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1. Week 3 (9.19)

Problem 1.1 (1.3). For ∀n ∈ N, let An =
[
−1 + 1

2n
, 1− 1

n

]
, prove that

∞⋃
n=1

An =

(−1, 1).

Proof. Firstly, by definition we have that

∀x ∈
∞⋃
n=1

An, ∃n0 ∈ N, s.t. x ∈ An0 ⊂ (−1, 1).

Hence

x ∈ (−1, 1),
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i.e.

(1.1)
∞⋃
n=1

An ⊂ (−1, 1).

On the other hand, ∀x ∈ (−1, 1), set

N =

[
max

{
1

2(x+ 1)
,

1

1− x

}]
+ 1,

then there is x ∈ AN , thus x ∈
∞⋃
n=1

An, which means

(1.2) (−1, 1) ⊂
∞⋃
n=1

An.

Combining (1.1) and (1.2) yields
∞⋃
n=1

An = (−1, 1).

□

Problem 1.2 (1.5). Prove that A =
{
n sin nπ

2
;n ∈ Z

}
is unbounded.

Proof. Definition: A set X is unbounded if and only if ∀M > 0, there exists a x ∈ X,
such that |x| > M . Then ∀M > 0, let

N = 2([M ] + 1) + 1,

hence ∣∣∣∣N sin
Nπ

2

∣∣∣∣ = 2([M ] + 1) + 1 > M,

which implies that A is unbounded. □

Problem 1.3 (1.23). Suppose that f(x) is defined on E, where |E| ≥ 3. Prove that
f(x) is strictly monotonic on E iff for ∀x1, x2, x3 ∈ E, if x1 < x2 < x3, then there
must be

(1.3) (f(x1)− f(x2))(f(x2)− f(x3)) > 0.

Proof. “ only if ”: Obviously.
“ if ”: Suppose that f(x) is not a strictly monotonic function, hence there exist x1,

x2, x3, x4∈ E with x1 < x2 and x3 < x4 such that

f(x1) ≤ f(x2) and f(x3) ≥ f(x4).

If x1 < x2 < x3 < x4, we know that at least one of

(f(x1)− f(x2))(f(x2)− f(x3)) and (f(x2)− f(x3))(f(x3)− f(x4))
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is non-positive, contradicting with (1.3).
If x1 < x3 < x2 < x4, we know that at least one of

(f(x1)− f(x2))(f(x2)− f(x4)) and (f(x1)− f(x3))(f(x3)− f(x4))
is non-positive, contradicting with (1.3).

Similar for other cases. Then we obtain contradictions for all cases, wihch means that
f(x) is strictly monotonic on E. □

Problem 1.4 (1.25). Prove that sin(x2 + x) is not a periodic function.

Proof. Suppose T > 0 is the period of f(x) := sin(x2 + x), we have that

f(T ) = f(−T ) = f(0) = 0.

Hence there are k1, k2 ∈ Z such that

T 2 + T = k1π and T 2 − T = k2π,

which yields

T =
k1 − k2

2
π.

Then
(k1 − k2)2

4
π +

k1 − k2
2

= k1,

i.e.

π =
2(k1 + k2)

(k1 − k2)2
∈ Q,

contradiction. □

Problem 1.5 (1.26). Suppose that f(x) is defined on (0,+∞), x1, x2 > 0. Prove

(1) If f(x)
x

is decreasing, then f(x1 + x2) ≤ f(x1) + f(x2);

(2) If f(x)
x

is increasing, then f(x1 + x2) ≥ f(x1) + f(x2).

Proof. (1) Since f(x)
x

is decreasing, then f(x1 + x2) ≤ f(x1) + f(x2), we have

f(x1 + x2)

x1 + x2
≤ f(x1)

x1
and

f(x1 + x2)

x1 + x2
≤ f(x2)

x2
.

Hence

f(x1 + x2) =
x1

x1 + x2
f(x1 + x2) +

x2
x1 + x2

f(x1 + x2) ≤ f(x1) + f(x2).

Similar for (2). □

Problem 1.6 (1.27). Suppose f(x) is defined on (−∞,+∞), and f(f(x)) ≡ x.

(1) Is f(x) unique? If not, please give an example;
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(2) If f(x) is strictly increasing, is it unique? Why?

Solution. (1) f(x) is not unique. For example f1(x) = x, f2(x) = −x, f3(x) = 1
x
, x ̸=

0; f3(0) = 0.
(2) We prove that f(x) = x. Suppose not, if there is a x0 ∈ R, such that f(x0) ̸= x0.

Without loss of generality, we assume that f(x0) > x0. Then f(f(x0)) > f(x0) by f is
strictly increasing. Hence

x0 = f(f(x0)) > f(x0) > x0,

contradiction. □

Problem 1.7. Prove that f(x) = sin x+ sin
√
2x, x ∈ R is not a periodic function.

Proof. Note that

f ′′(x) = − sinx− 2 sin
√
2x.

Hence we have

f(x) + f ′′(x) = − sin
√
2x,

2f(x) + f ′′(x) = sinx.

If T > 0 is the period of f(x), then T is also the period of f(x)+f ′′(x) and 2f(x)+f ′′(x).
Hence

T =
2kπ√
2

= 2mπ, for some k,m ∈ N,

which implies
√
2 =

k

m
∈ Q,

contradiction. □

Problem 1.8. Suppose f(x) is an increasing function defined on closed interval [a, b],
and f satisfies f(a) ≥ a, f(b) ≤ b. Prove that there exists x0 ∈ [a, b], such that
f(x0) = x0.

Proof. Set

A = {x ∈ [a, b] : f(x) ≥ x}.
Obviously, A is not empty since f(a) ≥ a, and b is an upper bound of A. Hence supA
exists. We denote x0 := supA. For ∀x ∈ A, there is x ≤ x0. Since f is increasing,
we have x ≤ f(x) ≤ f(x0), i.e. f(x0) is an upper bound of A, thus x0 ≤ f(x0). If
x0 < f(x0), then f(x0) ≤ f(f(x0)), which means f(x0) ∈ A, contradiction. Hence
f(x0) = x0. □
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Problem 1.9. Is there a function, whose period are all rational numbers but none of
irrational number?

Solution. Dirichlet function, i.e.

D(x) =

{
1, x ∈ Q,
0, x ∈ R\Q.

□
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2. Week 4 (9.26)

Problem 2.1 (2.3(5)). Using definition to prove

lim
n→∞

n3qn = 0 (|q| < 1).

Proof. It suffices to prove lim
n→∞

n3|q|n = 0, and it is obviously valid when |q| = 0, hence

we assume that |q| ≠ 0 in the following. Let

1

|q|
= 1 + α.

By binomial theorem, we have

1

|q|n
= (1 + α)n =

n∑
k=0

Ck
nα

k ≥ n(n− 1)(n− 2)(n− 3)

4!
α4

provided with n ≥ 4. Hence for n ≥ 4,

n3|q|n ≤ 24n2

(n− 1)(n− 2)(n− 3)α4
<

72

α4

1

n− 3
.

Then ∀ ε > 0, choosing N =
[

72
α4ε

]
+ 4, for any n > N , there is n3|q|n < ε, i.e.

lim
n→∞

n3|q|n = 0. □

Problem 2.2 (2.4). Suppose for all n ∈ N, there is xn ≤ a ≤ yn and lim
n→∞

(yn−xn) = 0.

Prove
lim
n→∞

xn = a = lim
n→∞

yn.

Proof. Since xn ≤ a ≤ yn, we know that

0 ≤ a− xn ≤ yn − xn.

By Sandwich Theorem, we have

lim
n→∞

xn = a.

Similar for yn. □

Problem 2.3. Suppose {an} is monotonic increasing, {bn} is monotonic decreasing,
and lim

n→∞
(bn − an) = 0. Prove that lim

n→∞
an, lim

n→∞
bn exist, and they are equal.

Proof. Assume lim
n→∞

an doesn’t exist, since {an} is monotonic increasing, we know there

is lim
n→∞

an = +∞. By {bn} is monotonic decreasing, and lim
n→∞

(bn − an) = 0, there must
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be lim
n→∞

bn = −∞. Hence, for ∀M > 0, there exists a N ∈ N, such that for ∀n > N ,

there are
an > M and bn < −M.

Then
bn − an < −2M,

which contradicts with lim
n→∞

(bn − an) = 0. Thus, lim
n→∞

an exists. It’s easy to see that

lim
n→∞

an= lim
n→∞

bn. □

Problem 2.4 (2.6(3)). {Fn} is the Fibonacci sequence, defined by

F0 = F1 = 1, Fn+1 = Fn + Fn−1.

Prove lim
n→∞

Fn = +∞ by definition.

Proof. First way: We can calculate the general terms of Fn by ‘eigenvalue method’
(See Problem 2.10 for details). Then we know

Fn =
1√
5

(1 +
√
5

2

)n+1

−

(
1−
√
5

2

)n+1
 .

Since 1+
√
5

2
> 1 and

√
5−1
2

< 1, we have lim
n→∞

Fn = +∞.

Second way: We can prove by induction that Fn ≥ n for n ≥ 1. Since lim
n→∞

n = +∞,

we know lim
n→∞

Fn = +∞. □

Problem 2.5 (2.10(6)). Calculate

lim
n→∞

3
√
n( 3
√
n+ 1− 3

√
n).

Solution.

lim
n→∞

3
√
n( 3
√
n+ 1− 3

√
n) = lim

n→∞

3
√
n

( 3
√
n+ 1)2 + 3

√
n+ 1 3

√
n+ ( 3

√
n)2

= 0.

□

Problem 2.6 (2.14). Calculate lim
n→∞

xn.

(1) xn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) ;
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(2) xn =

(n+1)2∑
k=n2

1√
k
;

(3) xn =
n
√
n lnn.

Solution. (1)Note that
q

p
<
q + 1

p+ 1
, for 0 < q < p.

Then

xn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)

=
1

2
· 3
4
· 5
6
· · · 2n− 1

2n

<
2

3
· 4
5
· 6
7
· · · 2n− 2

2n− 1
· 2n

2n+ 1

=
2

1
· 4
3
· 6
5
· · · 2n

2n− 1
· 1

2n+ 1

=
1

xn

1

2n+ 1
,

which gives us

xn <
1√

2n+ 1
.

Hence lim
n→∞

xn = 0.

(2) Note that (n+ 1)2 − n2 + 1 = 2(n+ 1), we have

2 =
2(n+ 1)

n+ 1
≤

(n+1)2∑
k=n2

1√
k
≤ 2(n+ 1)

n
→ 2, as n→∞.

Hence by Sandwich Theorem, lim
n→∞

xn = 2.

(3) When n > 3, there is n < n lnn < n2. Then

1← n
√
n <

n
√
n lnn <

n
√
n2 → 1, as n→∞.

Hence by Sandwich Theorem, lim
n→∞

xn = 1. □

Problem 2.7 (2.17). Sequence {qn} satisfies

(2.1) 0 < qn < 1, (1− qn)qn+1 >
1

4
, ∀n ∈ N.
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Prove that {qn} is monotonic increasing and lim
n→∞

qn = 1
2
.

Proof. By (2.1) and the mean value inequality, we have

qn+1

qn
>

1

4qn(1− qn)
≥ 1

4
(
qn+1−qn

2

)2 = 1,

i.e. qn+1 > qn. Hence {qn} is monotonic increasing. Then by the monotone bounded
convergence theorem, we know lim

n→∞
qn exists. Denote q := lim

n→∞
qn, by (2.1),

(1− q)q ≥ 1

4
,

i.e. (
q − 1

2

)2

≤ 0,

which means q = 1
2
. □

Problem 2.8 (2.19). Suppose that 0 < a1 < b1, let

an+1 =
√
anbn, bn+1 =

1

2
(an + bn) (n = 1, 2, · · · ).

Prove lim
n→∞

an and lim
n→∞

bn exist, and lim
n→∞

an = lim
n→∞

bn.

Proof. By the mean value inequality, we have

an+1 =
√
anbn ≤

1

2
(an + bn) = bn+1 for n ≥ 1.

Hence

an+1 =
√
anbn ≥ an and bn+1 =

1

2
(an + bn) ≤ bn for n ≥ 2.

Then

a2 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b2 for all n ≥ 2.

By the monotone bounded convergence theorem, we know lim
n→∞

an and lim
n→∞

bn exist, and

it’s easy to see that lim
n→∞

an = lim
n→∞

bn. □

Problem 2.9. Suppose that a1 > b1 > 0, let

an+1 =
an + bn

2
, bn+1 =

2anbn
an + bn

(n = 1, 2, · · · ).

Prove lim
n→∞

an and lim
n→∞

bn exist, and lim
n→∞

an = lim
n→∞

bn =
√
a1b1.
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Proof. The existence is similar to Problem 2.8. Thus, we only need to prove lim
n→∞

an =

lim
n→∞

bn =
√
a1b1, and if we notice that

an+1bn+1 = anbn = · · · = a1b1,

and
an+1 ≥

√
anbn ≥ bn+1,

it’s easy to obtain the conclusion. □

Problem 2.10. Suppose that a1 = α, b1 = β. Let

an+1 =
an + bn

2
, bn+1 =

an+1 + bn
2

(n = 1, 2, · · · ).

Prove lim
n→∞

an and lim
n→∞

bn exist, lim
n→∞

an = lim
n→∞

bn, and find the limitation.

Proof. By an+1 = (an + bn)/2, we have bn = 2an+1 − an. Hence

2an+2 − an+1 =
an+1 + 2an+1 − an

2
=

3

2
an+1 −

1

2
an,

which is

(2.2) an+2 =
5

4
an+1 −

1

4
an.

Then the characteristic equation of (2.2) is

x2 − 5

4
x+

1

4
= 0.

We find that x = 1 and x = 1
4
are the solution. Hence the general form of an is

an = A+B

(
1

4

)n

.

By a1 = α, a2 = (a1 + b1)/2 = (α + β)/2, we have

an =
1

3
α +

2

3
β +

2

3
(α− β)

(
1

4

)n−1

.

Hence lim
n→∞

an and lim
n→∞

bn exist, and lim
n→∞

an = lim
n→∞

bn = 1
3
α + 2

3
β. □

Problem 2.11 (2.20). Calculate following limitations.

(2) lim
n→∞

(
1 +

1

n2

)n

;

(3) lim
n→∞

(
1 +

1

n

)n2

.
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Solution. (2)We first note that (
1 +

1

n2

)n2

< e.

(This can be proved by definition of e.) Then we have

1 <

(
1 +

1

n2

)n

< e
1
n → 1 as n→∞.

Hence by Sandwich Theorem

lim
n→∞

(
1 +

1

n2

)n

= 1.

(3)First way: By binomial theorem, we know(
1 +

1

n

)n2

= 1 + n2 1

n
+ · · · ≥ n.

Hence

lim
n→∞

(
1 +

1

n

)n2

= +∞.

Second way: By the definition of e, we know there exists a N ∈ N, such that for
n > N , there is

e

2
<

(
1 +

1

n

)n

< e.

(Via choosing ε = e
2
.) Hence we have(

1 +
1

n

)n2

>
(e
2

)n
→ +∞ as n→∞,

i.e.

lim
n→∞

(
1 +

1

n

)n2

= +∞.

□

Problem 2.12. Using lim
n→∞

(
1 +

1

n

)n

= e to prove lim
n→∞

n∑
k=0

1

k!
= e.

Proof. By binomial theorem, we have(
1 +

1

n

)n

=
n∑

k=0

Ck
n

1

nk
=

n∑
k=0

n!

k!(n− k)!
1

nk

=
n∑

k=0

n(n− 1) · · · (n− k + 1)

k!

1

nk
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=
n∑

k=0

1

k!

(
1− 1

n

)
· · ·
(
1− k − 1

n

)

≤
n∑

k=0

1

k!
.

From the above calculation, we know for ∀m > n, there is(
1 +

1

m

)m

≥
n∑

k=0

1

k!

(
1− 1

m

)
· · ·
(
1− k − 1

m

)
.

Let m→ +∞, there is

e ≥
n∑

k=0

1

k!
≥
(
1 +

1

n

)n

.

Hence

lim
n→∞

n∑
k=0

1

k!
= e.

□

Problem 2.13. Calculate the limitation of
n∏

k=2

(
1− 1

k2

)
.

Solution.

lim
n→∞

n∏
k=2

(
1− 1

k2

)
= lim

n→∞

1

2
· 3
2
· 2
3
· 4
3
· · · n− 1

n
· n+ 1

n
=

1

2
.

□

Problem 2.14. Suppose lim
n→∞

an = a. Prove

lim
n→∞

p1an + p2an−1 + · · ·+ pna1
p1 + p2 + · · ·+ pn

= a,

where pk > 0 and lim
n→∞

pn
p1 + p2 + · · ·+ pn

= 0.

Proof. Without loss of generality, we can assume a = 0. (Otherwise, we can consider
an − a instead.) Since lim

n→∞
an = 0, we know for ∀ ε > 0, there exists N1 ∈ N, such that

for all n > N1, there is |an| < ε/2. Then∣∣∣∣p1an + · · ·+ pn−N1aN1+1

p1 + p2 + · · ·+ pn

∣∣∣∣ ≤ p1 + · · ·+ pn−N1

p1 + p2 + · · ·+ pn
· ε
2
<
ε

2
.
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Since an is convergence, we know {an} is bounded. We assume |an| ≤ M for some

M > 0. By lim
n→∞

pn
p1 + p2 + · · ·+ pn

= 0, we have∣∣∣∣pn−N1+1aN1 + · · ·+ pna1
p1 + p2 + · · ·+ pn

∣∣∣∣ ≤ (pn−N1+1 + · · ·+ pn
p1 + p2 + · · ·+ pn

)
M

< M

N1∑
k=1

pn−N1+k

p1 + p2 + · · ·+ pn−N1+k

→ 0 as n→∞.
Hence there exists a N2 ∈ N such that for all n > N2, there is∣∣∣∣pn−N1+1aN1 + · · ·+ pna1

p1 + p2 + · · ·+ pn

∣∣∣∣ < ε

2
.

Then, set N = max{N1, N2}, we know for all n > N , there is∣∣∣∣p1an + p2an−1 + · · ·+ pna1
p1 + p2 + · · ·+ pn

∣∣∣∣ ≤ ∣∣∣∣p1an + · · ·+ pn−N1aN1+1

p1 + p2 + · · ·+ pn

∣∣∣∣+ ∣∣∣∣pn−N1+1aN1 + · · ·+ pna1
p1 + p2 + · · ·+ pn

∣∣∣∣
<
ε

2
+
ε

2
= ε,

i.e.

lim
n→∞

p1an + p2an−1 + · · ·+ pna1
p1 + p2 + · · ·+ pn

= 0.

□

Problem 2.15. Define sequence {an} by an+1 = 2an− a2n, where a0 is given. Discuss
the convergence and divergence of {an} regards the choice of a0.

Solution. Firstly, we have

1− an+1 = 1− 2an + a2n = (1− an)2.
By induction, we have

1− an+1 = (1− an)2 = · · · = (1− a0)2
n+1

,

i.e.
an = 1− (1− a0)2

n

for n ≥ 1.

Hence,
When |1− a0| < 1, i.e. 0 < a0 < 2, {an} is convergent, and lim

n→∞
an = 1.

When |1− a0| = 1, i.e. a0 = 0 or a0 = 2, {an} is convergent, and lim
n→∞

an = 0.

When |1− a0| > 1, i.e. a0 < 0 or a0 > 2, {an} is divergent, lim
n→∞

an = −∞. □
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3. Week 6 (10.10)

Problem 3.1 (2.21). Suppose that {bn} is strictly increasing and lim
n→∞

bn = +∞.

Prove that if

(3.1) lim
n→∞

an − an−1

bn − bn−1

= A,

where A is finite or ±∞. Then

lim
n→∞

an
bn

= A.

Proof. We first prove the case for A is finite. By (3.1), we know ∀ ε > 0, there exists a
N1 ∈ N, such that for ∀n > N1, there is∣∣∣∣an − an−1

bn − bn−1

− A
∣∣∣∣ < ε.

Since bn > bn−1 for all n ∈ N, we have

(A− ε)(bn − bn−1) < an − an−1 < (A+ ε)(bn − bn−1).

For given N1, summing all those inequalities, we obtain

(A− ε)(bn − bN1) < an − aN1 < (A+ ε)(bn − bN1),

i.e. ∣∣∣∣an − aN1

bn − bN1

− A
∣∣∣∣ < ε.

Note the identity

an
bn
− A =

(
1− bN1

bn

)
·
(
an − aN1

bn − bN1

− A
)
+
aN1 − AbN1

bn
,

and combining lim
n→∞

bn = +∞, we know there exists a N2 ∈ N, such that for n > N2,

there is

0 < 1− bN1

bn
< 2 and

∣∣∣∣aN1 − AbN1

bn

∣∣∣∣ < ε.

Choosing N = max{N1, N2}, then for ∀n > N , we have∣∣∣∣anbn − A
∣∣∣∣ < 3ε,

i.e.
lim
n→∞

an
bn

= A.

Next, we prove the case for A = +∞. By (3.1), we know ∀M > 0, there exists a
N1 ∈ N, such that for ∀n > N1, there is

an − an−1

bn − bn−1

> 3M.
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Since bn > bn−1 for all n ∈ N, we have

an − an−1 > 3M(bn − bn−1).

For given N1, summing all those inequalities, we obtain

an − aN1 > 3M(bn − bN1),

i.e.
an − aN1

bn − bN1

> 3M.

Note the identity
an
bn

=

(
1− bN1

bn

)
·
(
an − aN1

bn − bN1

)
+
aN1

bn
,

and combining lim
n→∞

bn = +∞, we know there exists a N2 ∈ N, such that for n > N2,

there is
1

2
< 1− bN1

bn
and

∣∣∣∣aN1

bn

∣∣∣∣ < 1

2
M.

Choosing N = max{N1, N2}, then for ∀n > N , we have

an
bn

>
3

2
M − 1

2
M =M,

i.e.
lim
n→∞

an
bn

= +∞.

