AN ESTIMATE FOR THE LAPLACIAN OF PICK INVARIANT

LING WANG

In this short notes, we will derive an estimate for the Laplacian of Pick invariant of an affine hypersphere along the line of [LSZ]. It was firstly obtained by W. Blaschke [Bl] in n = 2. For higher dimensional affine spheres it was obtained by E. Calabi [Ca] in the case of parabolic affine hyperspheres, and for arbitrary affine hyperspheres by R. Schneider [Sc] (with a minor misprint of a constant) and also by Cheng and Yau [CY]. First, we state the main result as follows.

Theorem 1. On a locally strongly convex affine hypersphere, we have

$$\frac{n(n-1)}{2}\Delta J \ge \|\nabla A\|^2 + n(n-1)(n+1)J(J+L_1),$$

where L_1 is the affine mean curvature, $A = \sum A_{ijk} w^i w^j w^k$ is the Fubini-Pick tensor and

$$J = \frac{1}{n(n-1)} \sum G^{il} G^{jm} G^{kr} A_{ijk} A_{lmr} = \frac{1}{n(n-1)} ||A||^2.$$

To prove Theorem 1, we need some lemmas. We firstly state and prove them in order.

Lemma 2. A non-degenerate hypersurface is an affine hypersphere if and only if the cubic form satisfies

$$A_{ijk,l} = A_{ijl,k}$$

with respect to the Levi-Civita connection.

Proof. Note that

$$A_{ijk,l} - A_{ijl,k} = \frac{1}{2} \left(G_{ik} B_{jl} + G_{jk} B_{il} - G_{il} B_{jk} - G_{jl} B_{ik} \right).$$

Hence, if there is $A_{ijk,l} = A_{ijl,k}$, we have $B = L_1G$, which implies that the hypersurface is an affine hypersphere. The converse is trival since an affine hypersphere satisfies $B = L_1G$ with L_1 , a constant.

Lemma 3. On a locally strongly convex affine hypersphere, and with respect to any orthonormal frame field, there is

(1)
$$\frac{n(n-1)}{2}\Delta J = \sum A_{ijk,l}^2 + \sum R_{ij}^2 + \sum R_{ijkl}^2 - (n+1)RL_1,$$

where R_{ij} , R_{ijkl} , and R are Ricci curvature tensor, Riemann curvature tensor and scalar curvature.

Date: May 23, 2023.

Proof. Let $x: M \to A^{n+1}$ be an affine hypersphere. Choose a local equiaffine frame field $\{x; e_1, \cdots, e_{n+1}\}$ on M such that $G_{ij} = \delta_{ij}$. Since M is an affine hypersphere, we have

(3)
$$R_{ijkl} = \sum_{m} \left(A_{iml} A_{jmk} - A_{imk} A_{jml} \right) - L_1 \left(\delta_{il} \delta_{jk} - \delta_{ik} \delta_{jl} \right).$$

Applying the Ricci identity, we have

$$\Delta A_{ijk} = \sum_{l} A_{ijk,ll} = \sum_{l} A_{ijl,kl} \quad ((2) \text{ used})$$

= $\sum_{l} A_{ijl,lk} + \sum_{l,r} A_{ijr}R_{rlkl} + \sum_{l,r} A_{irl}R_{rikl} + \sum_{l,r} A_{rjl}R_{rikl} \quad (\text{Ricci identity})$
= $\sum_{l,r} A_{ijr}R_{rlkl} + \sum_{l,r} A_{irl}R_{rjkl} + \sum_{l,r} A_{rjl}R_{rikl} \quad (\text{Apolarity condition}).$

Then the Laplacian of the Pick invariant J is given by

$$\Delta J = \frac{1}{n(n-1)} \Delta \left(\sum A_{ijk}^2 \right)$$

$$(4) \qquad = \frac{2}{n(n-1)} \left[\sum A_{ijk,l}^2 + \sum A_{ijk} A_{ijk,ll} \right]$$

$$= \frac{2}{n(n-1)} \left[\sum A_{ijk,l}^2 + \sum A_{ijk} A_{ijr} R_{rlkl} + \sum \left(A_{ijk} A_{irl} - A_{ijl} A_{irk} \right) R_{rjkl} \right].$$

By (3), we know that

$$\sum_{i,j} A_{ijk} A_{ijr} = R_{kr} - (n-1)L_1 \delta_{kr},$$

and

$$\sum_{i} \left(A_{ijk} A_{irl} - A_{ijl} A_{irk} \right) = R_{rjkl} + L_1 \left(\delta_{rl} \delta_{jk} - \delta_{rk} \delta_{jl} \right).$$

Hence, we have

(5)

$$\sum A_{ijk}A_{ijr}R_{rlkl} = \sum (R_{kr} - (n-1)L_1\delta_{kr})R_{kr}$$

$$= \sum R_{kr}^2 - (n-1)L_1\sum \delta_{kr}R_{kr}$$

$$= \sum R_{ij}^2 - (n-1)L_1R,$$

and

(6)

$$\sum (A_{ijk}A_{irl} - A_{ijl}A_{irk}) R_{rjkl} = \sum (R_{rjkl} + L_1 (\delta_{rl}\delta_{jk} - \delta_{rk}\delta_{jl}))R_{rjkl}$$

$$= \sum R_{rjkl}^2 + L_1 \sum (\delta_{rl}\delta_{jk} - \delta_{rk}\delta_{jl}) R_{rjkl}$$

$$= \sum R_{ijkl}^2 - 2L_1 R.$$

Inserting (5) and (6) into (4), we get

$$\frac{n(n-1)}{2}\Delta J = \sum A_{ijk,l}^2 + \sum R_{ij}^2 + \sum R_{ijkl}^2 - (n+1)RL_1.$$

To get the final inequality we need the following lemma, which is due to Calabi.

