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Elliptic integrals arose from the attempts to find the perimeter of an ellipse: 

  
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1, 𝑥 = 𝑎 cos 𝜃,   𝑦 = 𝑏 sin 𝜃 

  𝐿 = ∫ 𝑑𝑠 = 2 ∫ √1 + 𝑦′2𝑑𝑥 = ∫ √1 + 𝑏2𝑐𝑜𝑠2𝜃(−𝑎𝑠𝑖𝑛𝜃)𝑑𝜃,
2𝜋

0

𝑎

−𝑎
 

which last integral cannot be evaluated by elementary functions, viz., trigonometric, 

exponential, or logarithmic functions. 

The incomplete elliptic integral of the first kind is defined as 

  𝑢 = 𝐹(𝑘, 𝜙) = ∫
𝑑𝜃

√1−𝑘2𝑠𝑖𝑛2𝜃
,   0 < 𝑘 < 1,

𝜙

0
 

where 𝜙 is the amplitude of  𝐹(𝑘, 𝜙) or u, written 𝜙 = am 𝑢, and k is the modulus, 

𝑘 = mod 𝑢. The integral is also called Legendre’s form for the elliptic integral of the first 

kind. If 𝜙 = 𝜋 2,⁄  the integral is called the complete integral of the first kind, denoted by 

𝐾(𝑘), or simply K. 

The incomplete elliptic integral of the second kind is defined by 

  𝐸(𝑘, 𝜙) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝜃
𝜙

0
𝑑𝜃,   0 < 𝑘 < 1, 

also called Legendre’s form for the elliptic integral of the second kind. If 𝜙 = 𝜋 2,⁄  the 

integral is called the complete elliptic integral of the second kind, denoted by 𝐸(𝑘), or 

simply E. This is the form that arises in the determination of the length of arc of an 

ellipse. 

The incomplete elliptic integral of the third kind is defined by 

  𝐻(𝑘, 𝑛, 𝜙) = ∫
𝑑𝜃

(1+𝑛𝑠𝑖𝑛2𝜃)√1−𝑘2𝑠𝑖𝑛2𝜃
,    0 < 𝑘 < 1,

𝜙

0
 𝑛 ≠ 0, 

also called Legendre’s form for the elliptic integral of the third kind.  

If the transformation 𝑣 = sin 𝜃 is made in the Legendre forms, we obtain the following 

integrals, with 𝑥 = sin 𝜙 

  𝐹1(𝑘, 𝑥) = ∫
𝑑𝑣

√(1−𝑣2)(1−𝑘2𝑣2)

𝑥

0
, 

  𝐸1(𝑘, 𝑥) = ∫ √
1−𝑘2𝑣2

1−𝑣2
𝑑𝑣

𝑥

0
, 

  𝐻1(𝑘, 𝑛, 𝑥) = ∫
𝑑𝑣

(1+𝑛𝑣2)√(1−𝑣2)(1−𝑘2𝑣2)
,

𝑥

0
 



called Jacobi’s forms for the elliptic integrals of the first, second, and the third kinds 

respectively. These are complete integrals if 𝑥 = 1. 

Using Landen’s transformation  

  tan 𝜙 =
sin 2𝜙1

𝑘+cos 2𝜙1
 or 𝑘 sin 𝜙 = sin(2𝜙1 − 𝜙), 

we can rewrite 

 𝐹(𝑘, 𝜙) =
2

1+𝑘
𝐹(𝑘1, 𝜙1) =

2

1+𝑘
∫

𝑑𝜙1

√1−𝑘1
2𝑠𝑖𝑛2𝜙1

,   
𝜙1

0
where   𝑘1 =

2√𝑘

1+𝑘
,  𝑘 < 𝑘1 < 1. 