Similar for A = −∞. □

Problem 3.2 (0
0
type of Stolz theorem). Suppose that lim

n→∞
an = 0, lim

n→∞
bn = 0, and

{bn} is strictly decreasing. Prove that if

(3.2) lim
n→∞

an − an−1

bn − bn−1

= A,

where A is finite or ±∞. Then

lim
n→∞

an
bn

= A.

Proof. We only prove the case for A is finite. By (3.2), we know ∀ ε > 0, there exists a
N ∈ N, such that for ∀n > N1, there is∣∣∣∣an − an−1

bn − bn−1

− A
∣∣∣∣ < ε.

Since bn > bn+1 for all n ∈ N, we have

(A− ε)(bn − bn+1) < an − an+1 < (A+ ε)(bn − bn+1).

For any m > n, summing all those inequalities, we obtain

(A− ε)(bn − bm) < an − am < (A+ ε)(bn − bm),
15



i.e. ∣∣∣∣an − ambn − bm
− A

∣∣∣∣ < ε.

Let m→∞, and combining lim
n→∞

an = 0, lim
n→∞

bn = 0, we know for ∀n > N , there is∣∣∣∣anbn − A
∣∣∣∣ ≤ ε,

i.e.

lim
n→∞

an
bn

= A.

□

Remark 3.3. If A =∞ in Problem 3.1 and Problem 3.2, the conclusion is not correct.
For example an = (−1)nn, bn = n in Problem 3.1 and an = (−1)n 1

n
, bn = 1

n
Problem

3.2.

Problem 3.4. Using Stolz theorem to prove

(1) If lim
n→∞

an = a, then lim
n→∞

1

n

n∑
k=1

ak exists and lim
n→∞

1

n

n∑
k=1

ak = a.

(2) If lim
n→∞

1

n

n∑
k=1

ak = a, and lim
n→∞

n(an−an−1) = 0, then lim
n→∞

an exists and lim
n→∞

an =

a.

Proof. (1) By Stolz theorem,

lim
n→∞

1

n

n∑
k=1

ak = lim
n→∞

n∑
k=1

ak −
n−1∑
k=1

ak

n− (n− 1)
= lim

n→∞
an = a.

(2) Assume a0 = 0. Let An := an − an−1, then an =
n∑

k=1

Ak. The conditions become

a = lim
n→∞

1

n

n∑
k=1

ak = lim
n→∞

nA1 + (n− 1)A2 + · · ·+ An

n
,

and
0 = lim

n→∞
n(an − an−1) = lim

n→∞
nAn.

Hence

lim
n→∞

an = lim
n→∞

nan
n

= lim
n→∞

n
n∑

k=1

Ak

n

= lim
n→∞

nA1 + nA2 + · · ·+ nAn

n
16



= lim
n→∞

(
nA1 + (n− 1)A2 + · · ·+ An

n
+
A2 + · · ·+ (n− 1)An

n

)
= lim

n→∞

nA1 + (n− 1)A2 + · · ·+ An

n
+ lim

n→∞

A2 + · · ·+ (n− 1)An

n

= a+ lim
n→∞

A2 + · · ·+ (n− 1)An

n

= a+ lim
n→∞

(n− 1)An

n− (n− 1)
(Stolz theorem)

= a+ lim
n→∞

n− 1

n
· lim
n→∞

nAn

= a.

□

Problem 3.5. Suppose that xn+1 = xn(1− xn), n = 1, 2, · · · , 0 < x1 < 1. Prove that
lim
n→∞

xn = 0 and lim
n→∞

nxn = 1.

Proof. Firstly. note that

xn+1 − xn = −x2n ≤ 0.

Then {xn} is monotonic decreasing. Since 0 < x1 < 1, we can prove 0 < xn < 1 by
induction. Hence by monotone bounded convergence theorem, we know lim

n→∞
xn exists

and lim
n→∞

xn = 0. And by Stolz theorem, we have

lim
n→∞

nxn = lim
n→∞

n
1
xn

= lim
n→∞

n− (n− 1)
1
xn
− 1

xn−1

= lim
n→∞

xn+1xn
xn − xn+1

= lim
n→∞

xn+1

xn
= lim

n→∞
(1− xn) = 1.

□

Remark 3.6. If we replace xn+1 = xn(1 − xn) by xn+1 = ln(1 + xn), we can have a
similar conclusion.

Problem 3.7 (2.23). Suppose f is defined on (a, b), and for ∀ ξ ∈ (a, b), there exists
a δ > 0, such that for x ∈ (ξ − δ, ξ + δ) ∩ (a, b),

(1) If x < ξ, there is f(x) < f(ξ);
(2) If x > ξ, there is f(x) > f(ξ).

Prove that f is strictly increasing in (a, b).

17



Proof. For ∀x1, x2 ∈ (a, b) with x1 < x2, we want to show f(x1) < f(x2). By assumption,
∀ ξ ∈ [x1, x2], there exists a δ = δ(ξ) (If necessary, we can shrink δ so that U(ξ, δ) ⊂
(a, b)), such that for x ∈ U(ξ, δ),

(1) If x < ξ, there is f(x) < f(ξ);
(2) If x > ξ, there is f(x) > f(ξ).

Then we know

[x1, x2] ⊂
⋃

ξ∈[x1,x2]

U(ξ, δ(ξ))

is an open covering. By Heine–Borel theorem, there exists a finite subcovering, i.e. there
are ξ1, · · · , ξn ∈ [x1, x2] and δ1, · · · , δn > 0, such that

[x1, x2] ⊂
n⋃

i=1

U(ξi, δi).

Without loss of generality, we assume that

ξ1 < ξ2 < · · · < ξn and U(ξi, δi) ∩ U(ξi+1, δi+1) ̸= ∅, i = 1, 2, · · · , n− 1.

Hence, we have f(x1) ≤ f(ξ1) < f(ξ2) < · · · < f(ξn) ≤ f(x2), i.e. f(x1) < f(x2) valids
for any x1 < x2. Thus, f is strictly increasing in (a, b). □

Problem 3.8 (2.25). Using supremum and infimum principle to prove accumulation
point principle.

Proof. First way: Suppose S is a bounded set consists of an infinite number of elements.
By supremum and infimum principle, we know that supS and inf S exist. If one of them
is not a isolated point of S, it’s obviously a accumulation point. Now, we assume none
of them is the accumulation point of S. Set

E := {x ∈ R |There are only a finite number of elments in S that are less than x}.
Then E is nonempty and has an upper bound. Let η := supE, we prove η is a accumu-
lation point of S. Indeed, by the construction of E, we know that ∀ ε > 0, there must
be η + ε /∈ E, i.e. there are an infinite number of elements in S that are less that η + ε.
Since there eixsts a x0 ∈ E such that η − ε < x0, we know that there are only a finite
number of elments in S that are less than η− ε. Then (η− ε, η+ ε) contains an infinite
number of elements in S, which means that η is a accumulation point of S.
Second way: We first claim that any sequence in R has at least a monotonic sub-

sequence (either increasing or decreasing). Indeed, if there is no increasing subsequence
in {xn}, we know there exists a n1 > 0, such that ∀n > n1, there is xn < xn1 . Similarly,
there is no increasing subsequence in {xn}n>n1 , we know there exists a n2 > n1, such
that ∀n > n2, there is xn < xn2 < xn1 . Proceeding like this, we can find a strictly
decreasing subsequence {xnk

}. Then it’s easy to see that accumulation point principle
is valid. □
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Problem 3.9 (2.34). Prove that if xn > 0 and

lim
n→∞

xn · lim
n→∞

1

xn
= 1,

then the sequence {xn} is convergent.

Proof. Suppose there is a subsequence {xnk
} ⊂ {xn}, such that

lim
k→∞

xnk
= lim

n→∞
xn.

By the definition of limit superior and xn > 0, we know

1

xnk

≤ sup
n≥nk

1

xn
.

Hence

lim
n→∞

xn = lim
k→∞

xnk
≥ lim

k→∞

1

sup
n≥nk

1
xn

=
1

lim
n→∞

1
xn

= lim
n→∞

xn,

i.e.

lim
n→∞

xn = lim
n→∞

xn.

Hence the sequence {xn} is convergent. □

Problem 3.10 (2.35). Suppose that {xn} is bounded, and
(3.3) lim

n→∞
(xn+1 − xn) = 0.

Denote l = lim
n→∞

xn and L = lim
n→∞

xn. Prove that any number in [l, L] is the limitation

of a subsequence of {xn}.

Proof. First way: By definition, l, L are both accumulation points of {xn}. Then we
assume l < L and a ∈ (l, L), and we will prove a is a accumulation point of {xn} in the
following. We first prove the claim that for any given ε > 0 and N ∈ N, there must
exist a n̄ > N such that

|xn̄ − a| < ε.

By (3.3), we know there exists a N ′ ∈ N, such that for ∀n > N ′, there is

|xn+1 − xn| < ε.

Let N0 := max{N,N ′}. We know there must exist at least two points xn′ , xn′′ in
{xn}n≥N0 such that xn′ < a, xn′′ > a (otherwise, if there is no points that are less than
a, we must have lim

n→∞
xn ≥ a, contradicts with l < a; if there is no points that are large

than a, we must have lim
n→∞

xn ≤ a, contradicts with a < L). Without loss of generality,
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we assume n′ < n′′. Let n̄ be the maximal integer which satisfies n′ ≤ n ≤ n′′ and
xn ≤ a. Clearly, n̄ ≤ n′′ − 1 and xn̄ ≤ a, xn̄+1 > a. Hence n̄ > N , and

|xn̄ − a| ≤ xn̄+1 − xn̄ < ε.

The claim is proved.
Now choosing ε1 = 1, N1 = 1, there exists a xn1 (n1 > 1) such that |xn1 − a| < 1.

Then choosing ε2 = 1
2
, N2 = n1, there exists a xn2 (n2 > n1) such that |xn2 − a| < 1

2
.

Next, choosing ε3 = 1
3
, N3 = n2, there exists a xn3 (n3 > n2) such that |xn3 − a| < 1

3
.

Proceeding like this, we obtain a subsequence {xnk
} ⊂ {xn} satisfies

|xnk
− a| < 1

k
.

Hence lim
k→∞

xnk
= a, i.e. a is a accumulation point of {xn}.

Second way: By definition, l, L are both accumulation points of {xn}. Then we
assume l < L and a ∈ (l, L), and we will prove a is a accumulation point of {xn} in the
following. Let δ := min{L − a, a − l}. For ∀ i ∈ N, there exists a ki ∈ N, when n ≥ ki,
we have |xn+1 − xn| < δ

2i
.

By definition of l, L, we can choose l1 ≥ k1, such that xl1 > L− δ
2
, and choose m1 > l1,

such that xm1 < l + δ
2
. Again, choosing l2 > max{k2,m1}, such that xl2 > L − δ

22
,

and choose m2 > l2, such that xm2 < l + δ
22
. Proceeding like this, we can choose

li > max{ki,mi−1}, such that xli > L− δ
2i
, and choose mi > li, such that xm1 < l + δ

2i
.

Hence, we know there exists ni, li < ni < mi (i ∈ N), such that

xni
< l + δ ≤ a, xni−1 ≥ a (i ∈ N).

Then
|xni
− a| < |xni

− xni−1| (i ∈ N).
By ni > li > ki, we know ni − 1 ≥ ki. Hence

|xni
− a| < |xni

− xni−1| <
δ

2i
.

Hence lim
i→∞

xni
= a, i.e. a is a accumulation point of {xn}. □

Problem 3.11 (2.36). Suppose {xn} and {yn} satisfy
xn+1 = yn + qxn (0 < q < 1), n = 1, 2, · · · .

Prove {yn} converges iff {xn} converges.

Proof. “if”: Note that yn = xn+1 − qxn, it’s easy to show {yn} converges if {xn} is
convergent.

“only if”: We first prove that {xn} is bounded. Since {yn} is convergent, we know it
is bounded. Assume that |yn| ≤M for some M > 0. Then

|xn+1| = |yn + qxn| = |yn + q(yn−1 + qxn−1)|
20



=
∣∣yn + qyn−1 + q2xn−1

∣∣
=
∣∣yn + qyn−1 + · · ·+ qn−1y1 + qnx1

∣∣
≤M

(
1 + q + · · ·+ qn−1

)
+ qn|x1|

<
M

1− q
+ |x1|.

Hence the upper limit and lower limit of {xn} exist. We have from xn+1 = yn+ qxn that

lim
n→∞

xn = lim
n→∞

(yn−1 + qxn−1) = lim
n→∞

yn + q lim
n→∞

xn−1 ≤ lim
n→∞

yn + q lim
n→∞

xn,

which yields

lim
n→∞

xn ≤ (1− q)−1 lim
n→∞

yn.

Similarly, we have

lim
n→∞

xn ≥ (1− q)−1 lim
n→∞

yn.

Hence

lim
n→∞

xn = lim
n→∞

xn = (1− q)−1 lim
n→∞

yn,

i.e. {xn} converges. □

Problem 3.12.

(1) (2.37). Suppose {xn} satisfies for ∀n,m ∈ N, there is

0 ≤ xn+m ≤ xn + xm.

Prove that
{xn
n

}
has a limitation.

(2) Suppose {xn} satisfies for ∀n,m ∈ N, there is

0 ≤ xn+m ≤ xn · xm.

Prove that
{
x

1
n
n

}
has a limitation.

Proof. (1) By

xn ≤ xn−1 + x1 ≤ xn−2 + 2x1 ≤ · · · ≤ nx1,

we have

0 ≤ xn
n
≤ x1.

Hence
{xn
n

}
is bounded. Denote lim

n→∞

xn
n

= l, then 0 ≤ l ≤ x1. By definition, for

∀ ε > 0, there exists a N ∈ N, such that

xN
N

< l + ε.
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For any n > N , we choose q ∈ N and 0 ≤ r < N , such that n = qN + r. Then

xn = xqN+r ≤ xqN + xr ≤ qxN + rx1 ≤ qxN +Nx1.

Hence
xn
n
≤ qxN

n
+
Nx1
n
≤ xN

N
+
Nx1
n

< l + ε+
Nx1
n

.

Thus
lim
n→∞

xn
n
≤ l + ε.

Let ε→ 0, we have

lim
n→∞

xn
n
≤ l = lim

n→∞

xn
n
.

Hence
lim
n→∞

xn
n

= lim
n→∞

xn
n
,

i.e. lim
n→∞

xn
n

exists.

(2) The proof is similar to (1), we leave it to readers. □

Problem 3.13 (3.8). Calculate the following limitations.

(6) lim
t→1

(1− t) tan πt
2
;

(8) lim
x→π

4

tanx− 1

x− π
4

;

(9) lim
x→0

cos(n arccosx)

x
(n is odd ).

Solution. (6)

lim
t→1

(1− t) tan πt
2

= lim
t→1

1− t
cos πt

2

= lim
t→1

1− t
sin π

2
(1− t)

=
2

π
.

(8)

lim
x→π

4

tanx− 1

x− π
4

= lim
x→π

4

1

cosx
· lim
x→π

4

sinx− cosx

x− π
4

= 2 lim
x→π

4

sin(x− π
4
)

x− π
4

= 2.

(9)

lim
x→0

cos(n arccosx)

x
= lim

x→0

(−1)n−1
2 sin(nπ

2
− n arccosx)

x

= lim
x→0

(−1)n−1
2 sin

(
n(π

2
− arccosx)

)
x

= lim
x→0

(−1)n−1
2 sin

(
n(arcsinx)

)
x

= (−1)
n−1
2 n,
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where we have used arcsinx+ arccosx =
π

2
. □

Problem 3.14 (3.9(4)). Calculate the following limitation.

lim
x→∞

(
cos

a

x

)x2

(a ̸= 0).

Solution. Note that

lim
x→∞

(
cos

a

x

)x2

= lim
x→0

(cos ax)
1
x2 = lim

x→0
(1 + cos ax− 1)

1
x2

= lim
x→0

(
1− 2 sin2 ax

2

) 1
x2

= lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

.

Since

lim
x→0

(
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2 = e,

we know that for ∀ ε > 0, there exists a δ > 0, such that ∀x : |x| < δ, there is

e− ε <
(
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2 < e+ ε.

Hence, we have for |x| < δ that

(e+ ε)
−2 sin2 ax

2
x2 <

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

< (e− ε)
−2 sin2 ax

2
x2 .

Then

(e+ ε)
−a2

2 ≤ lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

≤ lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

≤ (e− ε)
−a2

2 .

Since ε is arbitrary, we have

lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

= lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

= e
−a2

2 ,
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i.e.

lim
x→0

((
1− 2 sin2 ax

2

) 1
−2 sin2 ax

2

)−2 sin2 ax
2

x2

= e
−a2

2 .

□
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4. Week 7 (10.17)

Problem 4.1.

(1) Suppose {xn} is a positive sequence. Prove that

lim
n→∞

n

(
1 + xn+1

xn
− 1

)
≥ 1.

(2) Suppose {xn} is a positive sequence. Prove that

lim
n→∞

(
x1 + xn+1

xn

)n

≥ e.

Proof. (1) Proof by contradiction. Assume that

lim
n→∞

n

(
1 + xn+1

xn
− 1

)
< 1.

Hence there exists a N ∈ N, such that ∀n ≥ N , there is

n

(
1 + xn+1

xn
− 1

)
< 1.

Then we have
1

n+ 1
<
xn
n
− xn+1

n+ 1
, n ≥ N.

Summing all inequalities from N to n yields

1

N + 1
+

1

N + 2
+ · · ·+ 1

n+ 1
<
xN
N
− xn+1

n+ 1
≤ xN

N
.

However, we already konw lim
n→∞

(
1

N+1
+ 1

N+2
+ · · ·+ 1

n+1

)
= +∞, which makes a contra-

diction.
(2) Proof by contradiction. Assume that

lim
n→∞

(
x1 + xn+1

xn

)n

< e.

Hence there exists a N ∈ N, such that ∀n ≥ N , there is(
x1 + xn+1

xn

)n

< e <

(
1 +

1

n− 1

)n

.

Then we have
1

n
<

xn
n− 1

− xn+1

n
, n ≥ N.

Summing all inequalities from N to n yields

1

N
+

1

N + 1
+ · · ·+ 1

n
<

xN
N − 1

− xn+1

n
≤ xN
N − 1

.
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However, we already konw lim
n→∞

(
1
N
+ 1

N+1
+ · · ·+ 1

n

)
= +∞, which makes a contradic-

tion. □

Remark 4.2. Both constants in Problem 4.1 are optimal. Indeed, we can choose xn =
n lnn.

Exercise 4.3 (Leave to readers). Let {an}∞n=1 be a sequence of positive numbers. Prove
that

lim
n→∞

(
n2 (4an(1− an−1)− 1)

)
≤ 1

4
.

Hint: It suffices to prove the conclusion for an ∈ (0, 1). Assume by contradiction

that lim
n→∞

(
n2 (4an(1− an−1)− 1)

)
>

1

4
. Then for lim

n→∞

(
n2 (4an(1− an−1)− 1)

)
> l >

1

4
,

there exists a N ∈ N, such that ∀n > N(without loss of generality, we can assume that
N = 1), there is

n2 (4an(1− an−1)− 1) > l.

Firstly, to prove that {an} is monotonic increasing and lim
n→∞

an = 1
2
(by the monotone

bounded convergence theorem). Secondly, let an := 1
2
−bn, where bn ≥ 0 and lim

n→∞
bn = 0.

Note that

bn−1 − bn − 2bnbn−1 >
l

2n2
.

Next, to prove that {nbn} is monotonic decreasing for large enough n. Indeed, there is

nbn − (n− 1)bn−1 <
nbn−1 − l

2n

1 + 2bn−1

− (n− 1)bn−1

=
nbn−1 − l

2n
− (n− 1)bn−1 − 2(n− 1)b2n−1

1 + 2bn−1

=
−2(n− 1)

(
bn−1 − 1

4(n−1)

)2
+ 1

8(n−1)
− l

2n

1 + 2bn−1

=
−2(n− 1)

(
bn−1 − 1

4(n−1)

)2
+ (1−4l)n+4l

8n(n−1)

1 + 2bn−1

≤ 0,

provided with n ≥ 4l
4l−1

. Hence lim
n→∞

nbn exists. Denote that lim
n→∞

nbn = A. By Stolz

theorem (for lower limit), we have

A = lim
n→∞

nbn = lim
n→∞

bn
1
n
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≥ lim
n→∞

bn − bn−1

1
n
− 1

n−1

≥ lim
n→∞

n(n− 1)

(
l

2n2
+ 2bnbn−1

)
=
l

2
+ 2 lim

n→∞
n(n− 1)bnbn−1

=
l

2
+ 2A2,

i.e.

2A2 − A+
l

2
≤ 0.

However, ∆ = 12 − 4× 2× l
2
= 1− 4l < 0, which makes a contradiction.

From the above proof, we can see that 1
4
is the optimal constant. Actually, we can

choose an = 1
2
− 1

4n
. □

Problem 4.4. Suppose that xn > 0. Prove that lim
n→∞

n
√
xn ≤ 1 iff lim

n→∞

xn
ln

= 0, ∀ l > 1.

Proof. “if”: If lim
n→∞

xn
ln

= 0, we know there exists a N ∈ N such that ∀n > N , there is

xn <
1
2
ln. Hence n

√
xn <

(
1
2

) 1
n l, which means lim

n→∞
n
√
xn ≤ l. Since l > 1 is arbitrary, we

know lim
n→∞

n
√
xn ≤ 1.

“only if”: For ∀ l > 1, by lim
n→∞

n
√
xn ≤ 1 we have there exists a N ∈ N, such that

∀n > N , there is

n
√
xn < 1 +

l − 1

2
=
l + 1

2
.

Then
xn
ln

<

(
l + 1

2l

)n

→ 0 as n→∞,

since
l + 1

2l
< 1. Thus, lim

n→∞

xn
ln

= 0, ∀ l > 1. □

Problem 4.5. Suppose that xn > 0. If lim
n→∞

n
√
xn = 1, prove that lim

n→∞
n

√√√√ n∑
k=1

xk = 1.

