
THE WIENER TEST AND POTENTIAL ESTIMATES FOR
QUASILINEAR ELLIPTIC EQUATIONS

LING WANG

In this note we follow the approach outlined in [KM2] to show how potential es-
timates for quasilinear elliptic equations can be used to establish the necessity part
of the Wiener test for all p ∈ (1, n] in the context of the main model operator, the
p-Laplacian.

We assume throughout this note thatA : Rn×Rn → Rn is a Carathéodory function,
i.e.

the function x 7→ A(x, ξ) is measurable for all ξ ∈ Rn, and

the function ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Rn;

which satisfies the following assumptions for some constants 0 < α ≤ β < ∞ and for
all ξ ∈ Rn, a.e. x ∈ Rn:

(1) A(x, ξ) · ξ ≥ α|ξ|p,

(2) |A(x, ξ)| ≤ β|ξ|p−1,

(3) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) > 0

whenever ξ ̸= ζ, and

(4) A(x, λξ) = λ|λ|p−2A(x, ξ)

for all λ ∈ R\{0}.
We define the operator T as

Tu(φ) =

∫
Ω

A(x,∇u) · ∇φ dx, ∀φ ∈ C∞
0 (Ω),

where u ∈ W 1,p
loc (Ω). In other words

Tu = −divA(x,∇u)

in the sense of distributions. The principal model operator is the p-Laplacian

Tu = −div
(
|∇u|p−2∇u

)
,

and so the ordinary Laplacian ∆ is included in this setting. Next, we define the
regularity of boundary points of an open set Ω ⊂ Rn.
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Definition 1. A boundary point x0 of bounded Ω is regular if the solution u to the
Dirichlet problem ®

Tu = 0 in Ω

u− f ∈ W 1,p
0 (Ω)

has the limit value f(x0) at x0 whenever f ∈ W 1,p(Ω) is continuous in the closure of
Ω.

It was first proved by Wiener in [Wi1, Wi2] that in the case of the Laplacian the
regularity of a boundary point x0 ∈ ∂Ω is equivalent to W2(Rn\Ω, x0) = +∞, where

Wp(E, x0) :=

∫ 1

0

Ç
capp (B(x0, t) ∩ E,B(x0, 2t))

capp (B(x0, t), B(x0, 2t))

å1/(p−1)
dt

t
,

and capp(E,G) is the p-capacity of a set E in G,

capp(E,Ω) = inf
G ⊂ Ω open

E ⊂ G

sup
K ⊂ G

K compact

inf

ß∫
|∇ϕ|p dx : ϕ ∈ C∞

0 (Ω), ϕ ≥ 1 onK

™
.

When K ⊂ Ω is compact, we have

capp(K,Ω) = inf

ß∫
|∇ϕ|p dx : ϕ ∈ C∞

0 (Ω), ϕ ≥ 1 onK

™
.

Later, many authors have extended, and expanded upon this result to more general
linear elliptic equations (and parabolic equations), and to certain nonlinear elliptic
equations. In the linear case, the definitive result of Littman-Stampacchia-Wienberger
[LSW] is, in itself, remarkable. There the authors show that a point x0 ∈ ∂Ω is a
regular point for the equation

∂i (aij(x)∂ju) = 0

in Ω with aij(x)ξiξj ≥ λ|ξ|2, λ > 0, and |aij(x)| ≤ M < ∞ for all x ∈ Rn, ξ ∈ Rn\{0}
if and only if x0 is a regular point for the Laplace equation in Ω. Linear equations
with lower order terms were subsequently considered in [St]. The theory for nonlinear
second order elliptic equations began with Maz’ya [Ma] when he found that a sufficient
condition for a point x ∈ ∂Ω to be a regular point for the p-Laplace equation, it is:
Wp (Rn\Ω, x) = +∞. After that, Kilpeläinen-Malý [KM2] establish the necessity part
of the Wiener test for all p ∈ (1, n], which is the main theorem of this note.

Theorem 2 ([KM2, Theorem 1.1]). A finite boundary point x0 ∈ ∂Ω is regular if and
only if

Wp (Rn\Ω, x0) = +∞.

An immediate corollary is:

Corollary 3. The regularity depends only on n and p, not on the operator T itself.
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The proof of Theorem 2 is related to a variant of the Wiener criterion problem,
known among specialists in nonlinear potential theory. A set E ⊂ Rn is said to be p-
thin at a point x0 ∈ Rn ifWp(E, x0) < +∞. There is a relationship between p-thinness
and A-superharmonic functions. So first we need to define what a A-superharmonic
is.

