some suitable expression of w⋆. We leave this question to be explored in future
work.
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