Proof. It is clear that lim
n→∞

n

√√√√ n∑
k=1

xk ≥ lim
n→∞

n
√
xn = 1. Hence, we only need to prove the

inverse inequality. Since lim
n→∞

n
√
xn = 1, we know for any l > 1, there exists a N ∈ N,
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such that ∀n > N , there is n
√
xn < l. Then

n∑
k=1

xk ≤
N∑
k=1

xk +
n∑

k=N+1

lk

≤
N∑
k=1

xk +
n∑

k=1

lk

<
N∑
k=1

xk +
ln+1

l − 1
.

Hence

lim
n→∞

n

√√√√ n∑
k=1

xk ≤ lim
n→∞

n

√√√√ N∑
k=1

xk +
ln+1

l − 1
= l.

Since l > 1 is arbitrary, we know lim
n→∞

n

√√√√ n∑
k=1

xk ≤ 1. Then we are done. □

Problem 4.6. Suppose that xn > 0, lim
n→∞

xn
n

= 0 and lim
n→∞

1

n

n∑
k=1

xk < +∞. Prove

that lim
n→∞

1

n2

n∑
k=1

x2k = 0.

Proof. Since lim
n→∞

xn
n

= 0 and L := lim
n→∞

1

n

n∑
k=1

xk < +∞, we know ∀ ε > 0, there exists a

N ∈ N, such that ∀n > N , there is

xn
n
< ε and

1

n

n∑
k=1

xk < L+ 1.

Then for ∀n > N ,

1

n2

n∑
k=1

x2k =
1

n2

N∑
k=1

x2k +
1

n2

n∑
k=N+1

x2k

<
1

n2

N∑
k=1

x2k +
1

n2

n∑
k=N+1

xk · kε

≤ 1

n2

N∑
k=1

x2k +

(
1

n

n∑
k=N+1

xk

)
ε
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<
1

n2

N∑
k=1

x2k + (L+ 1)ε.

Hence

lim
n→∞

1

n2

n∑
k=1

x2k ≤ lim
n→∞

(
1

n2

N∑
k=1

x2k + (L+ 1)ε

)
= (L+ 1)ε.

Sicne ε > 0 is arbitrary, we know lim
n→∞

1

n2

n∑
k=1

x2k = 0, i.e. lim
n→∞

1

n2

n∑
k=1

x2k = 0. □

Problem 4.7. Calculate the following limitations.

(1) lim
x→0

m
√
1 + αx− n

√
1 + βx

x
, where m,n ∈ N, α, β ∈ R are constants;

(2) lim
n→∞

n∑
k=1

sin

(
2k − 1

n2
x

)
, where x ∈ R is a constant;

(3) lim
x→+∞

sin
√
x+ 1− sin

√
x;

(4) lim
x→0

(x+ ex)
1
x ;

(5) lim
x→+∞

[xf(x)]

x
, where lim

x→+∞
f(x) = 1;

(6) lim
x→+∞

(
1

p

p∑
k=1

axk

) 1
x

, where a1, · · · , ap (p ≥ 2) are positive.

(7) lim
x→0+

(
1

p

p∑
k=1

axk

) 1
x

, where a1, · · · , ap (p ≥ 2) are positive.

Solution. (1) By replacement with equivalent infinitesimal, we have

lim
x→0

m
√
1 + αx− n

√
1 + βx

x
= lim

x→0

m
√
1 + αx− 1

x
+ lim

x→0

1− n
√
1 + βx

x

=
α

m
− β

n
.

(2) It’s clear that the limitation is 0 when x = 0. Next, we assume that x ̸= 0. By
the Prosthaphaeresis formula, we have

lim
n→∞

n∑
k=1

sin

(
2k − 1

n2
x

)
= lim

n→∞

1

2 sin x
n2

n∑
k=1

2 sin
x

n2
sin

(
2k − 1

n2
x

)

= lim
n→∞

1

2 sin x
n2

n∑
k=1

[
cos

(
2k − 2

n2
x

)
− cos

(
2k

n2
x

)]
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= lim
n→∞

1− cos
(
2
n
x
)

2 sin x
n2

= x.

(3) By the Prosthaphaeresis formula, we have

lim
x→+∞

sin
√
x+ 1− sin

√
x = lim

x→+∞
2 cos

(√
x+ 1 +

√
x

2

)
sin

(√
x+ 1−

√
x

2

)
= lim

x→+∞
2 cos

(√
x+ 1 +

√
x

2

)
sin

(
1

2(
√
x+ 1 +

√
x)

)
= 0.

(4) By replacement with equivalent infinitesimal, we have

lim
x→0

(x+ ex)
1
x = lim

x→0
e

ln(x+ex)
x

= lim
x→0

e
ln(1+x+ex−1)

x

= lim
x→0

e
x+ex−1

x

= e2.

(5) Note that

f(x)− 1

x
<

[xf(x)]

x
≤ f(x).

It’s easy to obtain lim
x→+∞

[xf(x)]

x
= 1 by the Sandwich Theorem.

(6) Note that

max{a1, · · · , ap}
p

1
x

≤

(
1

p

p∑
k=1

axk

) 1
x

≤ max{a1, · · · , ap}.

By the Sandwich Theorem, we have

lim
x→+∞

(
1

p

p∑
k=1

axk

) 1
x

= max{a1, · · · , ap}.

(7) Note that

1

x
ln

(
1

p

p∑
k=1

axk

)
=

1

x
ln

(
1 +

1

p

p∑
k=1

(axk − 1)

)

∼ 1

p

p∑
k=1

axk − 1

x
as x→ 0+
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→ 1

p

p∑
k=1

ln ak as x→ 0 + .

Hence

lim
x→0+

(
1

p

p∑
k=1

axk

) 1
x

= e
1
p

p∑
k=1

ln ak
= p
√
a1a2 · · · ap.

□

Problem 4.8. Calculate lim
n→∞

n∏
k=1

cos
x

2k
, and prove the Viète formula

π

2
=

1√
1
2
·
√

1
2
+ 1

2

√
1
2
·

√
1
2
+ 1

2

√
1
2
+ 1

2

√
1
2
· · · ·

.

Proof. It’s clear that lim
n→∞

n∏
k=1

cos
x

2k
= 1 when x = 0. Next, we assume that x ̸= 0. By

sin 2x = 2 sin x cosx, we have

lim
n→∞

n∏
k=1

cos
x

2k
= lim

n→∞

cos x
2
cos x

22
· · · cos x

2n
sin x

2n

sin x
2n

= lim
n→∞

sinx

2n sin x
2n

=
sinx

x
.

Note that cos 2θ = 2 cos2 θ − 1, we know that cos θ =

√
1

2
+

1

2
cos 2θ. Choosing x = π

2
,

we know that cos x
2
=
√

1
2
, cos x

4
=

√
1
2
+ 1

2

√
1
2
. Hence

sinx

x
=

√
1

2
·

√
1

2
+

1

2

√
1

2
·

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · · ,

i.e.
1√

1
2
·
√

1
2
+ 1

2

√
1
2
·

√
1
2
+ 1

2

√
1
2
+ 1

2

√
1
2
· · · ·

=
π
2

sin π
2

=
π

2
.

□

Problem 4.9. Suppose that f(x), g(x) are periodic function defined on R, and satisfy
lim

x→+∞
(f(x)− g(x)) = 0. Prove that f(x) = g(x), ∀x ∈ R.
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Proof. Denote T1 as the period of f(x) and T2 as the period of g(x). We first note that
by lim

x→+∞
(f(x)− g(x)) = 0, there is

f(x)− g(x+ nT1) = f(x+ nT1)− g(x+ nT1)→ 0 as n→∞.

Similarly, we have

g(x) = lim
n→∞

f(x+ nT2), ∀x ∈ R.

Hence we have

f(x)− g(x) = lim
n→∞

(g(x+ nT1)− f(x+ nT2))

= lim
n→∞

(g(x+ nT1 + nT2)− f(x+ nT2 + nT1))

= 0, ∀x ∈ R.

□

Problem 4.10. Suppose that f(x) does not have an upper bound in (a, b). Prove that
there exists a sequence {xn} ⊂ (a, b) such that lim

n→∞
f(xn) = +∞.

Proof. Since f(x) has no upper bound, we know that for any n ∈ N, there exists a
xn ∈ (a, b) such that f(xn) > n. Then we have that lim

n→∞
f(xn) = +∞. □

Problem 4.11. Suppose f(x) is defined on (0, 1), and lim
x→0

f(x) = 0, lim
x→0

f(x)− f
(
x
2

)
x

= 0.

Prove that lim
x→0

f(x)

x
= 0.

Proof. By lim
x→0

f(x)− f
(
x
2

)
x

= 0, we know that ∀ ε > 0, there exists a δ > 0, such that

∀x : 0 < x < δ, there is ∣∣f(x)− f (x
2

)∣∣
x

< ε,

i.e. ∣∣∣f(x)− f (x
2

)∣∣∣ < εx.

Then for 0 < x < δ, there is

|f(x)| =
∣∣∣f(x)− f (x

2

)
+ f

(x
2

)
− f

( x
22

)
+ · · ·+ f

( x
2n

)∣∣∣
≤
∣∣∣f(x)− f (x

2

)∣∣∣+ ∣∣∣f (x
2

)
− f

( x
22

)∣∣∣+ · · ·+ ∣∣∣f ( x
2n

)∣∣∣
< ε

(
x+

x

2
+ · · ·+ x

2n

)
+
∣∣∣f ( x

2n

)∣∣∣
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< 2εx+
∣∣∣f ( x

2n

)∣∣∣ .
Since lim

x→0
f(x) = 0, we have by letting n→∞ that

|f(x)| ≤ 2εx, 0 < x < δ.

Thus,

lim
x→0

f(x)

x
= 0.

□

Problem 4.12. Suppose f(x) > 0 is an increasing function defined on (0,+∞) sat-

isfies lim
x→+∞

f(2x)

f(x)
= 1. Prove that lim

x→+∞

f(ax)

f(x)
= 1, ∀ a ∈ (0,+∞).

Proof. It suffices to prove lim
x→+∞

f(ax)

f(x)
= 1 for all a > 1. Indeed, for any 0 < a < 1 , we

have

lim
x→+∞

f(ax)

f(x)
= lim

x→+∞

f(ax)

f( 1
a
ax)

=
1

lim
ax→+∞

f( 1
a
ax)

f(ax)

= 1.

For a > 1, we know there exist some N ∈ N such that 2N ≤ a < 2N+1. Since f(x) is
increasing, we know

f(2Nx)

f(x)
≤ f(ax)

f(x)
≤ f(2N+1x)

f(x)
.

Then the problem is reduced to prove lim
x→+∞

f(2Kx)

f(x)
= 1 for all K ∈ N, and it is clear

since

lim
x→+∞

f(2Kx)

f(x)
= lim

x→+∞

f(2Kx)

f(2K−1x)
· lim
x→+∞

f(2K−1x)

f(2K−2x)
· · · lim

x→+∞

f(2x)

f(x)
= 1.

□

Problem 4.13. Suppose f : (0,+∞) → R satisfies ∀ a > 0, f is bounded on (0, a).

Prove that if lim
x→+∞

[f(x+ 1)− f(x)] = l, then lim
x→+∞

f(x)

x
= l.

Proof. Without loss of generality, we can assume that l = 0 (otherwise, we replace f(x)
by f(x)− lx). Since lim

x→+∞
[f(x+ 1)− f(x)] = 0, we know ∀ ε > 0, there exists a X > 0,

such that ∀x > X, there is

−ε < f(x+ 1)− f(x) < ε.

Summing all inequalities, we have

− ([x−X] + 1) ε < f(x+ 1)− f (x− [x−X]) < ([x−X] + 1) ε.
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Note that lim
x→+∞

f (x− [x−X])

x+ 1
= 0 since f is bounded on (0, X + 1). We have

−ε ≤ lim
x→+∞

f(x+ 1)

x+ 1
≤ lim

x→+∞

f(x+ 1)

x+ 1
≤ ε.

Since ε is arbitrary, we obtain lim
x→+∞

f(x)

x
= 0. □

Problem 4.14. Suppose f, g : (a,+∞)→ R satisfy ∀ b > a, f, g are bounded on (a, b);

g is strictly increasing, and lim
x→+∞

g(x) = +∞. Prove that if lim
x→+∞

f(x+ 1)− f(x)
g(x+ 1)− g(x)

= l,

then lim
x→+∞

f(x)

g(x)
= l.

Proof. The proof is very similar to Problem 4.13, we omit details here and leave it to
readers. □

Remark 4.15. (1) Problem 4.14 is called the function version of Stolz theorem.
(2) We can change the constant “1” to any positive constant “T”.
(3) l can be chosen as ±∞, but it’s not correct for ∞.

Problem 4.16. Suppose that f is defined on R, and f is bounded in some neighborhood
of x = 0. If there exist a > 1, b > 1, such that f(ax) = bf(x), prove that f(x) is
continuous at x = 0.

Proof. First, by f(ax) = bf(x), it’s easy to know f(0) = 0. Assume that there exist
M > 0, δ0 > 0, such that ∀x : |x| < δ0, there is |f(x)| ≤ M . For ∀ ε > 0, choosing
δ = δ0/a

N+1, where N satisfies M/bN < ε. Then for ∀x : |x| < δ, there is

|f(x)| = 1

bN
|f(aNx)| ≤ M

bN
< ε.

Hence

lim
x→0

f(x) = 0 = f(0),

i.e. f(x) is continuous at x = 0. □

Problem 4.17. Suppose that f(x) ∈ C[0,+∞) is bounded, and lim
x→+∞

f(x) does not

exist. Prove there exists t ∈ R such that f(x) = t has an infinite number of solutions.

Proof. Since f(x) ∈ C[0,+∞) is bounded, and lim
x→+∞

f(x) does not exist, we know

−∞ < lim
x→+∞

f(x) < lim
x→+∞

f(x) < +∞.
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Denote l := lim
x→+∞

f(x) and lim
x→+∞

f(x). Let t = l+L
2
, we will show f(x) = t has an

infinite number of solutions. Indeed, by the definition of upper limit and lower limit,
we know that for X1 = 1, there exist x1, y1 > X1, such that f(x1) < t, f(y1) > t.
Hence there exists z1 between x1 and y1 such that f(z1) = t by f(x) is continuous. For
X2 = max{2, x1, y1}, there exist x2, y2 > X2, such that f(x2) < t, f(y2) > t. Hence
there exists z2 between x2 and y2 such that f(z2) = t by f(x) is continuous. Proceeding
like this, we can find an infinite number of zn such that f(zn) = t, i.e. f(x) = t has an
infinite number of solutions. □

Problem 4.18. Suppose that f(x) is uniformly continuous on [0,+∞), and ∀h > 0,
lim
n→∞

f(nh) exists. Prove that lim
x→+∞

f(x) exists.

Proof. First method: Find the limitation Pick h = 1, assume that the sequence
{f(n)}∞n=1 converges to L. Then for each m ∈ N, let h = 1/m. Then {f(n/m}∞n=1

contains the subsequence {f(n)}∞n=1. Thus {f(n/m}∞n=1 converges to L for all m. Now
we show that lim

x→∞
f(x) = L.

Let ε > 0. Since f is uniformly continuous, there is δ > 0 so that if x, y ∈ R+ and
|x− y| < δ, then

|f(x)− f(y)| < ε

2
.

Now let m ∈ N so that 1/m < δ. Since {f(n/m}∞n=1 converges to L, there is N ∈ N so
that ∣∣∣f ( n

m

)
− L

∣∣∣ < ε

2
for all n ≥ N . Let M = N/m. Then if x ≥ M , there is n ≥ N so that |x − n/m| < δ
(we used 1/m < δ here). Then |f(x)− f(n/m)| < ε/2 and thus

|f(x)− L| ≤
∣∣∣f(x)− f ( n

m

)∣∣∣+ ∣∣∣f ( n
m

)
− L

∣∣∣ < ε.

Since ε > 0 is arbitrary we conclude lim
x→∞

f(x) = L.

Second method: Cauchy principle Let ε > 0. Since f is uniformly continuous,
there is δ > 0 so that if x, y ∈ R+ and |x− y| < δ, then

|f(x)− f(y)| < ε

3
.

For ε, δ ginven as above, since lim
n→∞

f(nδ) exists, we know there exists N ∈ N, such that

∀m,n > N , there is

|f(mδ)− f(nδ)| < ε

3
.

Then, let X = (N + 1)δ, we know that ∀x1, x2 > X, there are[xi
δ

]
>
xi
δ
− 1 > N (i = 1, 2)
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and ∣∣∣xi − [xi
δ

]
δ
∣∣∣ = δ

∣∣∣xi
δ
−
[xi
δ

]∣∣∣ < δ (i = 1, 2).

Hence

|f(x1)− f(x2)| ≤
∣∣∣f(x1)− f ([x1

δ

]
δ
)∣∣∣

+
∣∣∣f ([x1

δ

]
δ
)
− f

([x2
δ

]
δ
)∣∣∣

+
∣∣∣f ([x2

δ

]
δ
)
− f (x2)

∣∣∣
<
ε

3
+
ε

3
+
ε

3

=ε.

□

Remark 4.19. We can make a weak assumption that f(x) is just continuous on [0,+∞),
but to prove this conclusion is so difficult, we omit the detail here and leave it to someone
who interested.

Problem 4.20. Suppose that f(x) is uniformly continuous on [0,+∞), and ∀x > 0,
lim
n→∞

f(x+ n) = 0. Prove that lim
x→+∞

f(x) = 0.

Proof. By f(x) is uniformly continuous on [0,+∞), we know ∀ ε > 0, there is δ > 0,
such that ∀x, y ≥ 0 : |x− y| < δ, there is

|f(x)− f(y)| < ε

2
.

Take k > 1
δ
, and cut [0, 1] uniformly into k pieces. Let xi =

i
k
(i = 1, 2, · · · , k) be the

cut points. Note that xi − xi−1 =
1
k
< δ. Since for every xi, there is lim

n→∞
f(xi + n) = 0.

We know there exists Ni > 0, such that ∀n > Ni, there is |f(xi + n)| < ε

2
. Let N =

max{N1, N2, · · · , Nk}, then ∀n > N , there is

|f(xi + n)| < ε

2
(i = 1, 2, · · · , k).

Choose X = N + 1, for ∀x > X, there is [x] > N . Since x− [x] ∈ [0, 1), we know there
exists i ∈ {1, 2, · · · , k}, such that |(x − [x]) − xi| < δ, i.e. |x − (xi + [x])| < δ. Hence,
there is

|f(x)| ≤ |f(x)− f(xi + [x])|+ |f(xi + [x])|

<
ε

2
+
ε

2
=ε.
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i.e. lim
x→+∞

f(x) = 0. □

Remark 4.21. (1) We can use the same method to prove that if f(x) is uniformly
continuous on [0,+∞), and ∀x > 0, lim

n→∞
f(x+ n) = A, then lim

x→+∞
f(x) = A.

(2) From the proof, we can see that the conclusion is still right for a weak assumption,
i.e. ∀x ∈ [0, 1], lim

n→∞
f(x+ n) = 0.

(3) Find a counterexample if we do not assume f(x) is uniformly continuous, but just
continuous. Indeed, define

fn(x) =


2nx, 0 ≤ x ≤ 1

2n
,

2− 2nx,
1

2n
< x ≤ 1

n
,

0, otherwise.

Let f(x) =
∞∑
n=1

fn(x− n), then f(x) is a counterexample.

Exercise 4.22 (Leave to readers). Find x such that lim
m→∞

√
1 +

√
x+

√
x2 + · · ·+

√
xm =

2.

Hint: Let me describe a sketch of proof that x = 4.

A. Observe that if f(x) = limn→∞

√
1 +

√
x+

√
x2 + · · ·

√
xn, then f is strictly in-

creasing.
B. We shall show that f(4) = 2, and hence x = 4 is the unique answer.
B1. Fix m ∈ N and show that, for n = m,m− 1,m− 2, · · · (induction backwards)

2n <

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m < 2n + 1,

while √
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m + 1 = 2n + 1.

B2. Next estimate the difference

(2n + 1)−

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m

=

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m + 1−

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m
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=

√
4n+1 + · · ·

√
4m−1 +

√
4m + 1−

√
4n+1 + · · ·

√
4m−1 +

√
4m√

4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m + 1 +

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m

<

√
4n+1 + · · ·

√
4m−1 +

√
4m + 1−

√
4n+1 + · · ·

√
4m−1 +

√
4m

2 · 2n

< · · · < (
√
4m + 1)−

√
4m

2m−n · · · 2n+(n+1)+···+(m−1)

=2−
(m−n)(n+m+1)

2 .

Thus

lim
m→∞

√
4n +

√
4n+1 + · · ·

√
4m−1 +

√
4m = 2n + 1.

For n = 0 we have

lim
m→∞

√
1 +

√
4 + · · ·

√
4m−1 +

√
4m = 20 + 1 = 2.

□

A similar but easier question: Find x in:√
x2 +

√
4x2 +

√
16x2 +

√
64x2 + · · · = 5.

Hint: x+ 1 =
√
x2 + 2x+ 1 =

√
x2 +

√
4x2 + 4x+ 1 = · · · .

Exercise 4.23 (Challenge!). Assume f ∈ C[0,+∞), and for all a > 0, we have

lim
x→+∞

(f(x+ a)− f(x)) = 0.

Prove that f(x) is uniformly continuous.

Hint: Fix ε > 0, we want to find δ > 0 such that

(4.1) |x− y| < δ ⇒ |f(x)− f(y)| < ε.