Definition 4. A function u : Ω → R is said to be A-harmonic in Ω if it is a
continuous weak solution of

(5) −divA(x,∇u) = 0

in Ω. Sometimes we will use the notation

HA(Ω) := {u : u is A-harmonic in Ω}.

To develop a potential theory, it is necessary to define superharmonic functions.

Definition 5. A function u : Ω → R ∪ {∞} is A-superharmonic in Ω if

(1) u is lower semicontinuous,
(2) u ̸≡ ∞ in each component of Ω, and
(3) for each open D ⊂⊂ Ω and each h ∈ C(D) ∩ HA(D) the inequality u ≥ h on

∂D implies u ≥ h in D.

A function v is A-subharmonic if −v is A-superharmonic.

Proposition 6.

(1) If u is A-superharmonic, then λu + τ is A-superharmonic whenever λ and τ
are real numbers and λ ≥ 0.

(2) If u and v are A-superharmonic in Ω, then the function min{u, v} is A-
superharmonic.

The following proposition connects A-superharmonic functions with supersolutions
of (5).

Proposition 7.

(1) If u ∈ W 1,p
loc (Ω) is such that Tu ≥ 0, then there is an A-superharmonic function

v such that u = v a.e. Moreover,

v(x) = ess lim inf
y→x

v(y) for all x ∈ Ω.

(2) If v is A-superharmonic, then above equation holds. Moreover, Tv ≥ 0 if
v ∈ W 1,p

loc (Ω).

(3) If v is A-superharmonic and locally bounded, then v ∈ W 1,p
loc (Ω) and Tv ≥ 0.

Let u ∈ W 1,p
loc (Ω) be an A-superharmonic function in Ω. Then it follows from

Proposition 7 that µ = Tu is a nonnegative Radon measure on Ω. Then we can show
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Theorem 8 ([KM2, Theorem 1.3]). Let E ⊂ Rn and x0 ∈ E\E . Then E is p-thin
at x0 if and only if there is an A-superharmonic function u in a neighborhood of x0

such that

lim inf
x→x0, x∈E

u(x) > u(x0).

The proofs of Theorems 2 and Theorem 8 are based on pointwise estimates of
solutions to

Tu = µ

with a Radon measure µ on the right side in terms of the Wolff potential

(6) Wµ
1,p(x0, r) =

∫ r

0

Å
µ(B(x0, t))

tn−p

ã1/(p−1) dt

t
.

One easily infers that Wµ
1,2(x0,∞) is the Newtonian potential of µ. Indeed, denote

µ = f dx, there is

Wµ
1,2(x0,∞) =

∫ +∞

0

Ç∫
B(x0,t)

f(x) dx

å
· 1

tn−1
dt

=

∫
Rn

Ç∫ +∞

|x−x0|

1

tn−1
dt

å
f(x) dx

= C

∫
Rn

f(x)

|x− x0|n−2
dx.

Then we have

Theorem 9 ([KM2, Theorem 1.6]). Suppose that u is a nonnegative A-superharmonic
function in B(x0, 3r). If µ = Tu, then

C1W
µ
1,p(x0, r) + inf

B(x0,2r)
u ≤ u(x0) ≤ C2 inf

B(x0,r)
u+ C3W

µ
1,p(x0, 2r),

where C1, C2, and C3 are positive constants, depending only on n, p, and the structural
constants α and β. In particular, u(x0) < ∞ if and only if Wµ

1,p(x0, r) < ∞.

Let us start by showing the lower estimate following the method in [KM1, Section
3]. We first record an appropriate form of Trudinger’s weak Harnack inequality [Tr,
Theorem 1.2].

Lemma 10 ([KM1, Lemma 3.2]). Let BR := B(0, R) and let u be a nonnegative
supersolution of (5) in B3R. If q > 0 is such that q(n− p) < n(p− 1), then

R−n/q

Å∫
B2R

uq dx

ã 1
q

≤ C inf
BR

u,

where C = C(n, p, q, α, β) > 0.
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Proof. By [Tr, Theorem 1.2] such a constant C exists if u ≤ 1 in B3R. However, as
well known, the simpler structure of our equation allows us to obtain the inequality
without boundedness restriction. Indeed, set uj = min{u/j, 1}. Then

R−n/q

Å∫
B2R

uj
q dx

ã 1
q

≤ C inf
BR

uj,

and hence

R−n/q

Å∫
B2R

(min{u, j})q dx

ã 1
q

≤ C inf
BR

u.

Letting j → +∞ we obtain the desired estimate. □

Also we need the following well known estimate.