By successive applications of the transformation, we obtain a sequence of moduli 

  𝑘𝑛, 𝑛 = 1,2,3, …,   𝑘𝑖 =
2√𝑘𝑖−1

1+𝑘𝑖−1
,   lim𝑛→∞ 𝑘𝑛 = 1, 

from which we can write 

 𝐹(𝑘, 𝜙) = √
𝑘1𝑘2𝑘3…

𝑘
∫

𝑑𝜃

√1−𝑠𝑖𝑛2𝜃
=

𝜙

0
√

𝑘1𝑘2𝑘3…

𝑘
ln 𝑡𝑎𝑛 (

𝜋

4
+

Φ

2
) ,   Φ = lim𝑛→∞ 𝜙𝑛. 

In practice, accurate results are obtained after only a few applications of the 

transformation. 

Many integrals are reducible to elliptic type. If 𝑅(𝑥, 𝑦) is a rational algebraic function of 

x and y, i.e., the quotient of two polynomials in x and y, then  ∫ 𝑅(𝑥, 𝑦)𝑑𝑥  can be 

evaluated in terms of the usual elementary functions (algebraic, trigonometric, inverse 

trigonometric, exponential, and logarithmic) if 𝑦 = √𝑎𝑥 + 𝑏  or  𝑦 = √𝑎𝑥2 + 𝑏𝑥 + 𝑐, 

with a,b,c constants. If  𝑦 = 𝑃(𝑥),  with  𝑃(𝑥) a cubic or quartic polynomial, the integral 

R can be evaluated in terms of elliptic integrals of first, second, or third kinds, or for 

special cases in terms of elementary functions. If P is a polynomial of degree > 4, then R 

may be evaluated with the aid of hyper-elliptic functions.    

Example 1.  ∫
𝑑𝑥

√(4−𝑥2)(9−𝑥2)
.    

2

0
Let  𝑥 = 2 sin 𝜃.  The integral becomes 

 ∫
𝑑𝜃

√9−4𝑠𝑖𝑛2𝜃
=

1

3
∫

𝑑𝜃

√1−
4

9
𝑠𝑖𝑛2𝜃

=
1

3
𝐹 (

2

3
,

𝜋

2
) .

𝜋/2

0

𝜋/2

0
 

Example 2.  ∫
𝑑𝑥

√(1+𝑥2)(1+2𝑥2)
.

1

0
   Let  𝑥 = tan 𝜃.   The integral becomes 



       ∫
𝑠𝑒𝑐2𝜃𝑑𝜃

√1+𝑡𝑎𝑛2𝜃√1+2𝑡𝑎𝑛2𝜃
= ∫

𝑑𝜃

√𝑐𝑜𝑠2𝜃+2𝑠𝑖𝑛2𝜃
= ∫

𝑑𝜃

√2−𝑐𝑜𝑠2𝜃
=

1

√2
∫

𝑑𝜃

√1−
1

2
𝑐𝑜𝑠2𝜃

.
𝜋/4

0

𝜋/4

0

𝜋/4

0

𝜋/4

0
 

Let  𝜙 = 𝜋 2⁄ − 𝜃.  The integral becomes 

  
1

√2
∫

𝑑𝜙

√1−
1

2
𝑠𝑖𝑛2𝜙

=
1

√2
{𝐹 (

1

√2
,

𝜋

2
) − 𝐹 (

1

√2
,

𝜋

4
)}

𝜋/2

𝜋/4
. 

Example 3.  ∫
𝑑𝑥

√(𝑥−1)(𝑥−2)(𝑥−3)
.

6

4
  Let  𝑢 = √𝑥 − 3  or  𝑥 = 3 + 𝑢2.  The integral becomes 

  2 ∫
𝑑𝑢

√(𝑢2+2)(𝑢2+1)
.

√3

1
  Let  𝑢 = tan 𝜃.  The integral becomes 

 2 ∫
𝑑𝜃

√2𝑐𝑜𝑠2𝜃+𝑠𝑖𝑛2𝜃
= 2 ∫

𝑑𝜃

√2−𝑠𝑖𝑛2𝜃
= √2

𝜋/3

𝜋/4
∫

𝑑𝜃

√1−
1

2
𝑠𝑖𝑛2𝜃

𝜋/3

𝜋/4

𝜋/3

𝜋/4
 

             = √2 {𝐹 (
1

√2
,

𝜋

3
) − 𝐹 (

1

√2
,

𝜋

4
)}. 