For every N ∈ N, let EN := {a | x ≥ N ⇒ |f(x + a) − f(x)| ≤ ε/4}. EN is closed (by
continuity of f) and

⋃
N∈N

EN = [0,∞). By Baire Category Theorem, at least one of them,

say, EN contains a closed interval [b, c]. For x, y ≥ N + c, without loss of generality, say
y ≥ x, if |y− x| < c− b, there always exists z ≥ N such that [x, y] ⊂ [z+ b, z+ c]. Then
|f(x)−f(y)| ≤ |f(x)−f(z)|+ |f(y)−f(z)| = |f(z+d)−f(z)|+ |f(z+ e)−f(z)| ≤ ε/2
where d, e ∈ [b, c]. For x, y ≤ N + c, as [0, N + c] is compact, f restricted to [0, N + c] is
uniformly continuous, hence there exists δ′ > 0 satisfing the requirements in (4.1). Let
δ = min(c− b, δ′), then we are done. □
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5. Week 8 (10.24)

Problem 5.1. Suppose that f(x) is uniformly continuous on R. Prove that there exist
a > 0, b > 0 such that |f(x)| ≤ a|x|+ b, ∀x ∈ R.

Proof. Since f(x) is uniformly continuous on R, we have that ∀ ε > 0, there exists δ > 0,
such that ∀x, y ∈ R : |x − y| < δ, there is |f(x) − f(y)| < ε. Now, fix ε and δ. For
∀x ∈ R, there exists n ∈ Z, such that x = nδ + x0, where x0 ∈ (−δ, δ). Note that f(x)
is bounded on [−δ, δ], i.e. ∃M > 0, such that |f(x)| ≤M (∀x ∈)[−δ, δ]. Hence,

|f(x)| =

∣∣∣∣∣
n∑

k=1

[f(kδ + x0)− f((k − 1)δ + x0)] + f(x0)

∣∣∣∣∣
≤

n∑
k=1

|f(kδ + x0)− f((k − 1)δ + x0)|+ |f(x0)|

≤ |n|ε+M

=
ε

δ
|x− x0|+M

(
since

∣∣∣∣x− x0δ

∣∣∣∣ = |n|)
≤ ε

δ
|x|+

(
M +

ε

δ
|x0|
)

≤ ε

δ
|x|+ (M + ε).

Denote a = ε/δ, b =M + ε, hence

|f(x)| ≤ a|x|+ b (∀x ∈ (−∞,+∞)).

□

Problem 5.2 (4.24). Prove that at any point of the curve{
x = a(cos t+ t sin t),

y = a(sin t− t cos t),
(a > 0),

the distance of the normal line to the origin is equal to a.

Proof. Differentiating respect to t yields{
dx = at cos t dt,

dy = at sin t dt,
(a > 0)

Then the normal line at point (x, y), t ̸= kπ is

Y − a(sin t− t cos t) = −dx
dy

(X − a(cos t+ t sin t)),
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i.e.
Y − a(sin t− t cos t) = − cot t(X − a(cos t+ t sin t)).

Hence

d =
|a cot t(cos t+ t sin t) + a(sin t− t cos t)|√

1 + cot2 t

= |a cos2 t+ at sin t cos t+ a sin2 t− at sin t cos t|
= a.

When t = kπ, we know the normal line is x = a(−1)k, thus d = a.

Figure 1. Graph of the curve for a = 1

□

Problem 5.3. Calculate the derivative of f(x) = xarcsinx.

Solution. Note that
f(x) = xarcsinx = elnx·arcsinx.

Denote g(x) = lnx · arcsinx, we have

g′(x) =
arcsinx

x
+

lnx√
1− x2

.

Hence

f ′(x) =
(
eg(x)

)′
= eg(x)g′(x) = xarcsinx

(
arcsinx

x
+

lnx√
1− x2

)
.

□
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Problem 5.4. Calculate the left right derivative of f(x) =

{ x

e1/x + 1
, x ̸= 0,

0, x = 0,
at

x = 0, and determine whether f(x) is differentiable at x = 0.

Solution. Left derivative:

f ′
−(0) = lim

x→0−0

x
e1/x+1

− 0

x− 0
= lim

x→0−0

1

e1/x + 1
= 1.

Right derivative:

f ′
+(0) = lim

x→0+0

x
e1/x+1

− 0

x− 0
= lim

x→0+0

1

e1/x + 1
= 0.

Hence f(x) is not differentiable at x = 0. The graph of f(x) is as follows:

Figure 2. Graph of f(x)

□

Problem 5.5. Suppose that f(x) is differentiable on R and satisfies f(x) ≥ x, f(x) ≥
1− x, ∀x ∈ R. Prove that f(1

2
) > 1

2
.

Proof. Suppose that f(1
2
) ≤ 1

2
. Then we have

f ′
−

(
1

2

)
= lim

x→ 1
2
−0

f(x)− f(1
2
)

x− 1
2

= lim
x→ 1

2
−0

f(1
2
)− f(x)
1
2
− x

≤ lim
x→ 1

2
−0

1
2
− (1− x)
1
2
− x
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= −1,
and

f ′
+

(
1

2

)
= lim

x→ 1
2
+0

f(x)− f(1
2
)

x− 1
2

≥ lim
x→ 1

2
+0

x− 1
2

x− 1
2

= 1,

contradicts with f(x) is differentiable at x = 1
2
. Hence f(1

2
) > 1

2
. □

Remark 5.6. From the proof of Problem 5.5, we know that it only needs to assume f(x)
is differentiable at x = 1

2
.

Problem 5.7. Suppose that f(x) is differentiable. Prove that F (x) = f(x)(1+ | sinx|)
is differentiable at x = 0 if and only if f(0) = 0.

Proof. Calculating the left derivative of F at x = 0 yields

F ′
−(0) = lim

x→0−0

f(x)(1 + | sinx|)− f(0)
x

= lim
x→0−0

f(x)− f(0)
x

+ lim
x→0−0

f(0)| sinx|
x

= f ′(0)− f(0).
Similarly, the right left derivative of F at x = 0 is

F ′
+(0) = lim

x→0+0

f(x)(1 + | sinx|)− f(0)
x

= lim
x→0+0

f(x)− f(0)
x

+ lim
x→0+0

f(0)| sinx|
x

= f ′(0) + f(0).

Hence F (x) is differentiable at x = 0 if and only if F ′
−(0) = F ′

+(0), if and only if
f ′(0)− f(0) = f ′(0) + f(0), if and only if f(0) = 0. □

Problem 5.8. Suppose that y = y(x) is determined by parametric equation

{
x = 2t+ |t|
y = t2 + 2t|t|

,

t ∈ R. Prove that y(x) is differentiable at x = 0, and find y′(0).

Proof. First way: By x = 2t+ |t|, we have

t =

{x
3
, x ≥ 0,

x, x < 0.
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Hence by y = t2 + 2t|t|, we know

y =


1

3
x2, x ≥ 0,

− x2, x < 0.

It’s easy to see that y(x) is differentiable at x = 0, and y′(0) = 0.
Second way: A direct differentiating yieldsdx =

(
2 +

t

|t|

)
dt

dy = (2t+ 4|t|) dt
Hence

dy

dx
=

2t+ 4|t|
2 + t

|t|
= 2|t|.

It’s easy to see that y(x) is differentiable at x = 0, and y′(0) = 0. □

Problem 5.9. Suppose that x2y2 + x2 + y2 = 1, (xy > 0). Prove that

dx√
1− x4

+
dy√
1− y4

.

Proof. A direct differentiating yields

x(1 + y2)dx+ y(1 + x2)dy = 0.

Note by x2y2 + x2 + y2 = 1 that

x2(1 + y2)2 = 1− y4,
and

y2(1 + x2)2 = 1− x4.
Since xy > 0, we know x(1 + y2) and y(1 + x2) have the same sign. Then√

1− y4dx+
√
1− x4dy = 0,

i.e.
dx√
1− x4

+
dy√
1− y4

.

The graph of the curve is as follows:
□

Problem 5.10. Prove the following identities:

(1)

n∑
k=1

kCk
n = n2n−1, n ∈ N+;
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Figure 3. Graph of the curve

(2)

n∑
k=1

k2Ck
n = n(n+ 1)2n−2, n ∈ N+.

Proof. (1) Note that

n∑
k=1

kCk
nx

k−1 =

(
n∑

k=1

Ck
nx

k

)′

= ((1 + x)n − 1)′ = n(1 + x)n−1.

Set x = 1, and there is
n∑

k=1

kCk
n = n2n−1.

(2) First way: Note that

n∑
k=1

k2Ck
nx

k−1 =

(
n∑

k=1

kCk
nx

k

)′

=

(
x

n∑
k=1

kCk
nx

k−1

)′

=
(
nx(1 + x)n−1

)′
= n(1 + x)n−1 + n(n− 1)x(1 + x)n−2.

Set x = 1, and there is
n∑

k=1

k2Ck
n = n(n+ 1)2n−2.

Second way: Firstly, we have

k2Ck
n = k2

n!

k!(n− k)!
= nkCk−1

n−1.
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Then
n∑

k=1

k2Ck
nx

k−1 = n
n∑

k=1

kCk−1
n−1x

k−1

=

(
n

n∑
k=1

Ck−1
n−1x

k

)′

=
(
nx(1 + x)n−1

)′
= n(1 + x)n−1 + n(n− 1)x(1 + x)n−2.

Set x = 1, and there is
n∑

k=1

k2Ck
n = n(n+ 1)2n−2.

□

Problem 5.11. Suppose that f : [a, b]→ [a, b] satisfies

|f(x)− f(y)| ≤ |x− y|, ∀x, y ∈ [a, b].

Define xn+1 =
1
2
(xn + f(xn)) for any given x1 ∈ [a, b]. Prove that lim

n→∞
xn exists.

Proof. Note that

xn+1 − xn =
1

2
(xn + f(xn))−

1

2
(xn−1 + f(xn−1))

=
1

2
(f(xn)− f(xn−1)) +

1

2
(xn − xn−1).

Then we have

(xn+1 − xn)(xn − xn−1) =
1

2
(f(xn)− f(xn−1))(xn − xn−1) +

1

2
(xn − xn−1)

2

≥ −1

2
|xn − xn−1|2 +

1

2
(xn − xn−1)

2 = 0,

since

|f(xn)− f(xn−1)||xn − xn−1| ≤ |xn − xn−1|2.
Hence, {xn} is monotonic. Clearly, {xn} is bounded, it’s easy to know that lim

n→∞
xn

exists. □

Problem 5.12. Suppose that f(x) is differentiable on [0, 1], and {x ∈ [0, 1]
∣∣f(x) =

0, f ′(x) = 0} = ∅. Prove that f has a finite number of zero pionts in [0, 1].
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Proof. Assume that f has an infinite number of zero points. Let Z := {x ∈ [0, 1]
∣∣f(x) =

0}. Since Z is a bounded set with an infinite number of elements, we know by the
Bolzano-Weierstrass theorem that there is a sequence {xn} ⊂ Z converges, say lim

n→∞
xn =

x0. By the continuity of f , we know that f(x0) = lim
n→∞

f(xn) = 0. Since f(x) is

differentiable, we have

f ′(x0) = lim
n→∞

f(xn)− f(x0)
xn − x0

= 0,

i.e. x0 ∈ {x ∈ [0, 1]
∣∣f(x) = 0, f ′(x) = 0}, contradiction. □

Problem 5.13.

(1) Suppose that f ∈ C[0, 1], f(0) = f(1). Prove that for 0 < α < 1, if 1
α
∈ N,

then there exists ξ ∈ [0, 1− α] such that f(ξ) = f(ξ + α);
(2) Prove that for 0 < α < 1, 1

α
/∈ N, there always exists f ∈ C[0, 1], f(0) = f(1)

such that ∀x ∈ [0, 1− α], there is f(x) ̸= f(x+ α).

Proof. (1) Let g(x) = f(x)− f(x+ α). Since 1
α
∈ N, we know

1
α
−1∑

k=0

g(kα) = f(0)− f(1) = 0.

Then there must be i, j ∈ {0, 1, · · · , 1
α
− 1}, i ̸= j, such that g(iα)g(jα) ≤ 0. Hence

there exists ξ ∈ [iα, jα] ⊂ [0, 1− α] such that f(ξ) = f(ξ + α).
(2) For 0 < α < 1, we define

f(x) = sin2
(πx
α

)
− x sin2

(π
α

)
.

Clearly, f is continuous and f(0) = 0 = f(1). If there is some x0 ∈ [0, 1 − α], such
that f(x0) = f(x0 + α), we know there is α sin2

(
π
α

)
= 0. However, since 1

α
/∈ N, we

know it’s impossible for sin2
(
π
α

)
= 0. Hence, we have that ∀x ∈ [0, 1 − α], there is

f(x) ̸= f(x+ α). □

Problem 5.14. Define f ∈ C (R) satisfying
(5.1) f(f(x)) = −x3 + sin(x2 + ln(1 + |x|)).
Prove that this equation has no continuous solution.

Proof. Assume by contradiction that there is a continuous function f satisfies (5.1).
Then we know that

lim
x→+∞

f(f(x)) = −∞ and lim
x→−∞

f(f(x)) = +∞.
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We conclude that there must be lim
x→+∞

f(x) = −∞. Indeed, if there exists a sequence

{xn} satisfying lim
n→∞

xn = +∞ but f(xn) is bounded, we know that f(f(xn)) must be

bounded since f is continuous, which contradicts with lim
x→+∞

f(f(x)) = −∞. Hence

by the continuity of f , we have that lim
x→+∞

f(x) = +∞ or lim
x→+∞

f(x) = −∞. If

lim
x→+∞

f(x) = +∞, then we’ll get lim
x→+∞

f(f(x)) = +∞ which generates contradiction.

So we must have lim
x→+∞

f(x) = −∞. Similarly we must have lim
x→−∞

f(x) = +∞. But

using lim
x→+∞

f(x) = −∞ and lim
x→−∞

f(x) = +∞ we have lim
x→+∞

f(f(x)) = +∞, which also

generates contradiction. Hence, (5.1) has no continuous solution. □

Remark 5.15. We can prove a general conclusion: For any f ∈ C(R), lim
x→+∞

f(f(x)) =

−∞ and lim
x→−∞

f(f(x)) = +∞ cannot be simultaneously true.

Problem 5.16. Suppose that g(x) is defined on [0, 1], and g(0) = 1, g(1) = 0. If
there exists a continuous function h(x) such that g(x) + h(x) is monotonic increasing
on [0, 1], prove that [0, 1] ⊂ g([0, 1]).

Proof. Denote that f = g+h. Since f is monotonic increasing, we have that f(x− 0) ≤
f(x) ≤ f(x + 0), (0 < x < 1). Since h is continuous, we know that g(x − 0) ≤ g(x) ≤
g(x+ 0), (0 < x < 1). For ∀ y ∈ (0, 1), we define

Ey = {t ∈ [0, 1]
∣∣g(x) > y,∀x ∈ [0, t]}.

Since g(0) = 1 > y, we know that Ey is not empty. Then the supremum of Ey exists.
Let x0 = supEy, then g(x0 − 0) ≥ y ≥ g(x0 + 0). Combining above, we obtain that
g(x0 − 0) = g(x0) = g(x0 + 0) = y, i.e. y ∈ g([0, 1]). Hence (0, 1) ⊂ g([0, 1]). It is clear
that 0, 1 ∈ g([0, 1]), we have that [0, 1] ⊂ g([0, 1]). □

Exercise 5.17. Let f(x) be continuous on R. Suppose that f is periodic with the
minimal postive period µ > 0, µ is irrational. Show that lim

n→∞
f(n) does not exist.

Hint: By Kronecker’s Approximation Theorem, we know that the sequence of numbers
{nµ− [nµ]} is dense in the unit interval. Hence we know that for any x0 ∈ [0, 1], there
exists a sequence {njµ} such that njµ− [njµ]→ x0, j →∞. Then

f([njµ]) = f([njµ]− njµ)→ f(−x0), j →∞,
which means {f(n)} does not converge. □
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Exercise 5.18. Suppose that x0 = 1, xn = xn−1+cosxn−1, (n = 1, 2, · · · ). Prove that

xn −
π

2
= o

(
1

nn

)
as n→∞.

Hint: Let yn = π
2
− xn, n = 0, 1, 2, · · · . Then yn = yn−1 − sin yn−1. By the inequality

x− x3

6
< sinx < x, x ∈ (0,+∞),

we have

0 < yn = yn−1 − sin yn−1 <
y3n−1

6
< y3n−1, n ∈ N+.

Hence
yn < y3

n

0 .

Note that 0 < y0 < 1. We konw that there is N ∈ N, such that ∀n > N ,

0 < ynn
n < y3

n

0 n
n < nnyn

2

0 =

 n(
1
y0

)n
n

<
1

2n
.

Hence, we have

yn = o

(
1

nn

)
, n→∞.

□

Exercise 5.19. Suppose that f ∈ C[0, 1], lim
x→0+0

f(x)− f(0)
x

= α < β = lim
x→1−0

f(x)− f(1)
x− 1

.

Prove that ∀λ ∈ (α, β), ∃x1, x2 ∈ [0, 1], such that λ =
f(x1)− f(x2)

x1 − x2
.

Hint: Let g(x) = f(x)− λx. Since

lim
x→0+0

g(x)− g(0)
x

= α− λ < 0,

we know there exists δ1 > 0, such that 0 < x < δ1, there is g(x) < g(0). Similarly, since

lim
x→1−0

g(x)− g(1)
x− 1

= β − λ > 0,

we know there exists δ2 > 0, such that 0 < x < δ2, there is g(x) < g(1). Then we
know that the minimum of g is achieved in (0, 1). Assume that g(x0) = min

x∈[0,1]
g(x), then

g(x0) < g(0), g(x0) < g(1). Note that if there exist x1, x2 ∈ [0, 1], x1 ̸= x2, such that
g(x1) = g(x2), then we have f(x1)− λx1 = f(x2)− λx2, i.e.

f(x1)− f(x2)
x1 − x2

= λ.
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Indeed, if g(0) = g(1), we are done. Next, we assume that g(0) ̸= g(1). Without loss of
generality, we assume that g(0) < g(1), then there is g(x0) < g(0) < g(1). Since g(x)
is continuous on [x0, 1], we know there exists ξ ∈ (x0, 1) such that g(ξ) = g(0), then we
are done. □

Exercise 5.20. Let a, b be two nonzero real numbers and a function f : R −→ [0,∞)
satisfying the functional equation

(5.2) f(x+ a+ b) + f(x) = f(x+ a) + f(x+ b).

(1) Prove that f is periodic if a/b is rational.
(2) If a/b is not rational, could f be nonperiodic?

Hint: (1) From (5.2), easy induction gives

f(x+ a+ nb)− f(x+ nb) = f(x+ a)− f(x), ∀n ∈ Z.
From f(x+ a+ nb)− f(x+ a) = f(x+ nb)− f(x), easy induction gives

f(x+ma+ nb)− f(x+ma) = f(x+ nb)− f(x), ∀m ∈ Z.
So

(5.3) f(x+ma+ nb) + f(x) = f(x+ma) + f(x+ nb), ∀x ∈ R and ∀m,n ∈ Z.
If a

b
is rational, we can choose m,n such that ma+ nb = 0. Let then u = |ma| > 0 and

(5.3) becomes
2f(x) = f(x+ u) + f(x− u),

or also
f(x+ u)− f(x) = f(x)− f(x− u).

From there, we easily get

(5.4) f(x+ nu) = f(x) + n(f(x+ u)− f(x)), ∀x ∈ R, ∀n ∈ Z.
Then, if f(x + u) − f(x) ̸= 0, setting n → +∞ or n → −∞ (depending on sign), (5.4)
implies f(x+ nu) < 0, contradicts with f(x) ≥ 0. Hence

f(x+ u) = f(x), ∀x ∈ R and for some u > 0.

(2) Define

f(x) =
1

2

(
cos

2πx

a
+ cos

2πx

b

)
+ 1.

It’s easy to verify that f satisfies (5.3). But f is periodic if and only if a/b is rational.
This can be seen by assuming f(T ) = f(0) = 2, which implies both cos 2πT

a
and cos 2πT

b
have to be 1, i.e. T/a and T/b have to be integers. □

Remark 5.21. From (5.4) in the proof of Exercise 5.20, we can see that f is only needed
to be bounded above or below.
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Exercise 5.22. Suppose that f(x) is a uniformly continuous function on [1,+∞).

Prove that lim
x→+∞

f(x)

x
< +∞.

Hint: By Problem 5.1, we know that there exist a, b > 0 such that |f(x)| ≤ ax + b.
Hence

lim
x→+∞

f(x)

x
≤ lim

x→+∞

|f(x)|
x
≤ lim

x→+∞

(
a+

b

x

)
= a < +∞.

□
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6. Week 9 (10.31)

Problem 6.1 (Mid 1). Calculate limitations.

(1) lim
n→∞

[sin(ln(n+ 1))− sin(lnn)];

(2) lim
x→0

3
√
1 + x sinx− 1

arctanx2
;

(3) lim
x→0

(1 + 2x)
(x+1)2

x ;

(4) lim
n→∞

[(n+ lnn)a − na], where 0 < a < 1;

(5) lim
x→+∞

(
21/x + 81/x

2

)x

.

Solution. (1)

lim
n→∞

| sin(ln(n+ 1))− sin(lnn)| = lim
n→∞

∣∣∣∣2 cos( ln(n+ 1) + lnn

2

)
sin

(
ln(n+ 1)− lnn

2

)∣∣∣∣
≤ lim

n→∞
(ln(n+ 1)− lnn) = 0.

(2)

lim
x→0

3
√
1 + x sinx− 1

arctanx2
= lim

x→0

1 + 1
3
x sinx− 1

x2
=

1

3
.

(3)

lim
x→0

(1 + 2x)
(x+1)2

x = lim
x→0

(1 + 2x)x+
1
x
+2 = e2.

(4)

lim
n→∞

[(n+ lnn)a − na] = lim
n→∞

na

[(
1 +

lnn

n

)a

− 1

]
= lim

n→∞

a lnn

n1−a
= 0.

(5) 4. (Problem 4.7 (7)). □

Problem 6.2 (Mid 2). Discuss the continuity of the following functions.