Lemma 11 ([KM1, Lemma 3.3]). Let u be a supersolution of (5) in B2R such that
u > 0 in BR. Let η ∈ C∞

0 (BR) be nonnegative. For all ε ∈ (0, p− 1), we have∫
BR

|∇u|pu−1−εηp dx ≤ C

∫
BR

up−1−ε|∇η|p dx,

where C = (pβ/αε)p.

Proof. Without loss of generality, we can assume that u ≥ δ > 0 in BR, otherwise we
set ũ = u + δ and then let δ → 0. Set v = u−ε and w = vηp. Then w ∈ W 1,p

0 (BR) is
nonnegative and hence

0 ≤
∫
BR

A(x,∇u) · ∇w dx

=

∫
BR

A(x,∇u)ηp · ∇v dx+ p

∫
BR

A(x,∇u)vηp−1 · ∇η dx.

Using (1)-(2) and the Hölder inequality, it follows that

αε

∫
BR

|∇u|pu−1−εηp dx

≤ ε

∫
BR

A(x,∇u) · ∇uu−1−εηp dx = −
∫
BR

A(x,∇u)ηp · ∇v dx

≤ p

∫
BR

A(x,∇u)vηp−1 · ∇η dx = p

∫
BR

A(x,∇u) · ∇ηu−εηp−1 dx

≤ pβ

∫
BR

|∇u|p−1u−ε|∇η|ηp−1 dx

≤ pβ

Å∫
BR

|∇u|pu−1−εηp dx

ã(p−1)/p Å∫
BR

up−1−ε|∇η|p dx

ã1/p
,

which implies the required estimate. □
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The next estimate is a refined version of an estimate of Gariepy and Ziemer [GZ].

Lemma 12 ([KM1, Lemma 3.4]). Let u be a nonnegative supersolution of (5) in
B4R. Let η ∈ C∞

0 (B3R) be a cut-off function such that 0 ≤ η ≤ 1, η = 1 on B2R, and
|∇η| ≤ 10/R. Then ∫

B3R

|∇u|p−1ηp−1|∇η| dx ≤ CRn−p inf
B2R

up−1,

where C = C(n, p, α, β) > 0.

Proof. We use the argument of the proof of Theorem 2.1 in [GZ]. Let ε = 1
2
min{p−

1, p/(n− 1)} (if p = n, let ε = (n− 1)/2). Denote q = p/(p− 1), γ1 = p− 1− ε, and
γ2 = (p − 1)(1 + ε). Using Lemma 10 and Lemma 11, and the Hölder inequality we
obtain ∫

B3R

|∇u|p−1ηp−1|∇η| dx =

∫
B3R

|∇u|p−1ηp−1u−(1+ε)/qu(1+ε)/q|∇η| dx

≤
Å∫

B3R

|∇u|pu−1−εηp dx

ã1/q Å∫
B3R

u(p−1)(1+ε)|∇η|p dx

ã1/p

≤
Å
C

∫
B3R

uγ1|∇η|p dx

ã1/q Å∫
B3R

uγ2|∇η|p dx

ã1/p

≤ CR−p

Å∫
B3R

uγ1 dx

ã1/q Å∫
B3R

uγ2 dx

ã1/p
≤ CRn−p

Å
inf
B2R

u

ã γ1
q
+

γ2
p

= CRn−p inf
B2R

up−1,

and the lemma is proved. □

The following estimate takes the measure data into account.

Lemma 13 ([KM1, Lemma 3.5]). Suppose that u is A-superharmonic and µ = Tu
in an open set containing BR. Then

Rp−nµ(BR/2) ≤ C

Å
inf
BR/2

u− inf
BR

u

ãp−1

where C = C(n, p, α, β) > 0.

Proof. Write a = inf
BR

u and b = inf
BR/2

u. Without loss of generality, we may assume

that u is locally bounded, otherwise choosing a positive integer j ≥ b and set uj =
min{u, j}, then letting j → ∞. Let η ∈ C∞

0 (B3R/4), 0 ≤ η ≤ 1, be a cut-off function
such that η = 1 in BR/2 and |∇η| ≤ 10/R.
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Set v = min{u, b} − a, and use (b − a − v)ηp ∈ W 1,p
0 (B3R/4) as a test function we

have

0 ≤
∫
B3R/4

A(x,∇u) · (−∇v)ηp dx+ p

∫
B3R/4

A(x,∇u)(b− a− v)ηp−1 · ∇η dx

≤
∫
B3R/4

A(x,∇u) · (−∇v)ηp dx+ pβ

∫
B3R/4

|∇v|p−1|b− a− v|ηp−1|∇η| dx,

which implies∫
B3R/4

A(x,∇u) · ∇vηp dx ≤ pβ

∫
B3R/4

|∇v|p−1|b− a− v|ηp−1|∇η| dx

≤ pβ

Ç∫
B3R/4

|∇v|pηp dx

å(p−1)/pÇ∫
B3R/4

|b− a− v|p|∇η|p dx

å1/p

≤ pβ

α(p−1)/p

Ç∫
B3R/4

A(x,∇u) · ∇vηp dx

å(p−1)/pÇ∫
B3R/4

|b− a− v|p|∇η|p dx

å1/p

,

hence

(7)