In general, ∫
𝑑𝑥

√𝑃
, where P is a 3

rd
 or 4

th
 degree polynomial, can be evaluated by elliptic 

integrals. 

The elliptic functions are defined via the elliptic integrals. The upper limit x in the Jacobi 

form of the elliptic integral of the first kind is related to the upper limit 𝜙 in the Legendre 

form by 𝑥 = sin 𝜙. Since 𝜙 = am 𝑢, it follows that 𝑥 = sin(am 𝑢). We define the elliptic 

functions   

   𝑥 = sin(am 𝑢)      = 𝑠𝑛 𝑢 

  √1 − 𝑥2 = cos(𝑎𝑚 𝑢)      = 𝑐𝑛 𝑢  

            √1 − 𝑘2𝑥2 = √1 − 𝑘2𝑠𝑛2𝑢 = 𝑑𝑛 𝑢 

       
𝑥

√1−𝑥2
=

𝑠𝑛 𝑢

𝑐𝑛 𝑢
                   = 𝑡𝑛 𝑢.  

It is also possible to define inverse elliptic functions. For example, from 𝑥 = 𝑠𝑛 𝑢, we 

define 𝑢 = 𝑠𝑛−1𝑥, or 𝑢 = 𝑠𝑛−1(𝑥, 𝑘) = 𝑠𝑛−1𝑥, mod 𝑘, to show the dependence of u on 

k. 

These functions have many important properties analogous to those of trigonometric 

functions. One special property is the fact that these functions are doubly periodic, one 

period is real, the other is complex. If 



  𝐾 = ∫
𝑑𝜃

√1−𝑘2𝑠𝑖𝑛2𝜃
,

𝜋/2

0
 

then  𝑠𝑛(𝑢 + 4𝐾) = 𝑠𝑛 𝑢 

  𝑐𝑛(𝑢 + 4𝐾) = 𝑐𝑛 𝑢 

  𝑑𝑛(𝑢 + 2𝐾) = 𝑑𝑛 𝑢 

  𝑡𝑛(𝑢 + 2𝐾) = 𝑡𝑛 𝑢. 

These functions also have other periods, which are complex. If 

  𝐾′ = ∫
𝑑𝜃

√1−𝑘′2𝑠𝑖𝑛2𝜃
,     𝑘′ = √1 − 𝑘2,

𝜋/2

0
 

Then 𝑠𝑛 𝑢 has periods 4𝐾 and 2𝑖𝐾′; 𝑐𝑛 𝑢 has periods 4𝐾 and 2𝐾 + 2𝑖𝐾′; and dn u  has 

periods 2𝐾 and 4𝑖𝐾′. For this reason, the elliptic functions are called doubly-periodic.           

                                

 

 

Application 1.  Perimeter of an ellipse.   

The ellipse  𝑥 = 𝑎 cos 𝜃,   𝑦 = 𝑏 sin 𝜃,   𝑎 > 𝑏 > 0,    has length 

 𝐿 = 4 ∫ √𝑑𝑥2 + 𝑑𝑦2𝜋/2

0
= 4 ∫ √𝑎2𝑐𝑜𝑠2𝜃 + 𝑏2𝑠𝑖𝑛2𝜃𝑑𝜃

𝜋/2

0
 

     = 4 ∫ √𝑎2 − (𝑎2 − 𝑏2)𝑠𝑖𝑛2𝜃𝑑𝜃 = 4𝑎 ∫ √1 − 𝑒2𝑠𝑖𝑛2𝜃𝑑𝜃,
𝜋/2

0

𝜋/2

0
 

where   𝑒2 = (𝑎2 − 𝑏2) 𝑎2 = 𝑐2/𝑎2⁄    is the square of the eccentricity of the ellipse. 