(1) f(x) = [| cosx|];

(2) f(x) =
1

1− e
x

1−x

.
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Solution. (1) It is easy to see that

0 ≤ | cosx| < 1, ∀x ∈ (nπ, (n+ 1)π), n ∈ Z.,
and

| cosx| = 1, x = nπ, n ∈ Z.
Then f is discontinuous at x = nπ, ∀n ∈ Z, and it’s the removable discontinuity.
(2) Note that

lim
x→1−0

1

1− e
x

1−x

= 0, lim
x→1+0

1

1− e
x

1−x

= 1,

and

lim
x→0−0

1

1− e
x

1−x

= +∞, lim
x→0+0

1

1− e
x

1−x

= −∞,

we know that x = 1 is the jump discontinuity and x = 0 is the discontinuity of second
kind. The graph of f(x) is as follows: □

Figure 4. Graph of f(x)

Problem 6.3 (Mid 3). Find n ∈ N+, such that when x→ 0, ex
n−1 is a infinitesimals

whose order is lower than x(cos
√
x− 1)( 3

√
x+ 1− 1) but higher than

√
x ln(1 + 3

√
x).

Solution. Note that when x→ 0, there are

x(cos
√
x− 1)( 3

√
x+ 1− 1) ∼ −1

6
x3,

and √
x ln(1 + 3

√
x) ∼ x

5
6 .

Hence n = 1, 2. □
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Problem 6.4 (Mid 5). Suppose that f(x) satisfying

lim
x→0

(
1 + x+

f(x)

x

) 1
x

= e3.

Prove that lim
x→0

f(x)

x2
exists, and find the limitation.

Proof. By lim
x→0

(
1 + x+

f(x)

x

) 1
x

= e3, we know that there must be lim
x→0

(
x+

f(x)

x

)
= 0.

What’s more, we have

lim
x→0

1

x
ln

(
1 + x+

f(x)

x

)
= 3.

Hence

lim
x→0

f(x)

x2
= lim

x→0

1

x

(
x+

f(x)

x

)
− 1

= lim
x→0

1

x
ln

(
1 + x+

f(x)

x

)
· lim
x→0

x+ f(x)
x

ln
(
1 + x+ f(x)

x

) − 1

= 3− 1 = 2.

□

Problem 6.5 (Mid 6). Suppose sequence {xn} satisfies x0 = 0, x2k =
x2k−1

2
and

x2k+1 = x2k +
1

2
. Find the upper and lower limit of {xn}.

Solution. Firstly, we have

x2k+1 = x2k +
1

2
=
x2k−1

2
+

1

2
,

which gives us

x2k+1 =
2k+1 − 1

2k+1
and x2k =

2k − 1

2k+1
.

Hence, we know

lim
n→∞

xn =
1

2
, lim

n→∞
xn = 1.

□

Problem 6.6 (Mid 7). Soppose that x0 = 1, xn+1 =
1

x3n + 4
. Prove that {xn} con-

verges to the unique positive zero point of equation x4 + 4x− 1 = 0.
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Proof. Let

g(x) = x4 + 4x− 1.

It’s easy to see that g(x) is increasing on [0,+∞). Since g(0) = −1 < 0, g(1) = 4 > 0,
we know that g(x) has only one zero point in [0,+∞), say α. In particular, 0 < α < 1.

Since g(α) = 0, we have that α =
1

α3 + 4
. By induction, we know that 0 < xn < 1,

n ≥ 1. Hence, there is

|xn+1 − α| =
∣∣∣∣ 1

x3n + 4
− 1

α3 + 4

∣∣∣∣
=

|x3n − α3|
(x3n + 4)(α3 + 4)

=
|xn − α||x2n + αxn + α2|

(x3n + 4)(α3 + 4)

≤ 3

16
|xn − α| ≤ · · ·

≤
(

3

16

)n

|x1 − α|

→ 0, as n→∞.

□

Problem 6.7 (Mid 10). Suppose that f(x) is Lipschitz on [1,+∞), i.e. there exists
a constant C > 0, such that ∀x, y ∈ [1,+∞), there is |f(x)− f(y)| ≤ C|x− y|. Prove

that
f(x)

x
is uniformly continuous on [1,+∞).

Proof. First way: By Exercise 5.22, we know that
f(x)

x
is bounded on [1,+∞), i.e.

there exists M > 0, such that

∣∣∣∣f(x)x
∣∣∣∣ ≤M . Note that ∀x, y ∈ [1,+∞), there is

∣∣∣∣f(x)x − f(y)

y

∣∣∣∣ = ∣∣∣∣f(x)x − f(y)

x
+
f(y)

x
− f(y)

y

∣∣∣∣
≤ |f(x)− f(y)|

x
+

1

x

∣∣∣∣f(y)y
∣∣∣∣ |x− y|

≤ (C +M)|x− y|.

i.e.
f(x)

x
is also Lipschitz. Thus, it is uniformly continuous.
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Second way: We will show
f(x)

x
is Lipschitz, directly. Indeed,∣∣∣∣f(x)x − f(y)

y

∣∣∣∣ = ∣∣∣∣f(x)x − f(y)

x
+
f(y)

x
− f(y)

y

∣∣∣∣
≤ |f(x)− f(y)|

x
+
|f(y)|
xy
|x− y|

≤ |f(x)− f(y)|
x

+
|f(y)− f(1)|+ |f(1)|

xy
|x− y|

≤ C|x− y|
x

+
C(y − 1) + |f(1)|

xy
|x− y|

≤ (2C + |f(1)|)|x− y|.
□
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7. Week 10 (11.7)

Problem 7.1 (4.36).

(4) y = sin3 x;

(6) y =
xn

1− x
;

(8)
lnx

x
.

Solution. (4) Note that

sin3 x = sinx(1− cosx) = sinx− sinx cos2 x

=
1

2
sinx− 1

2
sinx cos 2x

=
1

2
sinx− 1

4
sin 3x+

1

4
sinx

=
3

4
sinx− 1

4
sin 3x.

Hence

y(n) =
3

4
sin
(
x+

nπ

2

)
− 3n

4
sin
(
3x+

nπ

2

)
.

(6)First way: Note that

xn − 1 = (x− 1)(xn−1 + xn−1 + · · ·+ 1).

Second way: Note that

xn = (x− 1 + 1)n = 1 +
n∑

k=1

Ck
n(x− 1)k.

(8) By the Leibniz formula, we have

y(n) =

(
lnx

x

)(n)

= lnx

(
1

x

)(n)

+
n∑

k=1

Ck
n(lnx)

(k)

(
1

x

)(n−k)

=
(−1)nn!
xn+1

lnx+
n∑

k=1

(
n!

k!(n− k)!
(−1)k−1(k − 1)!

xk
(−1)n−k(n− k)!

xn−k+1

)

=
(−1)nn!
xn+1

(
lnx−

n∑
k=1

1

k

)
.
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□

Problem 7.2 (4.41(3)). If y = xn−1e
1
x , then y(n) =

(−1)n

xn+1
e

1
x .

Proof. Prove by induction. Let yn := xn−1e
1
x . Then y1 = e

1
x , we have

y′1 =
−1
x2
e

1
x .

Suppose that y(n)n =
(−1)n

xn+1
e

1
x , we calculate y

(n+1)
n+1 . By the Leibniz formula, we have

y
(n+1)
n+1 = (y

(n)
n+1)

′ = ((xyn)
(n))

= (xy(n)n + ny(n−1)
n )′

= xy(n+1)
n + (n+ 1)y(n)n

=
(−1)n+1

xn+2
e

1
x +

(−1)n+1(n+ 1)

xn+1
e

1
x +

(−1)n(n+ 1)

xn+1
e

1
x

=
(−1)n+1

xn+2
e

1
x .

□

Problem 7.3 (4.44). Suppose that f(x) is continuous at x = 0, and satisfying

lim
x→0

f(2x)− f(x)
x

= m.

Prove that f ′(0) = m.

Proof. The proof is very similar to that of Problem 4.11, we omit the detail here. □

Problem 7.4. Suppose that f(x) =

{
e−

1
x2 , x ̸= 0,

0, x = 0.
Prove that f (n)(0) = 0, ∀n ∈ N+.

Proof. We firstly calculate f ′(0). By definition, there is

f ′(0) = lim
x→0

1

x
· e−

1
x2 = lim

y→∞
ye−y2 = 0.

Next, a direct calculation yields the formula of f ′(x) when x ̸= 0

f ′(x) =
2

x3
e−

1
x2 .
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By definition, again, we have

f ′′(0) = lim
x→0

f ′(x)− f ′(0)

x
= lim

x→0

2

x4
· e−

1
x2 = 0.

Then, a direct calculation yields the formula of f ′′(x) when x ̸= 0

f ′′(x) =

(
4

x6
− 6

x4

)
e−

1
x2 .

Hence, we claim that the nth-order derivative of f when x ̸= 0 is

(7.1) f (n)(x) = Pn

(
1

x

)
· e−

1
x2 ,

where Pn(y) is a polynomial of degree n. We prove this claim by induction. We already
know that (7.1) is true for n = 1, 2. We suppose that (7.1) is valid for f (k)(x), we
calculate f (k+1)(x) in the following.

f (k+1)(x) = (f (k)(x))′

=

[
Pk

(
1

x

)
· e−

1
x2

]′
= P ′

k

(
1

x

)(
− 1

x2

)
· e−

1
x2 + Pk

(
1

x

)
· 2
x3
· e−

1
x2

=
[
Pk (y) (−y2) + Pk(y)(2y

3)
] ∣∣∣

y= 1
x

· e−
1
x2 .

Denote Pk+1

(
1

x

)
:=
[
Pk (y) (−y2) + Pk(y)(2y

3)
] ∣∣∣

y= 1
x

, then we obtain (7.1).

Finally, we prove f (n)(0) = 0 by induction. It is true for n = 1, 2. We suppose that
there is f (k)(0) = 0, we prove that f (k+1)(0) = 0. Indeed,

f (k+1)(0) = lim
x→0

f (k)(x)− f (k)(0)

x
= lim

x→0

f (k)(x)

x

= lim
x→0

1

x
· Pk

(
1

x

)
· e−

1
x2 = 0.

The graph of f(x) is as follows:
□

Exercise 7.5. Prove that there exists a smooth function f : R −→ [0, 1] such that
f
∣∣
(−∞,0]

= 0 and f
∣∣
[1,+∞)

= 1.

Hint: Firstly, define

g(x) =

{
e−

1
x2 , x > 0,

0, x ≤ 0.
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Figure 5. Graph of f(x)

Next, let

f(x) =
g(x)

g(x) + g(1− x)
.

It’s easy to verify that f satisfies the condition. □

Problem 7.6. Suppose that f is a polynomial of degree 7. If f(x) + 1 is divisible by
(x− 1)4 and f(x)− 1 is divisible by (x+ 1)4. Find f by the method of derivatives.

Proof. Note that

f(x) + 1 = p(x)(x− 1)4 ⇒ f ′(x) = p′(x)(x− 1)4 + 4p(x)(x− 1)3 ⇒ f ′(1) = 0,

f(x)− 1 = q(x)(x+ 1)4 ⇒ f ′(x) = q′(x)(x+ 1)4 + 4q(x)(x+ 1)3 ⇒ f ′(−1) = 0.

Hence we have

f ′(x) = a(x− 1)3(x+ 1)3.

Then

f(x) =
a

7
x7 − 3a

5
x5 + ax3 − ax+ b.

Since f(1) = −1, f(−1) = 1, we have that

−16

35
a+ b = −1, 16

35
a+ b = 1,

i.e.

a =
35

16
, b = 0.

Hence

f(x) =
1

16
x
(
5x6 − 21x4 + 35x2 − 35

)
.

□
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Problem 7.7. Suppose that f(x) = ax2+ bx+ c, and |f(x)| ≤ 1, when |x| ≤ 1. Prove
that |f ′(x)| ≤ 4, when |x| ≤ 1.

Proof. By |f(−1)| = |a− b+ c| ≤ 1, |f(0)| = |c| ≤ 1, |f(1)| = |a+ b+ c| ≤ 1, there is

|2a+ b| =
∣∣∣∣12(a− b+ c)− 2c+

3

2
(a+ b+ c)

∣∣∣∣
≤ 1

2
|a− b+ c|+ 2|c|+ 3

2
|a+ b+ c|

≤ 4.

Similarly, we have

| − 2a+ b| =
∣∣∣∣−3

2
(a− b+ c) + 2c− 1

2
(a+ b+ c)

∣∣∣∣ ≤ 4.

Since the maximum of linear functions is achieved at endpoints, we know that

|f ′(x)| = |2ax+ b| ≤ max{|2a+ b|, | − 2a+ b|} ≤ 4, ∀x ∈ [−1, 1].

□

Problem 7.8. Prove that for every n ∈ N+ there is
n∑

k=0

(−1)kCk
nk

m =

{
0, 0 ≤ m ≤ n− 1,

(−1)nn!, m = n.

Proof. Let Sm
n =

n∑
k=0

(−1)kCk
nk

m. We show that Sm
n = 0 if 0 ≤ m ≤ n − 1. Firstly, we

have

S0
n =

n∑
k=0

(−1)kCk
n = (1− 1)n = 0.

In particular, S0
1 = 0. By

kCk
n = k

n!

k!(n− k)!
= nCk−1

n−1,

we know that when 1 ≤ m ≤ n− 1, there is

Sm
n = n

n∑
k=1

(−1)kCk−1
n−1k

m−1

= −n
n−1∑
k=0

(−1)kCk
n−1(k + 1)m−1
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= −n
n−1∑
k=0

m−1∑
l=0

(−1)kCk
n−1C

l
m−1k

l(7.2)

= −n
m−1∑
l=0

n−1∑
k=0

(−1)kCk
n−1C

l
m−1k

l

= −n
m−1∑
l=0

C l
m−1S

l
n−1.

Hence, by induction, we have that Sm
n = 0 for 0 ≤ m ≤ n − 1. What’s more, by (7.2),

we have

Sn
n = −n

n−1∑
l=0

C l
n−1S

l
n−1 = −nSn−1

n−1 = (−1)nn!.

Then the result follows. □

Exercise 7.9. Given a positive integer n. Find

S =
n∑

k=0

(−1)k
(
n

k

)
kn+2,

and

T =
n∑

k=0

(−1)k
(
n

k

)
kn+3.

Hint: Using (7.2) and induction, we have

S =
(−1)nn(3n+ 1)(n+ 2)!

24
,

and

T =
(−1)nn2(n+ 1)(n+ 3)!

48
.

□

Problem 7.10. Suppose that f(x) = xn lnx, n ∈ N+. Calculate lim
n→∞

f (n)(1/n)

n!
.

Proof. Denote that fn(x) = xn lnx. Then

f ′
n(x) = nxn−1 lnx+ xn−1 = nfn−1(x) + xn−1.

Hence, we have

f (n)
n (x) = nf

(n−1)
n−1 (x) + (n− 1)!,
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which gives us

f
(n)
n (x)

n!
=
f
(n−1)
n−1 (x)

(n− 1)!
+

1

n
= · · · = lnx+ 1 +

1

2
+ · · ·+ 1

n
.

Then take x = 1
n
, ther is

lim
n→∞

f
(n)
n (1/n)

n!
= lim

n→∞

(
1 +

1

2
+ · · ·+ 1

n
− lnn

)
= c,

where c is the Euler constant. □

Problem 7.11 (5.1). Prove the generalized Rolle’s theorem, i.e. suppose that f(x) is
differentiable on (a, b), and f(a+0) = f(b−0) = A. Then there exists ξ ∈ (a, b), such
that f ′(ξ) = 0, where a can be −∞, b can be +∞, A can be +∞ or −∞.

Proof. We only prove the case that a, b and A are finite, others are similar and we leave
them to the reader. The conclusion is clear if f(x) = A, ∀x ∈ (a, b). Hence, without
loss of generality, we may assume that there is at least a x0 ∈ (a, b) such that f(x0) > A.
By the definition of limits, we have there is a small δ > 0 such that

f(x) < f(x0), ∀x ∈ (a, a+ δ) ∪ (b− δ, b).

Hence, we know that the maximum of f(x) is achieved on [a+ δ, b− δ], thus there exists
ξ ∈ (a, b), such that f ′(ξ) = 0. □

Problem 7.12 (5.5). Prove that the Chebyshev-Laguerre polynomial

Ln(x) = ex
dn

dxn
(xne−x)

has n different zero points.

Proof. By Leibniz formula, it’s easy to see that Ln(x) is a polynomial of degree n. Hence,
it has at most n zero points. The conclusion is clear for n = 0, 1, we show it’s true for
n ≥ 2 in the following. Denote g(x) = xne−x, then Ln(x) = exg(n)(x). It suffices to find
all zero points of g(n)(x). Note that

g(l)(x) =
l∑

k=0

Ck
l (x

n)(k)(e−x)(l−k) =
l∑

k=0

Ck
l n(n− 1) · · · (n− k + 1)xn−k(−1)l−ke−x.

Hence for l < n, there are always g(l)(0) = 0 and lim
x→+∞

g(l)(x) = 0. Hence, by Rolle’s

theorem (Problem 7.11) and induction, we know that there is at least n− 1 zero points
of g(l)(x) between (0,+∞).By Rolle’s theorem again, we have that g(n)(x) has at least n
zero points in (0,+∞). Therefore, we know that Ln(x) has n different zero points. □
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Problem 7.13. Suppose that f is continuous on [x1, x2], differentiable on (x1, x2).

Show that there exists ξ ∈ (x1, x2), such that
1

x1 − x2

∣∣∣∣ x1 x2
f (x1) f (x2)

∣∣∣∣ = f(ξ)− ξf ′(ξ).

Proof. Note that

1

x1 − x2

∣∣∣∣ x1 x2
f (x1) f (x2)

∣∣∣∣ = x1f(x2)− x2f(x1)
x1 − x2

=

f(x2)
x2
− f(x1)

x1

1
x2
− 1

x1

.

By the Cauchy mean value theorem, we know that there exists ξ ∈ (x1, x2), such that

f(x2)
x2
− f(x1)

x1

1
x2
− 1

x1

=

ξf ′(ξ)−f()ξ
ξ2

− 1
ξ2

= f(ξ)− ξf ′(ξ).

Then the result follows. □

Problem 7.14. Suppose that f(x) is differentiable on (a, b), b < +∞, and lim
x→b−0

f(x) =

+∞. Prove that lim
x→b−0

f ′(x) = +∞.

Proof. Prove by contradiction. Assume that lim
x→b−0

f ′(x) < +∞. Then there exist M ∈
R, δ > 0, such that ∀x ∈ (b − δ, b), there is f ′(x) ≤ M . Hence by the Lagrange mean
value theorem, we know that ∀x, y ∈ (b− δ, b), x > y, there exist ξ ∈ (b− δ, b) such that

f(x)− f(y) = f ′(ξ)(x− y) ≤M(x− y).
Let x→ b− 0, and by lim

x→b−0
f(x) = +∞, we have that

+∞ ≤M(b− y),
contradiction. □

Problem 7.15. Suppose that f(x) is continuous on [a, b], differentiable on (a, b),
and f is not a linear function. Prove that there exists ξ ∈ (a, b), such that f ′(ξ) >
f(b)− f(a)

b− a
.

Proof. Prove by contradiction. Assume that f ′(x) ≤ f(b)− f(a)
b− a

, ∀x ∈ (a, b). Define

F (x) = f(x)− f(a)− f(b)− f(a)
b− a

(x− a).

Note that F (a) = F (b) = 0, and

F ′(x) = f ′(x)− f(b)− f(a)
b− a

≤ 0.
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Hence

0 = F (a) ≥ F (x) ≥ F (b) = 0, ∀x ∈ (a, b),

i.e. F (x) = 0, ∀x ∈ (a, b). Therefore, we have

f(x) = f(a) +
f(b)− f(a)

b− a
(x− a), ∀x ∈ (a, b),

which implies that f is a linear function, contradiction. □

Exercise 7.16. Suppose that f(x) is continuous on [0, 1], differentiable on (0, 1), and
f is not a constant function. If f(0) = 0, prove that there exists ξ ∈ (0, 1) such that
f(ξ)f ′(ξ) > 0.

Hint: Consider the function F (x) := f 2(x). □

Problem 7.17. Suppose that f(x) is differentiable on [0, 1], f(0) = 0, f(1) = 1,
k1, · · · , kn are positive numbers. Prove that there are x1, · · · , xn ∈ [0, 1], xi ̸= xj, such
that

n∑
i=1

ki
f ′(xi)

=
n∑

i=1

ki.

Proof. Denote that m =
n∑

i=1

ki, λi =
ki
m
. Then 0 < λi < 1, λ1 + · · · + λn = 1.

Since f(0) = 0, f(1) = 1 and f(x) is continuous on [0, 1], we know that there exists
c1 ∈ (0, 1) such that f(c1) = λ1. Again, we know that there exists c2 ∈ (c1, 1) such that
f(c2) = λ1 + λ2 since λ1 < λ1 + λ2 < 1. Proceeding like this, we can find

0 < c1 < c2 < · · · < cn = 1,

such that

f(ci) =
i∑

k=1

λk (i = 1, 2, · · · , n).

By the Lagrange mean value theorem, we have xi ∈ (ci−1, ci) (c0 = 0), such that

f ′(xi) =
f(ci)− f(ci−1)

ci − ci−1

=
λi

ci − ci−1

,

i.e.
λi

f ′(xi)
= ci − ci−1 (i = 1, 2, · · · , n).

Hence, we have
n∑

i=1

λi
f ′(xi)

=
n∑

i=1

(ci − ci−1) = cn − c0 = 1.
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Recall that λi =
ki
m
, we obtain

n∑
i=1

ki
f ′(xi)

=
n∑

i=1

ki.

□

Problem 7.18. Suppose that f(x) is differentiable on (a, b). Prove that the points
in (a, b) are either the continuous point of f ′(x), or the discontinuous point of secong
kind. i.e. f ′(x) has no discontinous points of first kind.