Lemma 4. Let M be a C^{∞} n-dimensional Riemannian manifold. With respect to any orthonormal frame field, the Riemannian curvature tensor R_{ijkl} , Ricci curvature tensor R_{ij} , and the scalar curvature R satisfying

(7)
$$\sum R_{ij}^2 \ge \frac{1}{n} R^2,$$

(8)
$$\sum R_{ijkl}^2 \ge \frac{2}{n-1} \sum R_{ij}^2.$$

Proof. (7) can be obtained easily by Cauchy-Schwarz's inequality. It suffices to prove (8). Before proving (8), we note that for n = 2, both terms of this inequality are identical, then we only need to consider $n \ge 3$. Consider the conformal curvature tensor of Weyl,

$$C_{ijkl} = R_{ijkl} - \frac{1}{n-2} \left(\delta_{ik} R_{jl} + \delta_{jl} R_{ik} - \delta_{il} R_{jk} - \delta_{jk} R_{il} \right) + \frac{R}{(n-1)(n-2)} \left(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right).$$

Then the conformal curvature tensor is traceless, which means that the contraction of any two of the four indices of C_{ijkl} gives the zero tensor. Define

$$R_{ijkl}' = R_{ijkl} - C_{ijkl}.$$

Then we get from the definition of C that

$$\sum_{i,j,k,l} \left(R'_{ijkl} \right)^2 = \frac{4}{n-2} \sum_{i,j} R_{ij}^2 - \frac{2R^2}{(n-1)(n-2)}$$

On the other hand, from the definition of R' and the traceless of C, we have

$$\sum_{i,j,k,l} R_{ijkl}^2 = \sum_{i,j,k,l} (R_{ijkl}')^2 + \sum_{i,j,k,l} (C_{ijkl})^2 + 2 \sum_{i,j,k,l} C_{ijkl} R_{ijkl}'$$

$$= \sum_{i,j,k,l} (R_{ijkl}')^2 + \sum_{i,j,k,l} (C_{ijkl})^2$$

$$\geq \sum_{i,j,k,l} (R_{ijkl}')^2$$

$$= \frac{4}{n-2} \sum_{i,j} R_{ij}^2 - \frac{2R^2}{(n-1)(n-2)}$$

$$\geq \frac{2}{n-1} \sum_{i,j} R_{ij}^2. \quad (\text{used } (7))$$

Now, we are ready to give the proof of Theorem 1.

Proof of Theorem 1. Choose a local equiaffine frame field $\{x; e_1, \dots, e_{n+1}\}$ such that $G_{ij} = \delta_{ij}$. Inserting (7) and (8) into (1), we conclude that

$$\frac{n(n-1)}{2}\Delta J \ge \sum_{i,j,k,l} A_{ijk,l}^2 + \frac{n+1}{n(n-1)}R^2 - (n+1)RL_1.$$

By Ricci curvature tensor,

$$R_{ij} = \sum A_{il}^k A_{kj}^l + \frac{n-2}{2} B_{ij} + \frac{n}{2} L_1 G_{ij},$$

we have

$$R = G^{ij}R_{ij} = n(n-1)(J+L_1).$$

Hence, we find that

$$\frac{n(n-1)}{2}\Delta J \ge \sum_{i,j,k,l} A_{ijk,l}^2 + n(n-1)(n+1)J(J+L_1),$$

which is

$$\frac{n(n-1)}{2}\Delta J \ge \|\nabla A\|^2 + n(n-1)(n+1)J(J+L_1).$$

References

- [Bl] Blaschke, W.: Vorlesungen über Differentialgeometrie II. Affine Differentialgeometrie, Springer, Berlin (1923).
- [Ca] Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. *Michigan Math. J.* 5 (1958), 105–126.
- [CY] Cheng, S. Y., Yau, S.-T.: Complete affine hypersurfaces. I. The completeness of affine metrics. Comm. Pure Appl. Math. 39 (1986), no. 6, 839–866.
- [LSZ] Li, A. M., Simon, U., Zhao, G. S.: Global affine differential geometry of hypersurfaces. De Gruyter Expositions in Mathematics, 11. Walter de Gruyter & Co., Berlin, 1993. xiv+328 pp.
- [Sc] Schneider, R.: Zur affinen Differentialgeometrie im Grossen. II. Über eine Abschätzung der Pickschen Invariante auf Affinsphären. *Math. Z.* **102** (1967), 1–8.

SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING 100871, CHINA. *Email address*: lingwang@stu.pku.edu.cn