∫
B3R/4

A(x,∇u) · ∇vηp dx ≤ C

∫
B3R/4

|b− a− v|p|∇η|p dx.

(The inequality (7) is referred to in some literature as the Caccioppoli estimate).
Next, we use the test function w = vηp in BR. Then 0 ≤ w ≤ b− a and w = b− a

on BR/2. Using (7) and Lemma 12 for u− a, we obtain∫
BR

A(x,∇u) · ∇w dx

=

∫
B3R/4

A(x,∇u) · ∇vηp dx+ p

∫
B3R/4

A(x,∇u)vηp−1 · ∇η dx

≤ C

Ç∫
B3R/4

|b− a− v|p|∇η|p dx+ (b− a)

∫
B3R/4

|∇u|p−1ηp−1|∇η| dx
å

≤ C

Ç
(b− a)p

∫
B3R/4

|∇η|pdx+Rn−p(b− a)(b− a)p−1

å
≤ CRn−p(b− a)p.

Now it follows that

(b− a)µ(BR/2) ≤
∫
BR

w dµ =

∫
BR

A(x,∇u) · ∇w dx ≤ CRn−p(b− a)p,

i.e.
µ(BR/2) ≤ CRn−p(b− a)p−1,

this concludes the proof. □
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Now we are ready to prove the lower estimate in Theorem 9.

Proof of lower estimate in Theorem 9. We may assume that x0 = 0. Let rj = 21−jr
and aj = inf

Brj

u. Then by Lemma 13 we have

c

∞∑
j=1

(rp−n2j(n−p)µ(Brj))
1/(p−1) ≤

∞∑
j=1

(aj − aj−1)

= lim
k
(ak − a0) = u(0)− a0 ≤ u(0)− inf

B2r

u.

The desired estimate follows, since

Wµ
1,p(0, r) =

∫ r

0

(
tp−nµ(Bt)

)1/(p−1) dt

t

≤ c
∞∑
j=1

(rp−n2j(n−p)µ(Brj))
1/(p−1).

□

Next, we derive the upper estimate in Theorem 9. We start with an auxiliary
estimate.

Lemma 14 ([KM2, Lemma 4.1]). Suppose that u is A-superharmonic in a ball 2B :=
B(x0, 2r) and µ = Tu. If a is a real constant, d > 0, and p− 1 < γ < n(p− 1)/(n−
p+1), then there are constants q = q(p, γ) > p and C = C(n, p, α, β, γ) > 0 such thatÇ
d−γr−n

∫
B∩{u>a}

(u− a)γdx

åp/q

≤ Cd−γr−n

∫
2B∩{u>a}

(u−a)γdx+Cd1−prp−nµ(2B),

provided that

(8) |2B ∩ {u > a}| < 1

2
d−γ

∫
B∩{u>a}

(u− a)γ dx.

Proof. Without loss of generality, we may assume that a = 0 and u is locally bounded,
and hence u ∈ W 1,p

loc (2B). Using (8) we obtain

d−γ

∫
B∩{0<u<d}

uγ dx ≤ |B ∩ {u > 0}| ≤ |2B ∩ {u > 0}| < 1

2
d−γ

∫
B∩{u>0}

uγ dx,

therefore

(9) d−γ

∫
B∩{u>0}

uγ dx ⩽ 2d−γ

∫
B∩{u⩾d}

uγ dx ⩽ C

∫
B

wq dx,

where

w =

Å
1 +

u+

d

ãγ/q

− 1,
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and q is a constant to be determined later. Pick a cut-off function η ∈ C∞
0 (2B) such

that 0 ≤ η ≤ 1, η = 1 on B and |∇η| ≤ 2/r. The Hölder inequality and the Sobolev
inequality yieldÅ

r−n

∫
B

wq dx

ãp/q
≤
Å
r−n

∫
2B

(wη)q dx

ãp/q

≤
ñ
r−n

Å∫
2B

(wη)p
∗
dx

ãq/p∗

|2B|(1−q/p∗)