Proof. Since f(x) is differentiable on (a, b), we know that ∀x0 ∈ (a, b), there is

f ′(x0) = f ′
+(x0) = lim

x→x0+0

f(x)− f(x0)
x− x0

= lim
x→x0+0

f ′(ξ)(x− x0)
x− x0

= lim
x→x0+0

f ′(ξ) (x0 < ξ < x).

Hence, if lim
x→x0+0

f ′(x) exists, there must be

f ′(x0) = lim
ξ→x0+0

f ′(ξ) = f ′(x0 + 0).

Similarly, if lim
x→x0−0

f ′(x) exists, there must be

f ′(x0) = f ′(x0 − 0).

Therefore f ′(x) is continuous at x = x0 unless at least one of lim
x→x0+0

f ′(x), lim
x→x0−0

f ′(x)

does not exist. □

Exercise 7.19 (Darboux Theorem). Suppose that f(x) is differentiable on [a, b], and
f ′(a) < f ′(b). Then ∀ c : f ′(a) < c < f ′(b), there exists ξ ∈ (a, b), such that f ′(ξ) = c.

Hint: Define
g(x) = f(x)− cx, ∀x ∈ [a, b].

Hence, g(x) is differentiable on [a, b]. What’s more, there are g′(a) = f ′(a) − c < 0,
g′(b) = f ′(b)− c > 0. Note that

lim
x→a+0

g(x)− g(a)
x− a

= g′(a) < 0,

which implies that there is δ > 0, such that ∀x ∈ (a, a + δ), there is g(x) < g(a).
Similarly, there is δ > 0, such that ∀x ∈ (b − δ, b), there is g(x) < g(b). Hence, the
minimum of g(x) is achieved on [a+ δ, b− δ], which yields that there is ξ ∈ (a, b), such
that g′(ξ) = 0, i.e. f ′(ξ) = c. □
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Exercise 7.20. Suppuse that f(x) is continuous on [a, b], and differentiable on (a, c),
(c, b). Prove that there exists ξ ∈ (a, b) such that |f(b)− f(a)| ≤ |f ′(ξ)||b− a|.

Hint: Using the Lagrange mean value theorem on (a, c), (c, b), respectively, and taking
the maximum of intermediate points. □

Exercise 7.21. Suppuse that f(x) is continuous on [0, 1], differentiable on (0, 1), and
|f ′(x)| < 1. If f(0) = f(1), prove that for any x1, x2 ∈ (0, 1), there is

|f(x1)− f(x2)| <
1

2
.

Hint: Consider |x1 − x2| <
1

2
and |x1 − x2| ≥

1

2
, respectively. □

Exercise 7.22 (Challenge!). Suppose that f(x), f ′
+(x) ∈ C(R). Prove that f(x) is

differentiable on R.

Hint: Firstly, prove the two lemmas:
Suppose that f(x) ∈ C[a, b], f(a) = f(b), f ′

+(x) exists on [a, b). Prove that there exist
c, d ∈ [a, b) such that f ′

+(c) ≤ 0, f ′
+(d) ≥ 0.

Suppose that f(x) ∈ C[a, b], f ′
+(x) exists on [a, b). Prove that there exist c, d ∈ [a, b)

such that f ′
+(c) ≤

f(b)− f(a)
b− a

≤ f ′
+(d).

Finally, using the continuity of f ′
+(x) to prove that ∀x0 ∈ R, there is

f ′
−(x0) = lim

x→x0−0

f(x)− f(x0)
x− x0

= f ′
+(x0).

□
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8. Week 11 (11.14)

Problem 8.1. Calculate the following limitations.

(1) lim
x→0+0

xx;

(2) lim
x→0+0

xx
x−1;

(3) lim
x→+∞

(
3
√
x3 − 3x−

√
x2 − 2x

)
;

(4) lim
x→0+0

xx − (sinx)x

x2 ln(1 + x)
.

Solution. (1) By L’Hospital’s rule, we have

lim
x→0+0

xx = lim
x→0+0

ex lnx

= exp

{
lim

x→0+0

lnx
1
x

}
= exp

{
lim

x→0+0

1
x

− 1
x2

}
= exp

{
lim

x→0+0
−x
}

= 1.

(2) By Taylor’s formula, we have

lim
x→0+0

xx
x−1 = e

lim
x→0+0

(xx−1) lnx

= e
lim

x→0+0
x(lnx)2

= 1.

(3) By Taylor’s formula, we have

lim
x→+∞

(
3
√
x3 − 3x−

√
x2 − 2x

)
= lim

x→+∞
x
(

3
√
1− 3x−2 −

√
1− 2x−1

)
= lim

x→+∞
x(1− x−2 − 1 + x−1)

= 1.

(4) By Taylor’s formula, we have

lim
x→0+0

xx − (sinx)x

x2 ln(1 + x)
= lim

x→0+0

ex lnx − ex ln sinx

x3

= lim
x→0+0

ex lnx1− ex ln sin x
x

x3
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= lim
x→0+0

1− e− 1
6
x3

x3

=
1

6
.

□

Exercise 8.2. Prove that(
1 +

1

n

)n

= e− e

2n
+

11e

24n2
+ o

(
1

n2

)
, (n→∞).

Hint: By Taylor’s formula, we have(
1 +

1

n

)n

= en ln(1+ 1
n)

= e1−
1
2n

+ 1
3n2+o( 1

n2 )

= e

(
1− 1

2n
+

1

3n2
+

1

2

(
− 1

2n
+

1

3n2

)2
)

+ o

(
1

n2

)
= e− e

2n
+

11e

24n2
+ o

(
1

n2

)
, (n→∞).

□

Remark 8.3. Similarly, for (1 + x)
1
x , there is

(1 + x)
1
x = e− e

2
x+

11e

24
x2 + o

(
x2
)
, (x→ 0).

Problem 8.4. Suppose that f(x) is twice differentiable on [0, 1], f(0) = f(1) = 0,
max
x∈[0,1]

f(x) = 2. Prove that inf
x∈[0,1]

f ′′(x) ≤ −16.

Proof. Since f(x) is continuous on [0, 1], f(0) = f(1) = 0, and max
x∈[0,1]

f(x) = 2, we know

that there is x0 ∈ (0, 1) such that

f(x0) = max
x∈[0,1]

f(x).

Hence, by Fermat’s theorem, there is

f ′(x0) = 0.

By Taylor’s formula at x = x0, we have

0 = f(0) = f(x0) +
1

2
f ′′(ξ)(0− x0)2 = 2 +

1

2
f ′′(ξ)x20,
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0 = f(1) = f(x0) +
1

2
f ′′(η)(1− x0)2 = 2 +

1

2
f ′′(η)(1− x0)2.

Hence, we know

inf
x∈[0,1]

f ′′(x) ≤ min {f ′′(ξ), f ′′(η)} = min

{
− 4

x20
,− 4

(1− x0)2

}
.

Note that

min

{
− 4

x20
,− 4

(1− x0)2

}
= − 4

(1− x0)2
≤ −16, x0 ∈

[
1

2
, 1

]
,

min

{
− 4

x20
,− 4

(1− x0)2

}
= − 4

x20
≤ −16, x0 ∈

[
0,

1

2

]
.

Therefore, we obtain that
inf

x∈[0,1]
f ′′(x) ≤ −16.

□

Remark 8.5. Use the same method, we can prove that if f(x) is twice differentiable on
[0, 1], f(0) = f(1) = 0, min

x∈[0,1]
f(x) = −1, then sup

x∈[0,1]
f ′′(x) ≥ 8.

Problem 8.6 (5.16). Suppose that f(x) is three times differentiable on [a, b]. Prove
that there is ξ ∈ (a, b), such that

f(b) = f(a) +
1

2
(b− a)(f ′(a) + f ′(b))− 1

12
(b− a)3f (3)(ξ).

Proof. Firstly, we choose M such that

f(b) = f(a) +
1

2
(b− a)(f ′(a) + f ′(b))− 1

12
(b− a)3M.

Define

F (x) = f(x)− f(a)− 1

2
(x− a)(f ′(x) + f ′(a)) +

1

12
(x− a)3M.

Hence, there is F (a) = F (b) = 0. By Rolle’s theorem, we know that there exists
η ∈ (a, b) such that F ′(η) = 0. Note that

F ′(x) = f ′(x)− 1

2
(f ′(x) + f ′(a))− 1

2
(x− a)f ′′(x) +

1

4
(x− a)2M.

Hence, there is F ′(a) = F ′(η) = 0. By Rolle’s theorem again, we know that there exists
ξ ∈ (a, η) such that F ′′(ξ) = 0. Note that

F ′′(x) = −1

2
(x− a)f (3)(x) +

1

2
(x− a)M.

Therefore, we have M = f (3)(ξ), i.e.

f(b) = f(a) +
1

2
(b− a)(f ′(a) + f ′(b))− 1

12
(b− a)3f (3)(ξ).
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□

Problem 8.7. Suppose that f(x) is twice differentiable on [−1, 1], f(0) = f ′(0) = 0.
Assume that |f ′′(x)| ≤ |f(x)| + |f ′(x)|, ∀x ∈ [−1, 1]. Prove that there exists δ > 0,
such that f(x) = 0, ∀x ∈ (−δ, δ).

Proof. Choose δ = 1/4. Since |f(x)|+ |f ′(x)| is continuous on [−1/4, 1/4], we know that
there is x0 ∈ [−1/4, 1/4] such that

|f(x0)|+ |f ′(x0)| = max
x∈[−1/4,1/4]

|f(x)|+ |f ′(x)| =:M.

By Taylor’s formula, we have

f(x0) = f(0) + f ′(0)x0 +
f ′′(ξ)

2
x20 =

f ′′(ξ)

2
x20,

f ′(x0) = f ′′(η)x0.

Hence, there is

|f(x0)|+ |f ′(x0)| =
∣∣∣∣f ′′(ξ)

2
x20

∣∣∣∣+ |f ′′(η)x0|

≤ 1

4
(|f(ξ)|+ |f ′(ξ)|) + 1

4
(|f(η)|+ |f ′(η)|)

≤ 1

2
M,

which implies that M = 0, i.e. f(x) = 0, ∀x ∈ [−1/4, 1/4]. □

Problem 8.8. Suppose that f(x) is twice differentiable on R, and f(x) is also a
bounded function. Prove that there is ξ ∈ R such that f ′′(ξ) = 0.

Proof. Assume that f ′′(x) ̸= 0, ∀x ∈ R. By Darboux’s theorem (Exercise 7.19), we
know that f ′′(x) does not change sign. Without loss of generality, we may assume that
f ′′(x) > 0, ∀x ∈ R. Choosing x0 ∈ R such that f ′(x0) ̸= 0. By Taylor’ formula, we have

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(ξ)

2
(x− x0)2 ≥ f(x0) + f ′(x0)(x− x0),

which contradicts with f is bounded on R. □

Problem 8.9. Suppose that f ∈ Cn(R), and there exist constants M0, M1 such that
|f(x)| ≤M0, |f (n)(x)| ≤M1, ∀x ∈ R. Prove that there is M > 0 such that |f (j)(x)| ≤
M , j = 1, 2, · · · , n− 1, ∀x ∈ R.
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Proof. By Taylor’s formula, we have

f(x+m) = f(x) +mf ′(x) +
m2

2!
f ′′(x) + · · ·+ mn−1

(n− 1)!
f (n−1)(x) +

mn

n!
f (n)(ξm),

where x < ξm < x + m, m = 1, 2, · · · , n. This is a linear system of equations about
f ′(x), f ′′(x), · · · , f (n−1)(x), and the determinant of its coefficients is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
1

2!
· · · 1

(n− 1)!

1 2
22

2!
· · · 2n−1

(n− 1)!
...

...
...

. . .
...

1 n
n2

2!
· · · nn−1

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

1!2! · · · (n− 1)!

∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 2 22 · · · 2n−1

...
...

...
. . .

...

1 n n2 · · · nn−1

∣∣∣∣∣∣∣∣∣∣
= 1.

Hence, we know that f ′(x), f ′′(x), · · · , f (n−1)(x) can be written as linear combinations of
f(x+m) and f (n)(ξm), m = 1, 2, · · · , n. Since |f(x)| ≤M0, |f (n)(x)| ≤M1, ∀x ∈ R, we
have that there exists M > 0 such that |f (j)(x)| ≤M , j = 1, 2, · · · , n− 1, ∀x ∈ R. □

Problem 8.10. Suppose that f(x) is bounded on R and f ′(x) is uniformly continuous
on R. Prove that f ′(x) is also bounded.

Proof. Prove by contradiction. Without loss of generality, we may assume that f ′(x)
has no upper bound. Hence, we know that ∀n ∈ N, there exists xn ∈ R, such that
f ′(xn) > n. Since f ′(x) is uniformly continuous on R, we have that there exists δ > 0
such that ∀x, y : |x− y| < δ, there is

|f(x)− f(y)| < 1.

Then, there is f(x) > f(xn) − 1 > n − 1, ∀x ∈ (xn, xn + δ). By Taylor’s formula, we
have

2 sup
x∈R
|f(x)| ≥ |f(xn + δ)− f(xn)| = |f ′(ξn)δ| > (n− 1)δ → +∞, n→∞,

which contradicts with f(x) is bounded on R. □

Remark 8.11. Note that lim
x→+∞

f ′(x) may not exist, for example, consider f(x) = sinx.

But if lim
x→+∞

f ′(x) exists, there must be lim
x→+∞

f ′(x) = 0.

Problem 8.12. Suppose that f ∈ C3(R), and there exists θ ∈ (0, 1) such that

(8.1) f(x+ h) = f(x) + hf ′(x+ θh), ∀h ∈ R.
Prove that f is a linear function or a quadratic function.
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Proof. Differentiating (8.1) respect to h, we have

(8.2) f ′(x+ h) = f ′(x+ θh) + θhf ′′(x+ θh).

Hence, there is

f ′(x+ h)− f ′(x) + f ′(x)− f ′(x+ θh)

h
= θf ′′(x+ θh).

Letting h→ 0, we have
f ′′(x)− θf ′′(x) = θf ′′(x),

i.e.
f ′′(x) = 2θf ′′(x).

If θ ̸= 1

2
, we know that f ′′(x) = 0, ∀x ∈ R, thus f(x) is a linear function. If θ =

1

2
,

(8.2) yields

f ′(x+ h) = f ′
(
x+

1

2
h

)
+

1

2
hf ′′

(
x+

1

2
h

)
.

Differentiating the above formula respect to h yields

f ′′(x+ h) = f ′′
(
x+

1

2
h

)
+

1

4
hf ′′′

(
x+

1

2
h

)
.

Hence
f ′′(x+ h)− f ′′ (x+ 1

2
h
)

1
2
h

=
1

2
hf ′′′

(
x+

1

2
h

)
.

Letting h→ 0, we have

f ′′′(x) =
1

2
f ′′′(x),

i.e. f ′′′(x) = 0, ∀x ∈ R, thus f(x) is a quadratic function. □

Problem 8.13. If f is defined on (0,+∞) and f ′, f ′′ exists , with lim
x→+∞

f(x) exists

and f ′′ bounded, prove that lim
x→+∞

f ′(x) = 0.

Proof. Without loss of generality, we assume that lim
x→+∞

f(x) = 0 (otherwise, replace

f(x) by f(x) − lim
x→+∞

f(x), and those conditions are still satisfied). Then ∀ ε > 0,

∃ a ∈ R such that sup
x∈(a,∞)

|f(x)| < ε.

Let
sup

x∈(0,∞)

|f ′′(x)| =M2,

(exists finitely in R as f ′′ is bounded.) So, for a defined above, there is

sup
x∈(a,∞)

|f ′′(x)| ≤M2.

72



Taking h > 0, by Taylor’s theorem we have

f ′(x) =
1

2h
[f(x+ 2h)− f(x)]− hf ′′(ξ)

for some ξ ∈ (x, x+ 2h). Hence

|f ′(x)| ≤ ε

h
+ hM2.

Then we obtain

h2M2 − h |f ′(x)|+ ε ≥ 0, ∀x ∈ (a,∞),

which is a quadratic in h, and since M2 > 0, we have

|f ′(x)|2 ≤ 4M2ε, ∀x ∈ (a,∞).

Hence

lim
x→∞
|f ′(x)|2 = 0 =⇒ lim

x→∞
|f ′(x)| = 0 =⇒ lim

x→∞
f ′(x) = 0.

□

Problem 8.14. Suppose that f ∈ C∞(a, b), and f (n)(x) ≥ 0 for all n ∈ N+. If
|f(x)| ≤M , prove that for every x ∈ (a, b), r > 0, x+ r ∈ (a, b), there is

f (n)(x) ≤ 2Mn!

rn
, ∀n ∈ N+.

Proof. By Taylor’s formula, we have

f(x+ r) = f(x) + f ′(x)r + · · ·+ f (n)(x)

n!
rn +

f (n+1)(ξ)

(n+ 1)!
rn+1

≥ f(x) +
f (n)(x)

n!
rn,

which implies

f (n)(x) ≤ (f(x+ r)− f(x))n!
rn

≤ 2Mn!

rn
.

□

Problem 8.15 (Bernstein Theorem). Suppose that f ∈ C∞(a, b), and f (n)(x) ≥ 0
for all n ∈ N+. Prove that for every x0 ∈ (a, b), there exists r > 0, such that
∀x ∈ [x0 − r, x0 + r] ⊂ (a, b), there is

f(x) = lim
n→∞

n∑
k=0

f (k)(x0)

k!
(x− x0)k.
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Proof. Choosing r > 0 small enough, such that [x0 − 3r, x0 + 3r] ⊂ (a, b). Denote

M = sup
x∈[x0−2r,x0+2r]

|f(x)|.

By Problem 8.14, we have for every x ∈ [x0 − 2r, x0 + 2r], there is f (n)(x) ≤ 2Mn!

(2r)n
.

Then, we have ∣∣∣∣∣f(x)−
n∑

k=0

f (k)(x0)

k!
(x− x0)k

∣∣∣∣∣ = f (n+1)(ξ)

(n+ 1)!
|x− x0|n+1

≤ f (n+1)(ξ)

(n+ 1)!
rn+1 ≤ M

2n
.

Hence, there is

f(x) = lim
n→∞

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

□

Exercise 8.16 (5.12). Suppose that f(x) is differentiable on (a, b), and f ′(x) is mono-
tonic. Prove that f ′(x) is continuous on (a, b).

Hint: Since f ′(x) is monotonic, we know that for any x0 ∈ (a, b), lim
x→x0+0

f ′(x) and

lim
x→x0−0

f ′(x) exist. Then by Problem 7.18, we have that f ′(x) is continuous on (a, b). □

Exercise 8.17. Suppose that f(x) is continuous on [a, b], and twice differentiable on

(a, b). If |f ′′(x)| ≥ m > 0, and f(a) = f(b) = 0. Prove that max
x∈[a,b]

|f(x)| ≥ m

8
(b− a)2.

Hint: Denote |f(x0)| = max
x∈[a,b]

|f(x)|. It’s easy to see that f ′(x0) = 0. Then

f(a) = f(x0) + f ′(x0)(a− x0) +
f ′′(ξ)

2
(x0 − a)2 = f(x0) +

f ′′(ξ)

2
(x0 − a)2,

f(b) = f(x0) + f ′(x0)(b− x0) +
f ′′(η)

2
(x0 − b)2 = f(x0) +

f ′′(η)

2
(x0 − b)2.

Hence

|f(x0)| ≥
m

2
(x0 − a)2 ≥

m

8
(b− a)2, x0 ∈

[
a+ b

2
, b

]
,

|f(x0)| ≥
m

2
(x0 − b)2 ≥

m

8
(b− a)2, x0 ∈

[
a,
a+ b

2

]
.

□
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9. Week 12 (11.21)

Problem 9.1 (Schwarz Theorem). Define the generalized second order derivative as
follows

f [2](x) = lim
h→0+0

f(x+ h) + f(x− h)− 2f(x)

h2
.

If f ∈ C[a, b], and f [2](x) = 0 on (a, b), prove that f is a linear function.

Proof. For any x ∈ [a, b] and ∀ ε > 0, define

fε(x) = f(x)− f(a)− f(b)− f(a)
b− a

(x− a) + ε(x− a)(x− b).

Then fε(a) = fε(b) = 0. Note that

f [2]
ε (x) = lim

h→0+0

fε(x+ h) + fε(x− h)− 2fε(x)

h2

= lim
h→0+0

1

h2

(
f(x+ h)− f(a)− f(b)− f(a)

b− a
(x+ h− a) + ε(x+ h− a)(x+ h− b)

+ f(x− h)− f(a)− f(b)− f(a)
b− a

(x− h− a) + ε(x− h− a)(x− h− b)

− 2

(
f(x)− f(a)− f(b)− f(a)

b− a
(x− a) + ε(x− a)(x− b)

)
= lim

h→0+0

1

h2
(
f(x+ h) + f(x− h)− 2f(x) + ε · 2h2

)
=f [2](x) + 2ε = 2ε.

We claim that fε ≤ 0, when ε > 0. Indeed, if there is x0 ∈ (a, b) such that fε(x0) > 0, by
fε(a) = fε(b) = 0 and the continuity of fε, we know that the maximum of fε is achieved
in (a, b), say fε(x

∗) = max
x∈[a,b]

fε(x). Hence, there is

fε(x
∗ + h) + fε(x

∗ − h) ≤ 2fε(x
∗).

Since f
[2]
ε (x∗) = 2ε > 0, we know that there is h > 0 such that

fε(x
∗ + h) + fε(x

∗ − h)− 2fε(x
∗) > 0.

Therefore, there is

fε(x
∗) <

1

2
(fε(x

∗ + h) + fε(x
∗ − h)) ≤ fε(x

∗),

contradiction. Similarly, we can prove that fε ≥ 0, when ε < 0. By the continuity of fε
respect to ε , we know that

f(x)− f(a)− f(b)− f(a)
b− a

(x− a) = f0(x) = 0,
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i.e. f is a linear function. □

Problem 9.2. If f ′(x0) > (<)0, can we say that f is monotonic on a small enough
neighborhood of x = x0?

