
WEIERSTRASS PPROXIMATION THEOREM

LING WANG

In this notes, we will give several proofs of the Weierstrass approximation theorem.
The original version of this result was established by Karl Weierstrass [W] in 1885 using
the Weierstrass transform. Hence, we first show the original proof given by Weierstrass,
and next we give a proof using the Bernstein polynomial. Finally, we prove the result by
considering the convolution of a sequence of polynomials.

The Weierstrass approximation theorem states precisely as follows.

Theorem 1 (Weierstrass Approximation Theorem). Let f : [a, b] → R be a continuous
function. Then f is on [a, b] a uniform limit of polynomials.

1. First proof of Theorem 1

First proof of Theorem 1. We begin by extending f to a bounded uniformly continu-
ous function on R by defining f(x) = f(a)(x−a+1) on [a−1, a), f(x) = −f(b)(x− b−1)
on (b, b+ 1], and f(x) = 0 on R\[a− 1, b+ 1]. In particular, there exists R > 0 such that
f(x) = 0 for |x| > R. Hence f is a bounded uniformly continuous function on R. For
h > 0, we define

Shf(x) =
1

h
√
π

∫ ∞

−∞
f(u)e−(

u−x
h )

2

du.

Next, we show that Shf converges uniformly to f as h → 0. Indeed, let ε > 0, then
there exists δ > 0 such that |f(x) − f(y)| < ε

2
for all x, y ∈ R with |x − y| < δ. Assume

|f(x)| ≤ M on R. Using that

∫ ∞

−∞
e−v2 dv =

√
π, one also verifies easily that

1

h
√
π

∫ ∞

−∞
e−(

u−x
h )

2

du = 1.

This implies that we can write

f(x) =
1

h
√
π

∫ ∞

−∞
f(x)e−(

u−x
h )

2

du.
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Now let h0 > 0 such that h0 <
εδ
√
π

2M
, then

|Shf(x)− f(x)| ≤ 1

h
√
π

∫ ∞

−∞
|f(u)− f(x)|e−(

u−x
h )

2

du

≤ ε

2
+

1

h
√
π

∫
|x−u|≥δ

|f(u)− f(x)|e−(
u−x
h )

2

du

≤ ε

2
+

2M

h
√
π

∫
|x−u|≥δ

e−(
u−x
h )

2

du

=
ε

2
+

2M√
π

∫
|v|≥ δ

h

e−v2 dv

≤ ε

2
+

2Mh

δ
√
π

∫
|v|≥ δ

h

|v|e−v2 dv

≤ ε

2
+

4Mh

δ
√
π

∫ ∞

0

ve−v2 dv

=
ε

2
+

2hM

δ
√
π

< ε

for all 0 < h ≤ h0 and all x ∈ R. Hence, Shf converges uniformly to f as h → 0.
Let ε > 0 and M such that |f(x)| ≤ M for all x. Then by the above claim, we know

that there exists h0 > 0 such that for all x ∈ R there is |Sh0f(x)− f(x)| < ε
2
. Since

f(u) = 0 for |u| > R, we can write

Sh0f(x) =
1

h0

√
π

∫ R

−R

f(u)e
−
(

u−x
h0

)2

du.

On

[
−2R

h0

,
2R

h0

]
, the power series of e−v2 converges uniformly, so there exists N such that∣∣∣∣∣ 1

h0

√
π
e
−
(

u−x
h0

)2

− 1

h0

√
π

N∑
k=0

(−1)k

k!

(
u− x

h0

)2k
∣∣∣∣∣ < ε

4RM

for all |x| ≤ R and all |u| ≤ R, since in that case |u− x| ≤ 2R. This implies that∣∣∣∣∣Sh0f(x)−
1

h0

√
π

∫ R

−R

f(u)
N∑
k=0

(−1)k

k!