ôp/q
= C

ñ
r−n · rn(1−q/p∗)

Å∫
2B

(wη)p
∗
dx

ãq/p∗ôp/q
(10)

= Crp−n

Å∫
2B

(wη)p
∗
dx

ãp/p∗
≤ Crp−n

∫
2B

|∇w|pηp dx+ crp−n

∫
2B

wp|∇η|p dx,

where p∗ := np/(n− p) and we will choose q < p∗ later. Choose the test function

v =

Ç
1−
Å
1 +

u+

d

ã1−τ
å
ηp,

where τ > 1 to be determined later. Note that

∇v = p

Ç
1−
Å
1 +

u+

d

ã1−τ
å
ηp−1∇η − 1− τ

d

Å
1 +

u+

d

ã−τ

ηp∇u+,

we have∫
2B∩{u>0}

|∇u|p

(1 + u/d)τ
ηp dx

≤ α−1

∫
2B∩{u>0}

A(x,∇u) · ∇u

(1 + u/d)τ
ηp dx

= − pd

α(τ − 1)

∫
2B∩{u>0}

A(x,∇u) ·
Å
1−

(
1 +

u

d

)1−τ
ã
ηp−1∇η dx

+
d

α(τ − 1)

∫
2B∩{u>0}

A(x,∇u) · ∇v dx

= − pd

α(τ − 1)

∫
2B∩{u>0}

A(x,∇u) ·
Å
1−

(
1 +

u

d

)1−τ
ã
ηp−1∇η dx(11)

+
d

α(τ − 1)

∫
2B

v dµ

≤ Cd

∫
2B∩{u>0}

|∇u|p−1ηp−1|∇η| dx+ Cd

∫
2B

ηp dµ
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≤ 1

2

∫
2B∩{u>0}

|∇u|p

(1 + u/d)τ
ηp dx+ C

Å
d

r

ãp ∫
2B∩{u>0}

(
1 +

u

d

)(p−1)τ

dx

+ Cd

∫
2B

ηp dµ,

where in the last inequality we employed Young’s inequality. In the second term of
the last inequality, we want the exponent inside the integral to be γ, so we can choose

τ =
γ

p− 1
.

Hence, to guarantee τ > 1, we need γ > p− 1. Note that

∇w =
γ

qd

Å
1 +

u+

d

ãγ/q−1

∇u+,

then

|∇w|p = Cd−p |∇u+|p

(1 + u+/d)p(γ/q−1)
.

To apply (11), we need p(γ/q − 1) = τ . Therefore, we set

q =
pγ

p− γ/(p− 1)
.

To ensure that q < p∗, γ must satisfy γ < n(p− 1)/(n− p + 1). On the other hand,
γ > p− 1 implies q > p. Hence by (11), we have

(12)

∫
2B

|∇w|pηp dx ≤ Cd−p

∫
2B∩{u>0}

|∇u|p

(1 + u/d)τ
ηp dx

≤ Cr−p

∫
2B∩{u>0}

(
1 +

u

d

)γ

dx+ Cd1−pµ(supp η).

Keeping (8) in mind we obtain
(13)∫

2B∩{u>0}

(
1 +

u

d

)γ

dx ≤ C

∫
2B∩{u>0}

(
1 +

(u
d

)γ)
dx ≤ Cd−γ

∫
2B∩{u>0}

uγ dx,

and, consequently, by wq ≤ (1 + u+/d)γ, Hölder’s inequality and (8), we have

rp
∫
2B

wp|∇η|p dx ≤ C

∫
2B

wp dx

≤ C

Å∫
2B

wq dx

ãp/q
|2B ∩ {u > 0}|1−p/q(14)

≤ Cd−γ

∫
2B∩{u>0}

uγ dx.
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Hence by collecting the estimates (9)-(14), we arrive at the estimateÇ
d−γr−n

∫
B∩{u>0}

uγ dx

åp/q

≤ Cd−γr−n

∫
2B∩{u>0}

uγ dx+ Cd1−prp−nµ(supp η),

where C = C(n, p, α, β, γ) > 0. □

Lemma 15. Suppose u is a nonnegative A-superharmonic function in B(x0, 2r). If
µ = Tu, then for all γ > p− 1 we have that

u(x0) ≤ C

Ç
r−n

∫
B(x0,r)

uγ dx

å1/γ

+ CWµ
1,p(x0, 2r),

where C = C(n, p, α, β, γ) > 0.

Proof. By Hölder’s inequality we may assume that

γ <
n(p− 1)

n− p+ 1
.