Solution. No. For example (6.59 in book), let

f(x) =

x+ 2x2 sin
1

x
, x ̸= 0,

0, x = 0.

It’s easy to see that f ′(0) = 1 > 0. However, by

f ′(x) = 1 + 4x sin
1

x
− 2 cos

1

x
, x ̸= 0,

we have

f ′
(

1

nπ

)
= 1− 2(−1)n,

which means that f ′(x) can not be always positve or negative on any neighboehoods of
x = 0, hence f is not monotonic on any neighboehoods of x = 0. The graph of f(x) is
as follows:

Figure 6. Graph of f(x)

□

Problem 9.3 (5.37). Suppose that f(x) has nth-order derivative on (a,+∞). If
lim

x→+∞
f(x) = A, lim

x→+∞
f (n)(x) = B. Prove that B = 0.

Proof. By L’Hospital’s rule, we have

0 = lim
x→+∞

f(x)

xn

= lim
x→+∞

f ′(x)

nxn−1
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...

= lim
x→+∞

f (n)(x)

n!

=
B

n!
,

which gives us B = 0. □

Problem 9.4 (5.48). Suppose that f(x) is defined on [a, b] satisfying

(9.1) |f(x)− f(y)| ≤ k|x− y|1+α, ∀x, y ∈ [a, b], α > 0.

Prove that f(x) is constant.

Proof. For ∀x0 ∈ [a, b], by (9.1), we have∣∣∣∣f(x)− f(x0)x− x0

∣∣∣∣ ≤ k|x− x0|α, ∀x ̸= x0.

Hence, letting x→ x0, we know

f ′(x0) = 0, ∀x0 ∈ [a, b],

which means that f(x) is constant. □

Problem 9.5. Find the extreme value of the following functions.

(50(3)) f(x) =
(lnx)2

x
;

(50(4)) f(x) = |x(x2 − 1)|;

(51(2)) f(x) = 2 tanx− tan2 x, x ∈ [0, π/2);

(51(3)) f(x) =
√
x lnx, x ∈ (0,+∞).

Solution. (50(3)) The derivative of f(x) is

f ′(x) =
lnx(2− lnx)

x2
.

Hence the local minimum is f(1) = 0 and the local maximum is f(e2) = 4/e2. The
graph of f(x) is as follows:
(50(4))The graph of f(x) is as follows: When x = 0, x = ±1, f(x) has local minimun

0. When x = ±
√
3
3
, f(x) has local maximun 2

√
3

9
.

(51(2)) The graph of f(x) is as follows:
(51(3)) The graph of f(x) is as follows:

□
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Figure 7. Graph of f(x)

Figure 8. Graph of f(x)

Figure 9. Graph of f(x)

Figure 10. Graph of f(x)
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Problem 9.6 (5.54(2)). Suppose that f(x) and g(x) are differentiable on (a, b), and
denote

F (x) = f(x)g′(x)− f ′(x)g(x), x ∈ (a, b).

If F (x) > 0, x ∈ (a, b). Prove that there must be zero points of g(x) between the two
zero points of f(x).

Proof. Assume that x1, x2 ∈ (a, b) are two zero points of f(x). If ∀x ∈ (x1, x2), there is
g(x) ̸= 0. Define

G(x) =
f(x)

g(x)
, ∀x ∈ (x1, x2).

Hence, we have

G′(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)
< 0,

which gives us that G(x) is monotonic decreasing on [x1, x2]. Then there is

0 = G(x1) ≥ G(x) ≥ G(x2) = 0,

i.e. G(x) ≡ 0, which contradicts with F (x) > 0. Hence we know that there must be
zero points of g(x) between x1 and x2. □

Problem 9.7. Suppose that f(x) is twice differentiable on [a, b] satisfying

(9.2) f ′′(x) + b(x)f ′(x) + c(x)f(x) = 0, ∀x ∈ [a, b],

where c(x) < 0. Prove that

(1) f(x) can not admit a positive maximum or negative minimum in (a, b);
(2) If f(a) = f(b) = 0, then f(x) ≡ 0.

Proof. (1) Prove by contradiction. Assume that f(x) has a positive maximum in (a, b),
i.e. there is x0 ∈ (a, b) such that f(x0) = max

x∈[a,b]
f(x) > 0. By the necessary condition for

maximum value, we know that f ′(x0) = 0, f ′′(x0) ≤ 0. Then combining with c(x0) < 0,
we have

f ′′(x0) + b(x0)f
′(x0) + c(x0)f(x0) ≤ c(x0)f(x0) < 0,

which contradicts with (9.2). Hence, we have that f(x) can not admit a positive maxi-
mum in (a, b). Using the same method, we can prove that f(x) can not admit a negative
minimum in (a, b).

(2) By (1), we know that max
x∈[a,b]

f(x) ≤ 0 and min
x∈[a,b]

f(x) ≥ 0. Hence

0 ≤ min
x∈[a,b]

f(x) ≤ max
x∈[a,b]

f(x) ≤ 0,

i.e. f(x) ≡ 0. □
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Exercise 9.8 (5.67). Suppose that the tangent line of the elliptic
x2

a2
+
y2

b2
= 1 intersects

the x-axis and y-axis at A and B, respectively.

(1) Find the minimum length of AB;
(2) Find the minimum area of the triangle formed by AB and the coordinate axis.

Hint: (1) The tangent line at (x0, y0) is
x0x

a2
+
y0y

b2
= 1.

Hence we know that A

(
a2

x0
, 0

)
, B

(
b2

y0
, 0

)
. Then

|AB| =

√
a4

x20
+
b4

y20

=

√
a2

x2
0

a2

+
b2

y20
b2

≥
√

(a+ b)2

x2
0

a2
+

y20
b2

= a+ b.

(2) By (1), we know

S∆AOB =
1

2

a2b2

|x0y0|
≥ ab

x2
0

a2
+

y20
b2

= ab.

The graph of the elliptic when a = 2, b =
√
3 is as follows:

Figure 11. Graph of
x2

4
+
y2

3
= 1

□
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Problem 9.9. Suppose that P (x) is a polynomial function. Prove that

(1) If P ′(x) + P (x) ≥ 0, then P (x) ≥ 0;

(2) If P (x)− P ′(x) ≥ 0, then P (x) ≥ 0;

(3) If P ′′′(x)− P ′′(x)− P ′(x) + P (x) ≥ 0, then P (x) ≥ 0.

Proof. (1) Let

F (x) = P (x)ex.

Then there is

F ′(x) = (P ′(x) + P (x))ex ≥ 0.

Since lim
x→−∞

F (x) = 0, we know that F (x) ≥ 0, ∀x ∈ R. Note that ex > 0, ∀x ∈ R, we
have P (x) ≥ 0.

(2) Let

G(x) = P (x)e−x.

Then there is

G′(x) = (P ′(x)− P (x))e−x ≤ 0.

Since lim
x→+∞

G(x) = 0, we know that G(x) ≥ 0, ∀x ∈ R. Note that e−x > 0, ∀x ∈ R, we
have P (x) ≥ 0.

(3) Denote

Q(x) = P ′′(x)− P (x).
We have

Q′(x)−Q(x) ≥ 0.

Hence by (2), we know that Q(x) ≤ 0, i.e. P (x)− P ′′(x) ≥ 0. Note that

P (x)− P ′′(x) = P (x)− P ′(x) + P ′(x)− P ′′(x),

we have by (1) that P (x)− P ′(x) ≥ 0. Then by (2) again, we have that P (x) ≥ 0. □

Problem 9.10. Suppose that f(x) is a bounded convex function on (a, b). Prove that
lim

x→a+0
f(x) and lim

x→b−0
f(x) exist.

Proof. Since f(x) is bounded, we may assume that |f(x)| ≤ M , ∀x ∈ (a, b). Let

x > x1 > x0 be any points in (a, b). By the convexity of f(x), we have
f(x)− f(x0)

x− x0
is

monotonic inreasing respect to x. Since

f(x)− f(x0)
x− x0

≤ M − f(x0)
x1 − x0

, ∀x > x1 > x0,
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we have

lim
x→b−0

f(x)− f(x0)
x− x0

= A

by the monotone bounded convergence theorem. Then

lim
x→b−0

f(x) = lim
x→b−0

[
(x− x0) ·

f(x)− f(x0)
x− x0

+ f(x0)

]
= A(b− x0) + f(x0),

which is lim
x→b−0

f(x) exists. Similarly, we can prove that lim
x→a+0

f(x) exists. □

Problem 9.11. Suppose that f(x) is convex on (a, b). Prove that ∀ [c, d] ⊂ (a, b),
f(x) is Lipschitz continuous on [c, d].

Proof. Since [c, d] ⊂ (a, b), we can choose h > 0 small enough such that

[c− h, d+ h] ⊂ (a, b).

Indeed, it suffices to choose 0 < h < min{c− a, b− d}. Then ∀x1, x2 ∈ [c, d], if x1 < x2,
we take x3 = x2 + h. By the convexity of f(x), we have

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x2)
x3 − x2

≤ M −m
h

,

where M = sup
x∈[c−h,d+h]

f(x), m = inf
x∈[c−h,d+h]

f(x). If x2 < x1, we take x3 = x2 − h. By

the convexity of f(x), we have

f(x2)− f(x3)
x2 − x3

≤ f(x1)− f(x2)
x1 − x2

.

Then
f(x2)− f(x1)

x1 − x2
≤ f(x3)− f(x2)

x2 − x3
≤ M −m

h
.

Hence, we have

f(x2)− f(x1) ≤
M −m

h
|x1 − x2|.

Switching x1 and x2, we know the above inequality is still valid. Hence, we know

|f(x1)− f(x2)| ≤
M −m

h
|x1 − x2|, ∀x1, x2 ∈ [c, d],

i.e. f(x) is Lipschitz continuous on [c, d]. □

Problem 9.12. Prove that the non-differentiable points of a convex function are
countable.
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Proof. Let f(x) be a convex function. For ∀x < x0 < y, by the convexity of f , we have

f(x)− f(x0)
x− x0

≤ f(y)− f(x0)
y − x0

.

It’s easy to see that
f(x)− f(x0)

x− x0
is monotonic inreasing respect to x. Hence by the

monotone bounded convergence theorem, we have

f ′
−(x0) ≤ f ′

+(x0).

If f(x) is non-differentiable at x = x0, there is f ′
−(x0) < f ′

+(x0). Then every non-
differentiable point x0 is corresponding to a rational number in

(
f ′
−(x0), f

′
+(x0)

)
, and{(

f ′
−(x0), f

′
+(x0)

)}
is disjoint pairwise, thus the non-differentiable points of f(x) are

countable. □

Exercise 9.13. Suppose that f(x) is a bounded convex function on R. Prove that f
is a constant function.

Hint: Prove by contradiction. Suppose that f is not a constant function. By Problem
9.12, we know that f ′

−(x) and f
′
+(x) exist. Then there is at least a x0 such that f ′

−(x0) ̸= 0
or f ′

+(x0) ̸= 0. Without loss of generality, we assume that f ′
+(x0) ̸= 0. Then by the

convexity of f , we have

f(x) ≥ f(x0) + f ′
+(x0)(x− x0),

which contradicts with f is bounded. □

Exercise 9.14. Suppose that f ∈ C2[0, 1] is a nonegative function. Assume that
f(0) = 0, f ′(0) = 1, f ′′(0) = −1, and ∀x ∈ (0, 1], f(x) ̸= x. For any given x0 ∈ (0, 1],
define xn+1 = f(xn). Calculate the limitation lim

n→∞
nxn.

Hint: By Taylor’s formula, we have

f(x) = x− 1

2
x2 + o(x2).

Hence, for x > 0 small enough, we have f(x) < x. By ∀x ∈ (0, 1], f(x) ̸= x and the
continuity of f , we know that f(x) ≤ x. Hence, lim

n→∞
xn exists and lim

n→∞
xn = 0. By Stolz

theorem and Taylor’s formula, we have

lim
n→∞

nxn = lim
n→∞

n
1
xn

= lim
n→∞

xnxn+1

xn − xn+1

= lim
n→∞

xnf(xn)

xn − f(xn)
= lim

n→∞

x2n
1
2
x2n

= 2.

□
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Exercise 9.15. Suppose that f has nth-order derivatives at x = x0. Prove that

f (n)(x0) = lim
h→0

1

hn

n∑
k=0

(−1)n−kCk
nf(x0 + kh).

Hint:

lim
h→0

∑n
k=0(−1)n−kCk

nf (x0 + kh)

hn

= lim
h→0

∑n
k=0(−1)n−kCk

n

(∑n
m=0

f (m)(x0)
m!

kmhm + o (hn)
)

hn

= lim
h→0

∑n
k=0(−1)n−kCk

n

∑n
m=0

f (m)(x0)
m!

kmhm

hn

= lim
h→0

∑n
k=0

∑n
m=0(−1)n−kCk

n
f (m)(x0)

m!
kmhm

hn

= lim
h→0

∑n
m=0

∑n
k=0(−1)n−kCk

n
f (m)(x0)

m!
kmhm

hn

= lim
h→0

∑n
m=0

f (m)(x0)
m!

hm
∑n

k=0(−1)n−kCk
nk

m

hn

= lim
h→0

(−1)n · (−1)nn!f
(n)(x0)
n!

hn

hn

= f (n) (x0) ,

where we used Problem 7.8 in the last equality. □
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10. Week 13 (11.28)

Problem 10.1. Prove that f(x) is a convex function on (a, b) if and only if ∀x1, x2 ∈
(a, b), there is φ(λ) = f(λx1 + (1− λ)x2) is a convex function on [0, 1].

Proof. “⇒” For ∀λ1, λ2 ∈ [0, 1], α ∈ [0, 1], there is

φ(αλ1 + (1− α)λ2) = f((αλ1 + (1− α)λ2)x1 + (1− (αλ1 + (1− α)λ2))x2)
= f(α(λ1x1 + (1− λ1)x2) + (1− α)(λ2x1 + (1− λ2)x2))
≤ αφ(λ1) + (1− α)φ(λ2),

where we used the convexity of f in the last inequality. Hence φ(λ) is a convex function
on [0, 1].
“⇐” It is easy to see that

f(λx1 + (1− λ)x2) = φ(λ) = φ(λ · 1 + (1− λ) · 0)
≤ λφ(1) + (1− λ)φ(0)
= λf(x1) + (1− λ)f(x2),

i.e. f(x) is a convex function on (a, b). □

Problem 10.2. Suppose that f(x) is a strict convex function on I. Prove that if f(x)
has minimum f(x0), then f(x0) is unique, i.e. ∀x ∈ I\{x0}, there is f(x) > f(x0).

Proof. Prove by contradiction. If there exists x1 ∈ I\{x0}, such that f(x1) ≤ f(x0).
Then ∀λ ∈ (0, 1), there is

f(λx0 + (1− λ)x1) < λf(x0) + (1− λ)f(x1) ≤ f(x0).

Then for any neighborhood of x0, say U(x0, δ) (0 < δ < |x1 − x0|), in I, we know that if

we let λ : 1 − λ < δ

|x1 − x0|
, and take x = λx0 + (1 − λ)x1, then there is x ∈ U(x0, δ)

and

f(x) = f(λx0 + (1− λ)x1) < f(x0),

which contradicts with f(x0) is the minimum of f(x). □

Problem 10.3 (Challenge!). Suppose that f(x) =
1

1 + ex
.

(i) Prove that f(x) is a convex function on [0,+∞). Moreover, there is f(x) +
f(y) ≤ f(0) + f(x+ y), ∀x, y ≥ 0.

(ii) Assume n ≥ 3, determine the set E =

{
n∑

k=1

f(xk)

∣∣∣∣∣
n∑

k=1

xk = 0, x1, · · · , xn ∈ R

}
.
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Proof. (i) Note that

f ′(x) = − ex

(1 + ex)2
, f ′′(x) =

ex(ex − 1)

(1 + ex)3
.

When x ≥ 0, there is f ′′(x) ≥ 0, hence f(x) is a convex function on [0,+∞). For
x, y ≥ 0, we define

g(x) = f(x+ y)− f(x)− f(y) + f(0).

Then
g′(x) = f ′(x+ y)− f ′(x) ≥ 0,

since f ′(x) is increasing on [0,+∞). Hence g(x) ≥ g(0) = 0, i.e. f(x) + f(y) ≤
f(0) + f(x+ y).
(ii) By the continuity of f , it’s easy to see that E is an interval. Hence, it suffices to

find the infimum and supremum of E. Note that x1 + · · ·+ xn = 0.

If x1 = x2 = · · · = xn = 0, then
n∑

j=1

f(xj) =
n

2
.

If x1, · · · , xn are not all zero, we assume that the number of negative is k, and the
number of nonnegative ism, then k+m = n, 1 ≤ k ≤ n−1. Without loss of generality, we
may assmue that x1, · · · , xm ≥ 0, xm+1, · · · , xn < 0. Denote y1 = −xm+1, · · · , yk = −xn,
x = x1 + · · ·+ xm = y1 + · · ·+ yk. By (i), we have

f(y1) + · · ·+ f(yk) ≤ (k − 1)f(0) + f(x).

Note that mf
( x
m

)
− f(x) is strictly decreasing on [0,+∞) and f(x) + f(−x) = 1, we

have
n∑

j=1

f (xj) =
m∑
j=1

f (xj) + k −
k∑

j=1

f (yj)

⩾mf
( x
m

)
+ k − ((k − 1)f(0) + f(x))

> lim
u→+∞

[
mf

( u
m

)
+ k − ((k − 1)f(0) + f(u))

]
=
k + 1

2
⩾ 1,

which implies that inf E ≥ 1 and 1 /∈ E. On the other hand, for u > 0, let x1 = x2 =
· · · = xn−1 =

u
n−1

, xn = −u, we have

lim
u→+∞

n∑
j=1

f(xj) = lim
u→+∞

(
(n− 1)f

(
u

n− 1

)
+ 1− f(u)

)
= 1,

thus inf E = 1. Note that f(−x) = 1− f(x), we have

E = {n− z|z ∈ E}.
Hence, supE = n− 1, and n− 1 /∈ E. Therefore, we know that E = (1, n− 1). □
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Exercise 10.4 (Challenge!). Suppose that f(x) is a concave function on [a, b] satis-
fying f(a) = 0, f(b) > 0 and the right derivative of f(x) at x = a is non-zero. For
n ≥ 2, denote

Sn =

{
n∑

k=1

kxk :
n∑

k=1

kf(xk) = f(b), xk ∈ [a, b]

}
.

(i) Prove that for ∀α ∈ (0, f(b)), there exists a unique x ∈ (a, b) such that f(x) =
α.

(ii) Find lim
n→∞

(supSn − inf Sn).

Hint: (i) Since f(x) is continuous on [a, b], we know that ∀α ∈ (0, f(b)), there exists at
least one point ξ ∈ (a, b) such that f(ξ) = α. Next, we prove that it is unique. Assume
that there are ξ, η ∈ (a, b) satisfying ξ < η and f(ξ) = f(η) = α. Then the point
(η, f(η)) = (η, α) lies below in the segment connecting (ξ, f(ξ)) = (ξ, α) and (b, f(b)),
contradicts with the concavity of f .
(ii) Denote

Tn =

{
(x1, · · · , xn) :

n∑
k=1

kf(xk) = f(b), xk ∈ [a, b]

}
, n ≥ 2.

For ∀ (x1, · · · , xn) ∈ Tn, by the concavity of f(x), we have

2f(b)

n(n+ 1)
=

∑n
k=1 kf (xk)

1 + 2 + · · ·+ n
≤ f

(
x1 + 2x2 + · · ·+ nxn

1 + 2 + · · ·+ n

)
.

Hence
x1 + 2x2 + · · ·+ nxn

1 + 2 + · · ·+ n
≥ f−1

(
2f(b)

n(n+ 1)

)
,

i.e.
n∑

k=1

kxk ≥
n(n+ 1)

2
f−1

(
2f(b)

n(n+ 1)

)
.

It is easy to see that “=” holds iff x1 = x2 = · · · = xn = f−1

(
2f(b)

n(n+ 1)

)
. Note that(

f−1

(
2f(b)

n(n+ 1)

)
, · · · , f−1

(
2f(b)

n(n+ 1)

))
∈ Tn, hence

inf Sn =
n(n+ 1)

2
f−1

(
2f(b)

n(n+ 1)

)
.

On the other hand, by the concavity of f(x), we have

f(b)

b− a
(x− a) ≤ f(x),
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i.e

x ≤ b− a
f(b)

f(x) + a.

Hence
n∑

k=1

kxk ≤
b− a
f(b)

n∑
k=1

kf (xk) +
n(n+ 1)

2
a = b− a+ n(n+ 1)

2
a.

Note that “=” holds iff x1 = b, x2 = x3 = · · · = xn = a, and (b, a, a, · · · , a) ∈ Tn, then

supSn = b− a+ n(n+ 1)

2
a.

Therefore, we have

lim
n→∞

(supSn − inf Sn) = b− a+ lim
n→∞

n(n+ 1)

2

(
a− f−1

(
2f(b)

n(n+ 1)

))

= b− a+ f(b) lim
n→∞

a− f−1
(

2f(b)
n(n+1)

)
2f(b)

n(n+1)

= b− a+ f(b) lim
x→0+0

a− f−1(x)

x
= b− a+ f(b) lim

t→a+0

a− t
f(t)

= b− a− f(b)

f ′(a)
.

□

Problem 10.5. Suppose that x, y, z > 0. Given x+ y + z = 1, prove that:

1

x2 + y2 + z2
+

3

xy + yz + zx
≥ 12.

Proof. First note that (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx), if we denote
t = xy + yz + zx, we have

1

x2 + y2 + z2
+

3

xy + yz + zx
=

1

1− 2t
+

3

t

since x + y + z = 1. By xy + yz + zx ≤ 1
3
(x + y + z)2 = 1

3
, we know that it suffices to

minimize

f(t) :=
1

1− 2t
+

3

t
, 0 < t ≤ 1

3
.