(
u− x

h0

)2k

du

∣∣∣∣∣ < ε

2

for all |x| ≤ R. If we put

P (x) =
1

h0

√
π

∫ R

−R

f(u)
N∑
k=0

(−1)k

k!

(
u− x

h0

)2k

du,

then P (x) is a polynomial in x of degree at most 2N such that |Sh0f(x)− P (x)| < ε
2
for

all |x| ≤ R. This implies that |f(x)− P (x)| < ε for all x ∈ [a, b]. □
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Remark 2. The function Shf is the convolution of f with a Gaussian heat kernel. These
heat kernels form an approximate identity. The following figure shows the kernel for the
values h = 1, h = 1

4
and h = 1

8
.

2. Second proof of Theorem 1

First, we state Chebyshev’s inequality used in the following in probabilistic statement.

Lemma 3. Let X (integrable) be a random variable with finite non-zero variance σ2 (and
thus finite expected value µ). Then for any real number k > 0,

P (|X − µ| ≥ kσ) ≤ 1

k2
.

Second proof of Theorem 1. It suffices to prove the theorem on [0, 1]. Since f is
continuous on [0, 1], it is uniformly continuous. This means that for any ε > 0, there
exists δε > 0 such that |f(x)− f(y)| < ε/2 for all x, y ∈ [0, 1] satisfying |x− y| < δε. Let
us fix an ε > 0 and such a corresponding δε > 0.

Let r be any positive integer such that r ≥ ∥f∥∞
δ2εε

. Define the Bernstein polynomials

bk,r(x) = P (Sr,x = k) =

(
r
k

)
xk(1− x)r−k

where Sr,x ∼ Binom(r, x), the binomial distribution. Let p(x) :=
r∑

k=0

f

(
k

r

)
bk,r(x), which

is a degree- r polynomial. Then, for any x ∈ [0, 1],

|p(x)− f(x)| =

∣∣∣∣∣
r∑

k=0

(
f

(
k

r

)
− f(x)

)
bk,r(x)

∣∣∣∣∣
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≤
∑

|k−rx|<rδε

∣∣∣∣f (
k

r

)
− f(x)

∣∣∣∣ bk,r(x) + ∑
|k−rx|≥rδε

∣∣∣∣f (
k

r

)
− f(x)

∣∣∣∣ bk,r(x)
≤ ε

2
+ 2∥f∥∞ P (|Sr,x − rx| ≥ rδε)

≤ ε

2
+ 2∥f∥∞

x(1− x)

rδ2ε
(by Lemma 3)

≤ ε

2
+

∥f∥∞
2rδ2ε

≤ ε

where the final inequality uses the assumption on r. □

3. Third proof of Theorem 1

Finally, we give the third proof of Theorem 1. The idea of the proof is to choose a
suitable sequence of polynomials {Qn} such that Qn behaves like a ‘Dirac delta function’

as n→ ∞. Then, the sequence of polynomials Pn(x) =

∫ 1

0

Qn(x − t)f(t)dt converges to

f(x) as n → ∞. We will prove this momentarily, but first we need to do the ground work.
Notice that we only need to consider a = 0 and b = 1, with f(0) = f(1) = 0. If we

prove this case, then for a general f̃ ∈ C([0, 1]), ∃ a sequence of polynomials

Pn(x) → f̃(x)− f̃(0)− x(f̃(1)− f̃(0)) uniformly.

Hence,

P̃n(x) = Pn(x) + f̃(0) + x(f̃(1)− f̃(0)) → f̃(x) uniformly.

Lemma 4. Let cn :=

(∫ 1

−1

(
1− x2

)n
dx

)−1

> 0, and let

Qn(x) = cn
(
1− x2

)n
.

Then,

1. ∀n,
∫ 1

−1

Qn(x) dx = 1.

2. ∀n, Qn(x) ≥ 0 on [−1, 1], and
3. ∀δ ∈ (0, 1), Qn → 0 uniformly on δ ≤ |x| ≤ 1.