We fix a constant δ ∈ (0, 1) to be specified later. Let Bj = B(x0, rj), where rj = 21−jr.
We define a sequence aj recursively. Let a0 = 0 and for j ≥ 0 let

aj+1 = aj + δ−1

Ç
r−n
j

∫
Bj+1∩{u>aj}

(u− aj)
γ dx

å1/γ

.

Note that aj < ∞ for all j (see Lemma 10). We first derive the estimate

(15) δpγ/q ≤ Cδγ
Å
aj − aj−1

aj+1 − aj

ãγ
+ C(aj+1 − aj)

1−pµ(Bj)

rn−p
j

,

if j ≥ 1 is such thataj+l > aj and q = pγ/(p− γ/(p− 1)) is as in the proof of Lemma
14. From now on we assume that δ > 0 is so small that

(16) δγ ≤ 2−n−1r−n
j |Bj|.

Since

|Bj ∩ {u > aj}| ≤ (aj − aj−1)
−γ

∫
Bj∩{u>aj}

(u− aj−1)
γ dx

≤ (aj − aj−1)
−γ

∫
Bj∩{u>aj−1}

(u− aj−1)
γ dx = δγrnj−1(17)

= 2nrnj δ
γ = 2n(aj+1 − aj)

−γ

∫
Bj+1∩{u>aj}

(u− aj)
γ dx.

Hence, by (16), we have

(18) |Bj ∩ {u > aj}| ≤
1

2
|Bj|.

Let
dj = 2−(n+2)/γ(aj+1 − aj),

11



we have by (17) that

|Bj ∩ {u > aj}| ≤
1

4
d−γ
j

∫
Bj+1∩{u>aj}

(u− aj)
γ dx,

which satisfies the hypothesis (8). Hence Lemma 14 yieldsÅ
d−γ
j r−n

j

∫
Bj+1∩{u>aj}

(u− aj)
γ dx

ãp/q
≤ Cd−γ

j r−n
j

∫
Bj∩{u>aj}

(u− aj)
γ dx+ Cd1−p

j rp−n
j µ(Bj).

Finally, because

d−γ
j r−n

j

∫
Bj∩{u>aj}

(u− aj)
γ dx ≤ d−γ

j r−n
j

∫
Bj∩{u>aj−1}

(u− aj−1)
γ dx

= d−γ
j r−n

j [(aj − aj−1)δ]
γ rnj−1

= C

Å
dj−1

dj

ãγ
δγ.

By definition of dj, we have

δpγ/q ≤ C

Ç
d−γ
j r−n

j

∫
Bj+1∩{u>aj}

(u− aj)
γ dx

åp/q

≤ Cd−γ
j r−n

j

∫
Bj∩{u>aj}

(u− aj)
γ dx+ Cd1−p

j rp−n
j µ(Bj)

≤ Cδγ
Å
dj−1

dj

ãγ
+ Cd1−p

j rp−n
j µ(Bj),

and (15) follows.
Next we show that

(19) aj+1 − aj ≤
1

2
(aj − aj−1) + C

Ç
µ(Bj)

rn−p
j

å1/(p−1)

.

If aj+1 − aj ≤ 1
2
(aj − aj−1), the estimate (19) is trivial. If aj+1 − aj >

1
2
(aj − aj−1),

then (15) implies that

δpγ/q ≤ Cδγ + C(aj+1 − aj)
1−pµ(Bj)

rn−p
j

.

Now choosing 0 < δ = δ(n, p, α, β, γ) ≤ 1 small enough we obtain

δpγ/q > 2Cδγ,

hence

(aj+1 − aj)
p−1 ≤ C

µ(Bj)

rn−p
j

,

12



i.e. (19) holds.
Now we are ready to conclude the proof. First we deduce from (19) that

ak − a1 ≤ ak+1 − a1 =
k∑

j=1

(aj+1 − aj)

≤ 1

2

k∑
j=1

(aj − aj−1) + C
k∑

j=1

Ç
µ(Bj)

rn−p
j

å1/(p−1)

=
1

2
ak + C

k∑
j=1

Ç
µ(Bj)

rn−p
j

å1/(p−1)

.

Hence

lim
k→∞

ak ≤ 2a1 + C
∞∑
j=1

Ç
µ(Bj)

rn−p
j

å1/(p−1)

≤ C

Ç
r−n

∫
B(x0,r)

uγ dx

å1/γ

+ C

∫ 2r

0

Å
µ(Bx0 , t)

tn−p

ã1/(p−1) dt

t

= C

Ç
r−n

∫
B(x0,r)

uγ dx

å1/γ

+ CWµ
1,p(x0, 2r).