The result can be written as 𝐿 = 4𝑎𝐸 (𝑒,
𝜋

2
) = 4𝑎𝐸(𝑒). For the special case of a circle, 

𝑎 = 𝑏 = 𝑟, i.e., 𝑒 = 0,  and  𝐸(0) = 𝜋/2,  and we recover the circumference of a circle:  

𝐿 = 2𝜋𝑟. The term elliptic integral was coined by Count Fagnano (1682 – 1766) in 1750. 

He discovered that the arclength of the lemniscate can be expressed in terms of an elliptic 

integral of the first kind. 

 

Application 2.  Arclength of a lemniscate.   

The lemniscate is the figure 8 curve:   (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2)2,  or in polar form 

         𝑟2 = 𝑎2 cos 2𝜃. 

       

From   𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2, 

     𝐿 = 4 ∫ 𝑑𝑠 = 4𝑎 ∫
1

√1−𝑟4
𝑑𝑟,

1

0

𝜋/4

𝑟=0
   𝑟 = tan 𝜃 ⇒ 

 ∫
1

√1−𝑟4
𝑑𝑟 = ∫

𝑠𝑒𝑐2𝜃𝑑𝜃

𝑠𝑒𝑐𝜃√1−𝑡𝑎𝑛2𝜃
= ∫

𝑑𝜃

√cos 2𝜃
,   (cos 2𝜃 = 𝑐𝑜𝑠2𝑢) ⇒

𝜋/4

0

𝜋/4

0

1

0
 

          = ∫
𝑑𝑢

√2−𝑠𝑖𝑛2𝑢

𝜋/2

0
=

1

√2
∫

𝑑𝑢

√1−
1

2
𝑠𝑖𝑛2𝑢

=
1

√2
∙ 𝐾 (

1

√2
) .

𝜋/2

0
 

Thus,  𝐿 = 4𝑎 ∙
1

√2
𝐾 (

1

√2
) = 𝑎 ∙ 2√2(1.85407) = 𝑎(5.244102). 

(Historical note: The rectification of the lemniscate was first done by Fagnano in 1718. 

The lemniscatus, L.‘decorated by ribbons’, was first studied in astronomy in 1680 by  

Cassini, known as the ovals of Cassini (Figure 3), but his book was published in 1749, 

many years after his death. The curves were popularized by the Bernoulli brothers in 



1694.) Cassini considered more general forms of the lemniscate for whose points the 

products of the distances to two foci is a constant: 

  𝑑1𝑑2 = 𝑏2, 

       𝑏4 = 𝑟4 +
𝑎2

4
− 𝑟2𝑎2 cos 2𝜃. 

When   𝑏 =
𝑎

√2
,  centered at the origin, we get the ribbon-shaped curve.    

                              

Application 3. Finite-amplitude pendulum. 

 



The equation of motion is: 

  𝑚𝑙�̈� = −𝑚𝑔 sin 𝜃.   Let  𝑝 = �̇� → 𝑝
𝑑𝑝

𝑑𝜃
= −

𝑔

𝑙
sin 𝜃

̇
 

            ⇒ 
𝑝2

2
=

𝑔

𝑙
cos 𝜃 + 𝐶. 

I.C.:  At  𝑡 = 0:  𝜃 = 𝜃0, �̇� = 0  ⇒    
𝑑𝜃

𝑑𝑡
= −√

2𝑔

𝑙
√cos 𝜃 − cos 𝜃0. 

The period, T, is given by 

  
𝑇

4
= √

𝑙

2𝑔
∫

𝑑𝜃

√cos 𝜃−cos 𝜃0

0

𝜃0
, 

or,  𝑇 = 4√
𝑙

2𝑔
∫

𝑑𝜃

√cos 𝜃−cos 𝜃0
= 2√

𝑙

𝑔

𝜃0

0
∫

𝑑𝜃

√𝑠𝑖𝑛2(
𝜃0

2⁄ )−𝑠𝑖𝑛2(𝜃
2⁄ )

𝜃0

0
 

      = 4√
𝑙

𝑔
∫

𝑑𝑢

√1−𝑘2𝑠𝑖𝑛2𝑢
,   sin (

𝜃

2
) = sin

𝜃0

2
∙ sin 𝑢,   𝑘 = sin (

𝜃0

2
)

𝜋/2

0
 

        ∴    𝑇 = 4√
𝑙

𝑔
∙ 𝐹(𝑘),  an elliptic integral. 