Proof. 2. Immediately clear.

1.

∫ 1

−1

Qn(x) dx = cn

∫ 1

−1

(
1− x2

)n
dx = 1 by definition of cn.

3. We first estimate cn. We have for all n ∈ N and ∀x ∈ [−1, 1],(
1− x2

)n ≥ 1− nx2.
4



It follows from the calculus

g(x) =
(
1− x2

)n − (
1− nx2

)
satisfies g(0) = 0, and

g′(x) = n · 2x
(
1−

(
1− x2

)n−1
)
≥ 0

in [0, 1]. Thus, g(x) ≥ 0 by the mean value theorem. Then,

1

cn
=

∫ 1

−1

(
1− x2

)n
dx

= 2

∫ 1

0

(
1− x2

)n
dx

> 2

∫ 1/
√
n

0

(
1− x2

)n
dx

≥ 2

∫ 1/
√
n

0

(
1− nx2

)
dx

= 2

(
1√
n
− n

3
· n−3/2

)
=

4

3

1√
n
>

1√
n
.

Therefore, cn <
√
n.

Let δ > 0. We claim that lim
n→∞

√
n
(
1− δ2

)n
= 0. Indeed,

lim
n→∞

(√
n
(
1− δ2

)n)1/n
= lim

n→∞

(
n1/n

)1/2 (
1− δ2

)
= 1− δ2 < 1.

Therefore,

lim
n→∞

√
n
(
1− δ2

)n
= 0.

Let ε > 0, and choose M ∈ N such that for all n ≥ M ,

√
n
(
1− δ2

)n
< ε.

Then, ∀n ≥ M and ∀x : δ ≤ |x| ≤ 1,∣∣cn (1− x2
)n∣∣ < √

n
(
1− x2

)n ≤
√
n
(
1− δ2

)n
< ε,

which means Qn → 0 uniformly on δ ≤ |x| ≤ 1. □

We now prove the Weierstrass Approximation Theorem.
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Third proof of Theorem 1. Suppose f ∈ C([0, 1]), f(0) = f(1) = 0. We extend f to
an element of C(R) by setting f(x) = 0 for all x /∈ [0, 1]. We furthermore define

Pn(x) =

∫ 1

0

f(t)Qn(t− x)dt.

Note that Pn(x) is in fact a polynomial. Furthermore, observe that for x ∈ [0, 1]

Pn(x) =

∫ 1

0

f(t)Qn(t− x)dt

=

∫ 1−x

−x

f(x+ t)Qn(t)dt

=

∫ 1

−1

f(x+ t)Qn(t)dt.

The second equality is true by a change of variable, and the last equality is true as
f(x+ t) = 0 for t /∈ [−x, 1− x].
We now prove Pn → f uniformly on [0, 1]. Let ε > 0. Since f is uniformly continuous

on [0, 1],∃δ > 0 such that ∀|x− y| ≤ δ, |f(x)− f(y)| < ε
2
. Let C = sup{f(x) | x ∈ [0, 1]}.

Choose M ∈ N such that ∀n ≥ M ,
√
n
(
1− δ2

)n
<

ε

8C
.

Thus, ∀n ≥ M, ∀x ∈ [0, 1], by Lemma 4,

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1

(f(x− t)− f(x))Qn(t)dt

∣∣∣∣
≤

∫ 1

−1

|f(x− t)− f(x)|Qn(t)dt

≤
∫
|t|≤δ

|f(x− t)− f(x)|Qn(t)dt+

∫
δ≤|t|≤1

|f(x− t)− f(x)|Qn(t)dt

≤ ε

2

∫
|t|≤δ

Qn(t)dt+
√
n
(
1− δ2

)n ∫
δ≤|t|≤1

2C dt

<
ε

2
+ 4C

√
n
(
1− δ2

)n
<

ε

2
+

ε

2
= ε.

□
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