Now the theorem follows because by (18)

inf
Bj

u ≤ aj

for j = 1, 2, · · · , and for u is lower semicontinuous we have

u(x0) ≤ lim
j→∞

inf
Bj

u ≤ lim inf
j→∞

aj,

which completes the proof. □

Now, we can give the proof of upper estimate in Theorem 9.

Proof of upper estimate in Theorem 9. By Lemma 15 we have

u(x0) ≤ C

Ç
r−n

∫
B(x0,r)

uγ dx

å1/γ

+ CWµ
1,p(x0, 2r).

By the weak Harnack inequality in Lemma 10, we may pick γ = γ(n, p) > p− 1 such
that Ç

r−n

∫
B(x0,r)

uγ dx

å1/γ

≤
Ç
r−n

∫
B(x0,2r)

uγ dx

å1/γ

≤ C inf
B(x0,r)

u.

□

Remark 16. Because A-superharmonic functions are lower semicontinuous and sat-
isfy the minimum principle, we can replace infB(x0,r) u by inf∂B(x0,r) u.

13



Before giving the proofs of Theorem 2 and Theorem 8, we first show a direct
application of Theorem 9, i.e. the following Harnack inequality for the equations
µ = Tu.

Theorem 17. Suppose that u is a nonnegative A-superharmonic function in B(x0, 7r)
and let µ = Tu. If there are ε > 0 and M > 0 such that

µ(B(x, ϱ)) ≤ Mϱn−p+ε

whenever x ∈ B(x0, r) and 0 < ϱ < 4r, then

sup
B(x0,r)

u ≤ C1 inf
B(x0,r)

u+ C2r
ε/(p−1),

where C1 = Cl(n, p, α, β) and C2 = C2(n, p, α, β,M, ε) are positive constants.

Proof. For ∀x ∈ B(x0, r), by Theorem 9 we have

u(x) ≤ C inf
B(x,2r)

u+ CWµ
1,p(x, 4r).

Note that

Wµ
1,p(x, 4r) =

∫ 4r

0

Å
µ(B(x, ϱ))

ϱn−p

ã1/(p−1) dϱ

ϱ

≤ M1/(p−1)

∫ 4r

0

ϱε/(p−1)dϱ

ϱ
= Crε/(p−1).

Then

u(x) ≤ C inf
B(x,2r)

u+ Crε/(p−1).

It is easy to see that B(x0, r) ⊂ B(x, 2r), then we obtain that

sup
B(x0,r)

u ≤ C inf
B(x0,r)

u+ Crε/(p−1).

□

By a standard iteration, it follows from Harnack’s inequality in the above theorem
that certain A-superharmonic functions are Hölder continuous. Remarkably, we can
show that if the solution of µ = Tu is Hölder continuous, then µ must have the same
growth restriction.

Theorem 18. Suppose that u is A-superharmonic in B(x0, r). If there are positive
constants M and γ such that

|u(x)− u(y)| ≤ M |x−y|γ

for every x and y in B(x0, r), then

µ(B(x0, ϱ)) ≤ CMp−1ϱn−p+γ(p−1), ∀ ϱ ∈ (0, r/3),

where C = C(n, p, α, β) > 0.
14



Proof. We apply the estimate in Theorem 9 to A-superharmonic function u− inf
B(x0,3ϱ)

u

and obtain Å
µ(B(x0, ϱ))

ϱn−p

ã1/(p−1)

≤ C

∫ 2ϱ

ϱ

Å
µ(B(x0, t))

tn−p

ã1/(p−1) dt

t

≤ C
(
u(x0)− inf

B(x0,3ϱ)
u
)
≤ CMϱγ,

and the theorem follows. □

To proceed, we need the notion of A-potential. Suppose that E be a subset of Ω.
For x ∈ Ω let

R1
E(Ω;A)(x) = inf u(x),

where the infimum is taken over all nonnegative A-superharmonic functions u in Ω
such that u ≥ 1 on E. The lower semicontinuous regularization“R1

E(Ω;A)(x) = lim
r→0

inf
B(x,r)

R1
E(Ω;A)

of R1
E(Ω;A) is called the A-potential of E in Ω. The A-potential “R1

E(Ω;A) is A-
superharmonic in Ω and A-harmonic in Ω\E. The following lemma will be used later,
and the proof can be found in [KM2, Lemma 3.7].

Lemma 19. Suppose that Ω is bounded and E ⊂⊂ Ω. Let u = “R1
E(Ω;A) be the

A-potential of E in Ω and µ = Tu. Then

µ(U) ≤ βp

αp−1
capp(E ∩ U,Ω)

whenever U ⊂ Ω is open.