For the special case of small oscillations, 𝑘 = 0, we get the classical result:  

 𝑇 = 2𝜋√
𝑙

𝑔
. 

 

Application 4.  Perihelion of Mercury. 

According to Newton’s law, where the force on a particle per unit mass is 𝜇 𝑟2,⁄  a planet 

moves around the Sun in an ellipse and, if there are no other planets disturbing it, the 

ellipse remains the same forever. According to Einstein’s law, the curvature of space 

appears as a correction term proportional to 1 𝑟4,⁄  so that the gravitational force per unit 

mass is of the form 

  𝜇 (
1

𝑟2 +
3ℎ2

𝑐2𝑟4), 

where h is the angular momentum per unit mass of the planet about the Sun, and c is the 

speed of light (cf. Lawden, 1989, or Armitage and Eberlein, 2006, for more details). The 

prediction of Einstein is that the path is very nearly an ellipse, but it does not quite close 



up. In the next revolution, the path will have advanced slightly ahead in which the planet 

is moving, and so the orbit is an ellipse which very slowly precesses. The advance of 

Mercury is the perihelion of Mercury, and is indeed one of the tests of the theory of 

relativity. Elliptic functions help to explain all that.  

Mercury’s orbit has period T = 88 days, its semimajor axis is a = 57,909,050 km, and 

eccentricity  e = 0.205630. In 1859, Leverrier of France calculated 574” of arc/century by 

perturbations due to other planets; 531” were measured. To acccount for the 

42.98”/century, Leverrier postulated the existence of an inner planet Vulcan inside 

Mercury’s orbit, but which was never found. Einstein’s prediction came in 1915.       

       

        Figure 5.  Perihelion of Mercury 

 

The equations of motion, in polar coordinates (𝑟, 𝜃), are 

  
1

2
(�̇�2 + 𝑟2�̇�2) − 𝜇 (

1

𝑟
+

ℎ2

𝑐2𝑟3
) = 𝐸,   𝑟2�̇� = ℎ, 

where E is the energy. Let 𝑢 = 1 𝑟⁄ , the orbit equation becomes 

  (
𝑑𝑢

𝑑𝜃
)

2

=
2𝜇

ℎ2 𝑢 − 𝑢2 +
2𝜇

𝑐2 𝑢3 +
2𝐸

ℎ2. 

For the planets in the Solar System, the 3
rd

 term on the RHS is very small, define the 

dimensionless variable v by 

  𝑢 = 𝜇𝑣 ℎ2.⁄  

The orbit equation becomes 



  (
𝑑𝑣

𝑑𝜃
)

2

= 2𝑣 − 𝑣2 + 𝛼𝑣3 − 𝛽 = 𝑓(𝑣), 

where    𝛼 = 2(𝜇 𝑐ℎ⁄ )2,     𝛽 = − 2𝐸ℎ2 𝜇2.⁄  

Constraints on the stability of the orbit require 

  0 < 𝛽 ≤ 1,    thus, 𝛽 = 1 + 𝜀, 𝜀 > 0. 

The term 𝛼 is very small, the largest value being that for Mercury, 𝛼 = 5.09 × 10−8.  

Further constraints on 𝑓(𝑣) show that the zeros are real and positive and satisfy 0 < 𝑣1 <

1 < 𝑣2 < 2 < 𝑣3. Accordingly, 

  𝑓(𝑣) = 𝛼(𝑣 − 𝑣1)(𝑣 − 𝑣2)(𝑣 − 𝑣3). 

Since 𝑓(𝑣) ≥ 0, v must lie in the interval 𝑣1 ≤ 𝑣 ≤ 𝑣2. The case 𝑣 ≥ 𝑣3 would lead to 

𝑣 → ∞ as 𝜃 → ∞ (so the planet would fall into the Sun) and so must be excluded. 

For small 𝛼, the roots of the cubic 𝑓(𝑣) may be expanded in ascending powers of 𝛼: 

  𝑣1 = 1 − 𝑒 −
𝛼

2𝑒
(1 − 𝑒)3 + 𝑂(𝛼2), 

  𝑣2 = 1 + 𝑒 +
𝛼

2𝑒
(1 + 𝑒)3 + 𝑂(𝛼2), 

  𝑣3 =
1

𝑎
− 2 + 𝑂(𝛼), 

with  𝑒2 = 1 − 𝛽 = 1 + 2𝐸ℎ2 𝜇2.⁄  

The orbit is given by 

  𝛼1/2𝜃 = ∫
𝑑𝑣

√(𝑣−𝑣1)(𝑣−𝑣2)(𝑣−𝑣3)
. 

Let  𝑣 = 𝑣1 + 1 𝑡2  →⁄  

  𝛼1/2𝜃 = −
2

√(𝑣2−𝑣1)(𝑣3−𝑣1)
∫

𝑑𝑡

(𝑡2−𝑎2)(𝑡2−𝑏2)
, 

where  𝑎2 = 1 (𝑣2 − 𝑣1),   𝑏2 = 1 (𝑣3 − 𝑣1).⁄⁄  

The last integral is an elliptic integral 

  𝛼1/2𝜃 =
1

√(𝑣3−𝑣1)
𝑠𝑛−1(𝑡√(𝑣2 − 𝑣1)), 

with modulus k given by  𝑘2 = (𝑣2 − 𝑣1) (𝑣3 − 𝑣1).⁄  



Finally, the relativistic orbit is given by 

  𝑣 = 𝑣1 + (𝑣2 − 𝑣1)𝑠𝑛2 (
1

2
√𝛼(𝑣3 − 𝑣1)𝜃). 

In polar coordinates, the orbit is given by 

  
1

𝑟
=

𝜇

ℎ2
(𝐴 + 𝐵𝑠𝑛2𝜂𝜃), 

where  𝐴 = 1 − 𝑒 −
𝛼

2𝑒
(1 − 𝑒)3 + 𝑂(𝛼2), 

  𝐵 = 2𝑒 + 𝛼 (3𝑒 +
1

𝑒
) + 𝑂(𝛼2), 

  𝜂 =
1

2
−

1

4
𝛼(3 − 𝑒) + 𝑂(𝛼2),   and 

  𝑘2 = 2𝑒𝛼 + 𝑂(𝛼2). 

For the special case 𝛼 = 0:   𝐴 = 1 − 𝑒, 𝐵 = 2𝑒, 𝜂 =
1

2
, 𝑘 = 0,  and we recover the 

classical orbit 

  
1

𝑟
= 1 − 𝑒 cos 𝜃, 

with semilatus rectum  𝑙 = ℎ2 𝜇⁄   and eccentricity  e. 

Perihelion occurs between  𝜃 = 𝐾 𝜂⁄   and  𝜃 = 3𝐾 𝜂,⁄   or  Δ𝜃 = 2𝐾 𝜂⁄   vs  2𝜋  for the 

classical result. Thus, the advance of perihelion per revolution is, with 𝐾 = ∫ (1 −
𝜋/2

0

𝑘2𝑠𝑖𝑛2𝜃)−1/2𝑑𝜃: 

  𝜖 =
2𝐾

𝜂
− 2𝜋 =

𝜋(1+
1

4
𝑘2+⋯ )

1

2
−

1

4
𝛼(3−𝑒)+⋯

= 3𝜋𝑎. 

For Mercury:  𝛼 = 5.09 × 10−8, 𝑇 = 88 days,  and  𝜖 = 43"/century. 

Conclusions: 

 Elliptic integrals arose from the attempts to find the perimeter of an ellipse, akin 

to the circumference of a circle. 

 There are several standard forms of elliptic integrals, but they involve radicals of 

polynomials of degree 3 or 4. 

 Familiarity with elliptic integrals allows us to solve interesting problems in 

mathematics and physics that we have heretofore avoided.   