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. The sufficiency part was established in [HK, Section 4]. We are
going to prove the necessity. Let E be p-thin at x0 /∈ E. We may assume that E
is open [HK]. Write Bj = B(x0, rj), rj = 2−j, and Ej = E ∩ Bj. Let k ≥ 2 be an

integer to be specified later. Let u = “R1
Ek
(Bk−2;A) be the A-potential of Ek in Bk−2

and µ = Tu. Then u ≥ 1 on Ek and it remains to prove that (for some k) u(x0) < 1.
Denote λ = infBk

u, we have

(20) λp−1rn−p
k ≤ Cλp−1 capp(Bk, Bk−2) ≤ Cλp−1 capp({u > λ}, Bk−2).

Note that for any Ω, there is

α

∫
Ω

|∇min(u, λ)|p dx ≤
∫
Ω

A(x,∇u) · ∇min(u, λ) dx

=

∫
Ω

min(u, λ) dµ ≤ λµ(Ω),

15



which gives us that

λp−1 capp({x ∈ Ω : u(x) > λ},Ω) ≤ µ(Ω)

α
.

Hence, we obtain from (20) that

inf
Bk

u ≤ C

Ç
µ(Bk−1)

rn−p
k−1

å1/(p−1)

.

Moreover, it follows from Lemma 19 that for j > k − 2

µ(Bj) ≤ C capp(Ej, Bk−2) ≤ C capp(Ej, Bj−1).

Hence, by Theorem 9, we have that

u(x0) ≤ C inf
Bk

u+ CWµ
1,p(x0, rk−1)

≤ C
∞∑

j=k−1

Ç
capp(Ej, Bj−1)

rn−p
j

å1/(p−1)

≤ 1

2
,

where C = C(n, p, α, β) > 0 and the last inequality follows by choosing k large
enough. This completes the proof. □

Next, we prove Theorem 2.

Proof of Theorem 2. That the divergence of the Wiener integralWp(Rn\Ω, x0) implies
the regularity of x0 was proved by Maz’ya [Ma] if Ω is bounded; the general case was
treated in [Ki]. See also [HKM, 6.16 and Chapter 9], where a somewhat simpler proof
for Maz’ya’s estimate is given.

For the converse, suppose that

Wp(Rn\Ω, x0) < ∞.

If x0 is an isolated boundary point, it never is regular as easily follows by using
the maximum principle and the removability of singletons for bounded A-harmonic
functions [Ki]. Hence we are free to assume that x0 is an accumulation point of
E = Rn\Ω. Because E is p-thin at x0, we now infer from Theorem 8 that there are
balls Bi = Bi(x0, ri), i = 1, 2, such that r1 < r2 and an A-superharmonic function u in
B2 such that 0 ≤ u ≤ 1, u = 1 in B2∩E\{x0} and u(x0) ≤ 1

2
. Next, choose a function

φ ∈ C∞(Rn) such that φ ≤ u in E ∩ B1\{x0} and that φ = 1 in a neighborhood of
x0. Consider the upper Perron solution Hφ taken in the open set B1 ∩ Ω, which is
defined as

Hφ := inf{u : u ∈ Uφ},
where Uφ consists of all A-superharmonic functions u in B1∩Ω such that u is bounded
below and that lim inf

x→y
u(x) ≥ φ(y) for all y ∈ ∂(B1∩Ω). Note thatHφ ∈ W 1,p(B1∩Ω)

([HKM, 9.29] or [Ki, 6.2]), it follows from the generalized comparison principle that

Hφ ≤ u in B1 ∩ Ω.
16



E = Rn\ Ω

x0

B2 ∩ E

B1 ∩ E

Ω
B1 ∩ Ω

Figure 1.

In particular,

lim inf
x→x0

Hφ(x) ≤ lim inf
x→x0, x∈Ω

u(x) = u(x0) ≤
1

2
< 1 = φ(x0).

Hence x0 is not regular boundary point of B1\Ω. Since the barrier characterization
for regularity [Ki] implies that the regularity is a local property, it follows that x0 is
not a regular boundary point of Ω. Theorem 2 is proved. □

To conclude, we provide an equivalent characterization of the regularity of boundary
points. A boundary point x0 of a bounded domain Ω is said to be exposed if there
exists a continuous function h : Ω → R, A-harmonic in Ω, such that h(x0) = 0 and
h > 0 on Ω\{x0}. We then have the following:

Theorem 20. A boundary point x0 of a bounded open set Ω is regular if and only if
it is exposed.
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