Differentiating directly yields

f ′(t) =
2

(1− 2t)2
− 1

t2
=
−10t2 + 12t− 3

(1− 2t)2t2
< 0, 0 < t ≤ 1

3
.

Hence we know f(t) ≥ f(1
3
) = 1

1− 2
3

+ 9 = 12. Then we are done! Finally, it is easy to

see that “ = ” holds iff x = y = z = 1
3
. □
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Problem 10.6. If a, b, c > 0 and 2abc+ 3(ab+ ac+ bc) = 27. Prove that

16(a2 + b2 + c2) + 8abc ≥ 135.

Proof. First by
a2 + b2 ≥ 2ab, b2 + c2 ≥ 2bc, c2 + a2 ≥ 2ca,

we get
a2 + b2 + c2 ≥ ab+ bc+ ca.

Then combining with 2abc+ 3(ab+ bc+ ca) = 27 yields

16(a2 + b2 + c2) + 8abc = 16(a2 + b2 + c2) + 4(27− 3(ab+ bc+ ca))

= 16(a2 + b2 + c2)− 12(ab+ bc+ ca) + 108

≥ 4(a2 + b2 + c2) + 108.

Hence it suffices to prove a2+b2+c2 ≥ 27
4
. Assume by contradiction that a2+b2+c2 < 27

4
,

and note that a2 + b2 + c2 ≥ 3
3
√
a2b2c2, we have

2abc+ 3(ab+ bc+ ca) ≤ 2

(
a2 + b2 + c2

3

) 3
2

+ 3(a2 + b2 + c2)

< 2

(
9

4

) 3
2

+ 3× 27

4

= 2× 27

8
+ 3× 27

4
= 27

contradict with 2abc+3(ab+ bc+ ca) = 27. Hence a2 + b2 + c2 ≥ 27
4
. Then we are done.

Then it is easy to check that “ = ” holds iff (a, b, c) = (3
2
, 3
2
, 3
2
). □

Remark 10.7. We can also get a2+b2+c2 ≥ 27
4
by solving the inequality 2

(
a2+b2+c2

3

) 3
2
+

3(a2 + b2 + c2) ≥ 27.

Problem 10.8. Prove the following inequalities:

(1)
n∑

k=1

(
xk +

1

xk

)α

≥ (n2 + 1)α

nα−1
, (α > 1, x1 + · · ·+ xn = 1);

(2) 1 +

(
n∑

k=1

pkxk

)−1

≤
n∏

k=1

(
1 + xk
xk

)pk

, (pk > 0 0 < xk < 1, p1 + · · ·+ pk = 1);

(3) (sinx)1−cos 2x + (cosx)1+cos 2x ≥
√
2, where x ∈ (0, π/2);

(4) 2n ≥ 1 + n
√
2n−1, n ∈ N;
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(5)

∣∣∣∣∣
n∑

k=1

sin kx

k

∣∣∣∣∣ ≤ 2
√
2π, x ∈ R, n ∈ N.

Proof. (1) Since f(x) = (x+ 1/x)α is convex on (0,+∞), we have(
n2 + 1

n

)α

=

 1
n

n∑
k=1

xk +

(
1

n

n∑
k=1

xk

)−1
α

≤ 1

n

n∑
k=1

(
xk +

1

xk

)α

.

(2) Since f(x) = ln(1 + 1/x) is convex on (0,+∞), we have

ln

1 +

(
n∑

k=1

pkxk

)−1
 ≤ n∑

k=1

pk · ln
(
1 +

1

xk

)
= ln

(
n∏

k=1

(
1 + xk
xk

)pk
)
.

(3) Note that

(sinx)1−cos 2x + (cosx)1+cos 2x = (sin2 x)sin
2x + (cos2 x)cos

2 x.

Since f(x) = xx is convex on (0,+∞), we have(
1

2

) 1
2

≤ 1

2

(
(sin2 x)sin

2x + (cos2 x)cos
2 x
)
.

(4) Let

f(x) = 2x − 1− x
√
2x−1, (x ≥ 1).

Then

f ′(x) = 2
x−1
2

(
2

x+1
2 ln 2− 1− x

2
ln 2
)
.

Let

g(x) = 2
x+1
2 ln 2− 1− x

2
ln 2, (x ≥ 1).

There is

g′(x) = 2
x+1
2 (ln 2)2 · 1

2
− 1

2
ln 2 > 0, (x ≥ 1).

Hence g is increasing on [1,+∞), then g(x) ≥ g(1) = 3
2
ln 2 − 1 > 0. Therefore, we

know that f ′(x) > 0, i.e. f is also increasing on [1,+∞). Hence f(x) ≥ f(1) = 0, i.e.

2n ≥ 1 + n
√
2n−1, n ∈ N.

(5) It suffices to consider x ∈ [0, π] since f(x) =

∣∣∣∣∣
n∑

k=1

sin kx

k

∣∣∣∣∣ is an even function,

and it has period, 2π. When x = 0, π, the inequality is clearly. Now, we assume that

0 < x < π. We know that there must be some m ∈ N such that m ≤
√
2π

x
< m + 1.

Hence ∣∣∣∣∣
n∑

k=1

sin kx

k

∣∣∣∣∣ =
m∑
k=1

∣∣∣∣sin kxk
∣∣∣∣+
∣∣∣∣∣

n∑
k=m+1

sin kx

k

∣∣∣∣∣ .
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When m = 0, the first formula of RHS is 0, when m ≥ n, the second formula of RHS is
0. Note that

| sinx| ≤ |x| and sinx >
2

π
x (0 < x < π/2).

We have
m∑
k=1

∣∣∣∣sin kxk
∣∣∣∣ ≤ m∑

k=1

kx

k
<
√
2π,

and ∣∣∣∣∣
n∑

k=m+1

sin kx

k

∣∣∣∣∣ =
∣∣∣∣∣

n−1∑
k=m+1

Sk

(
1

k
− 1

k + 1

)
+ Sn ·

1

n
− Sm ·

1

m+ 1

∣∣∣∣∣
<

1∣∣sin x
2

∣∣ · 2

m+ 1
<
π

x
· 2x√

2π
=
√
2π,

where Sk = sinx+sin 2x+ · · ·+sin kx and |Sk| < 1/
∣∣sin x

2

∣∣ (Leave to the reader). Then
we have ∣∣∣∣∣

n∑
k=1

sin kx

k

∣∣∣∣∣ ≤ 2
√
2π.

□
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11. Week 14 (12.5)

Problem 11.1. Assume that f is twice diffentiable on R, and such

2f(x) + f ′′(x) = −xf ′(x).

Prove that f(x)and f ′(x) are bounded on R.

Proof. Define

g = f 2 +
1

2
(f ′)2.

By definition, g is non-negative and differentiable; moreover,

g′(x) = f ′(x) · (2f(x) + f ′′(x)) = −x · (f ′(x))2, ∀x ∈ R.

Therefore, g is increasing on (−∞, 0] and decreasing on [0,+∞), so g(R) ⊂ [0, g(0)].
The conclusion follows. □

Problem 11.2. Define f ∈ C2 [a, b] satisfying f ′′(x) = exf(x). Show that f ′′(x) =
exf(x) with f(a) = f(b) = 0 makes f ≡ 0 ∀x ∈ [a, b].

Proof. Assume that f is not identically zero on the interval, without loss of generality
f(x0) > 0 for some x0 ∈ (a, b). Then f attains its maximum M > 0 at some point
x1 ∈ (a, b). At the maximum, we necessarily have

f ′(x1) = 0 , f ′′(x1) ≤ 0 ,

which is a contradiction to the assumption that

f ′′(x1) = ex1f(x1) = ex1M > 0 .

□

Remark 11.3. Actually, we can prove a general conclusion: if f ∈ C2 [a, b] satisfying
f ′′(x) = g(x)f(x) where g(x) ∈ C0 [a, b] satisfying g(x) > 0, and f(a) = f(b) = 0, we
have f ≡ 0 ∀x ∈ [a, b].

Problem 11.4. Suppose that there is equation

(11.1) x(1− ln(ε
√
x)) = 1, (x > 0, ε > 0).

Then

(i) For small enough ε, (11.1) has two solutions (denote the small one as xε);
(ii) lim

ε→0+0
xε = 0;

(iii) lim
ε→0+0

ε−txε = +∞(t > 0).
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Proof. (i) For x > 0, we have ε = e/
√
xe1/x =: f(x). Denote F (x) =

√
xe1/x = e/f(x),

there is

F ′(x) = x−
3
2 e

1
x
x− 2

2
.

Hence F (x) is strictly decreasing on (0, 2] and it is strictly increasing on [2,+∞). Note
that

lim
x→0+0

F (x) = +∞ = lim
x→+∞

F (x), F (2) > 0,

we have lim
x→0+0

f(x) = 0 = lim
x→+∞

f(x) and f(x) is strictly increasing on (0, 2] and it is

strictly decreasing on [2,+∞), f(2) =
√
e/2. Let

f1(x) =

{
f(x), x ∈ (0, 2),
0, x ∈ [2,+∞),

f2(x) =

{
0, x ∈ (0, 2],

f(x), x ∈ (2,+∞).

Then for 0 < ε <
√
e/2, (11.1) has two solutions: x = f−1

1 (ε), x = f−1
2 (ε). The small

one is xε = f−1
1 (ε).

(ii) Since f1 is strictly increasing on (0, 2) and it is continuous, we know lim
ε→0+0

xε = 0

by f1(0 + 0) = 0.
(iii) For t > 0, we have

ε−txε =

(
e√
xe1/x

)−t

x = e−tx1+t/2et/x → +∞, as x→ 0 + 0.

□

Problem 11.5. Draw the graph of f(x) = |x+ 2|e−
1
x .

Solution. Note that f(x) ≥ 0 and f(−2) = 0. Hence 0 is the minimum of f(x) and
x = −2 is the minimal point. Rewrite f(x) as

f(x) =

{
(x+ 2)e−

1
x , x ∈ [−2, 0) ∪ (0,+∞),

− (x+ 2)e−
1
x , x ∈ (−∞,−2).

When x ∈ [−2, 0) ∪ (0,+∞), there is

f ′(x) =
e−

1
x (x2 + x+ 2)

x2
> 0.

Hence f(x) is strictly inreasing on x ∈ [−2, 0)∪ (0,+∞). When x ∈ (−∞,−2), there is

f ′(x) = −e
− 1

x (x2 + x+ 2)

x2
< 0.

Hence f(x) is strictly dereasing on x ∈ (−∞,−2).
It is easy to see that

lim
h→0+0

f(−2 + h)− f(−2)
h

= lim
h→0+0

he−
1

h−2

h
= e

1
2 ,
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lim
h→0−0

f(−2 + h)− f(−2)
h

= lim
h→0−0

−he−
1

h−2

h
= −e

1
2 ,

which gives us that f(x) is nondifferentiable at x = −2. Note that

lim
x→0+0

f(x) = lim
x→0+0

2 + x

e
1
x

= 0,

lim
x→0−0

f(x) = lim
x→0−0

2 + x

e
1
x

= +∞.

Hence x = 0 is a vertical asymptote of f(x). Note that

lim
x→+∞

f(x)

x
= lim

x→+∞

x+ 2

x
e−

1
x = 1,

lim
x→+∞

(f(x)− x) = lim
x→+∞

((x+ 2)e−
1
x − x) = 1.

Hence y = x+ 1 is a oblique asymptote of f(x).

When x ≥ −2, f ′′(x) =

(
2

x4
− 3

x3

)
e−

1
x . Hence we know that when −2 ≤ x ≤ 2

3
,

f(x) is convex; x >
2

3
, f(x) is concave. When x < −2, f ′′(x) = −

(
2

x4
− 3

x3

)
e−

1
x < 0.

Hence f(x) is concave.
Combining above, we have the graph of f is as follows:

Figure 12. Graph of f(x)

□

Problem 11.6. Calculate the following integrals.

(1)

∫
e
√
x+1 dx;

(2)

∫
dx

x2
√
x2 + x− 1

;
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(3)

∫
x arctanx

(1 + x2)2
dx;

(4)

∫
x tan2 x dx;

(5)

∫
ln(sinx)

sin2 x
dx;

(6)

∫
dx

x (1 + x8)
;

(7)

∫
dx√
ex − 1

;

(8)

∫
sinx

sinx− cosx
dx;

(9)

∫
1 + cos x

1 + sin x
dx

(10)

∫
ex(1 + sin x)

1 + cos x
dx;

(11)

∫
e3x + ex

e4x − e2x + 1
dx;

(12)

∫
1− lnx

(x− lnx)2
dx;

(13)

∫
x+ sinx cosx

(cosx− x sinx)2
dx;

(14)

∫
x2ex cos 2x dx;

(15)

∫
ex (2− x2)

(1− x)
√
1− x2

dx;

(16)

∫
(1 + x)dx

x2ex (1 + xex)
;

(17)

∫
x2 sin2 x

(x+ sinx cosx)2
dx;

(18)

∫
x2

(x cosx− sinx)(x sinx+ cosx)
dx;

(19) I =

∫
sin3 x

sin3 x− cos3 x
dx, J =

∫
cos3 x

sin3 x− cos3 x
dx.

Solution. (1) By changing of variable and integral by parts, we have∫
e
√
x+1 dx

t=
√
x+1

======

∫
2tet dt

=2tet − 2

∫
et dt

=(2t− 2)et + C
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=(2
√
x+ 1− 2)e

√
x+1 + C.

(2) By changing of variable, we have∫
dx

x2
√
x2 + x− 1

=

∫
dx

x3
√
1 + 1

x
− 1

x2

t= 1
x==== −

∫
t√

1 + t− t2
dt

=−
∫

t− 1
2√

5
4
− (t− 1

2
)2

dt−
∫ 1

2√
5
4
− (t− 1

2
)2

dt

=

√
5

4
− (t− 1

2
)2 − 1

2
arcsin

2√
5
(t− 1

2
) + C

=

√
x2 + x− 1

x
− 1

2
arcsin

2√
5
(
1

x
− 1

2
) + C.

(3) By integral by parts, we have∫
x arctanx

(1 + x2)2
dx =− 1

2 (1 + x2)
arctanx+

1

2

∫
1

(1 + x2)2
dx

=− 1

2 (1 + x2)
arctanx+

1

4

∫
1 + x2 + 1− x2

(1 + x2)2
dx

=− 1

2 (1 + x2)
arctanx+

1

4

∫
1

1 + x2
dx+

1

4

∫
1− x2

(1 + x2)2
dx

=− 1

2 (1 + x2)
arctanx+

1

4
arctanx+

x

4 (1 + x2)
+ C.

(4) By integral by parts, we have∫
x tan2 x dx =

∫
x(sec2 x− 1) dx

=

∫
x sec2 x dx− 1

2
x2

=− 1

2
x2 + x tanx−

∫
tanx dx

=− 1

2
x2 + x tanx+ ln cosx+ C.

(5) By integral by parts, we have∫
ln(sinx)

sin2 x
dx =

∫
csc2 x ln(sinx) dx

=− cotx ln(sinx) +

∫
cot2 x dx
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=− cotx ln(sinx) +

∫
(csc2 x− 1) dx

=− x− cotx− cotx ln(sinx) + C.

(6) By changing of variable, we have∫
dx

x (1 + x8)
=

∫
x7dx

x8 (1 + x8)

t=x8

====
1

8

∫
dt

t (1 + t)

=
1

8
ln

∣∣∣∣ t

t+ 1

∣∣∣∣+ C

=
1

8
ln

(
x8

x8 + 1

)
+ C.

(7) For the integrand 1√
ex−1

, substitute u = ex and du = exdx∫
dx√
ex − 1

=

∫
1√

u− 1u
du.

For the integrand 1√
u−1u

, substitute s = u− 1 and ds = du, we have∫
1√

u− 1u
du =

∫
1√

s(s+ 1)
ds.

For the integrand 1√
s(s+1)

, substitute p =
√
s and dp = 1

2
√
s
ds,we know∫

1√
s(s+ 1)

ds = 2

∫
1

p2 + 1
dp.

The integral of 1
p2+1

is tan−1(p), then

2

∫
1

p2 + 1
dp = 2 tan−1(p) + C.

Substitute back for p =
√
s,∫

1√
s(s+ 1)

ds = 2 tan−1(
√
s) + C.

Substitute back for s = u− 1 ,∫
1√

u− 1u
du = 2 tan−1(

√
u− 1) + C.

Substitute back for u = ex , we have Answer:∫
dx√
ex − 1

= 2 tan−1
(√

ex − 1
)
+ C.
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(8) ∫
sinx

sinx− cosx
dx =

∫
sin(x− π

4
+ π

4
)

√
2 sin(x− π

4
)
dx

=

∫ √
2
2
sin(x− π

4
) +

√
2
2
cos(x− π

4
)

√
2 sin(x− π

4
)

dx

=
1

2
x+

1

2
ln sin(x− π

4
) + C.

(9) ∫
1 + cos x

1 + sin x
dx =

∫
1

1 + sin x
dx+

∫
cosx

1 + sin x
dx

=

∫
1

1 + cos(x− π
2
)
dx+ ln(1 + sinx)

=

∫
1

2 cos2(x
2
− π

4
)
+ ln(1 + sinx)

= tan
(x
2
− π

4

)
+ ln(1 + sin x) + C.

(10) By integral by parts, we have∫
ex(1 + sin x)

1 + cos x
dx =

∫
ex(sin x

2
+ cos x

2
)2

2 cos2 x
2

dx

=
1

2

∫
ex
(
1 + tan

x

2

)2
dx

=
1

2

∫
ex
(
1 + tan2 x

2

)
dx+

∫
ex tan

x

2
dx

=
1

2

∫
ex sec2

x

2
dx+

∫
ex tan

x

2
dx

= ex tan
x

2
−
∫
ex tan

x

2
dx+

∫
ex tan

x

2
dx

= ex tan
x

2
+ C.

(11) ∫
e3x + ex

e4x − e2x + 1
dx =

∫
ex + e−x

e2x + e−2x − 1
dx

=

∫
d(ex − e−x)

1 + (ex − e−x)2

= arctan(ex − e−x) + C.
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(12) ∫
1− lnx

(x− lnx)2
dx =

∫
1− lnx

x2
1

(1− lnx
x
)2

dx

=

∫
1

(1− lnx
x
)2

d

(
lnx

x

)
=

x

x− lnx
+ C.

(13) ∫
x+ sinx cosx

(cosx− x sinx)2
dx =

∫
x sec2 x+ tanx

(1− x tanx)2
dx

=

∫
d(x tanx)

(1− x tanx)2

=
1

1− x tanx
+ C.

(14) Firstly, we have by integral by parts that∫
x2e(1+2i)x dx =

x2

1 + 2i
e(1+2i)x − 2

1 + 2i

∫
xe(1+2i)x dx

=
x2

1 + 2i
e(1+2i)x − 2x

(1 + 2i)2
+

2

(1 + 2i)2

∫
e(1+2i)x dx

=
x2

1 + 2i
e(1+2i)x − 2x

(1 + 2i)2
e(1+2i)x +

2

(1 + 2i)3
e(1+2i)x + C

=
25x2 + 30x− 22 + (−50x2 + 40x+ 4)i

125
e(1+2i)x + C

=
1

125
ex(25x2 + 30x− 22 + (−50x2 + 40x+ 4)i)(cos 2x+ i sin 2x) + C

=
1

125
ex
(
(25x2 + 30x− 22) cos 2x+ (50x2 − 40x− 4) sin 2x

)
+

i

125
ex
(
(−50x2 + 40x+ 4) cos 2x+ (25x2 + 30x− 22) sin 2x

)
+ C.

Hence∫
x2ex cos 2x dx =

1

125
ex
(
(25x2 + 30x− 22) cos 2x+ (50x2 − 40x− 4) sin 2x

)
+ C.

(15) Note that

d

(
ex
√

1 + x

1− x

)
=

ex (2− x2)
(1− x)

√
1− x2

dx,
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we have ∫
ex (2− x2)

(1− x)
√
1− x2

dx = ex
√

1 + x

1− x
+ C.

(16) ∫
(1 + x)dx

x2ex (1 + xex)
=

∫
ex(1 + x)dx

x2e2x (1 + xex)

=

∫
d(xex)

x2e2x (1 + xex)

=

∫
d(xex)

x2e2x
−
∫

d(xex)

xex
+

∫
d(xex)

1 + xex

=− 1

xex
− ln(xex) + ln(1 + xex) + C.

(17)∫
x2 sin2 x

(x+ sinx cosx)2
dx =

1

2

∫
x2(1− cos 2x)

(x+ sinx cosx)2
dx

=
1

2

∫
x2(−1− cos 2x)

(x+ sinx cosx)2
dx+

∫
x2

(x+ sinx cosx)2
dx

=
1

2
· x2

x+ sinx cosx
−
∫

x

x+ sinx cosx
dx

+

∫
x2

(x+ sinx cosx)2
dx

=
1

2
· x2

x+ sinx cosx
+

∫
−x sinx cosx

(x+ sinx cosx)2
dx

=
1

2
· x2

x+ sinx cosx

+

∫
x sinx cosx

1 + cos 2x
· −1− cos 2x

(x+ sinx cosx)2
dx

=
1

2
· x2

x+ sinx cosx
+
x tanx

2
· 1

x+ sinx cosx

− 1

2

∫
(x sec2 x+ tanx) · 1

x+ sinx cosx
dx

=
x2

2(x+ sinx cosx)
+

x tanx

2(x+ sinx cosx)
− 1

2

∫
sec2 x dx

=
x2

2(x+ sinx cosx)
+

x tanx

2(x+ sinx cosx)
− 1

2
tanx+ C

=
x2 − sin2 x

2(x+ sinx cosx)
+ C.
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(18)∫
x2

(x cosx− sinx)(x sinx+ cosx)
dx =

∫
x cosx

x sinx+ cosx
dx−

∫
−x sinx

x cosx− sinx
dx

= ln |x sinx+ cos | − ln |x cos− sinx|+ C.

(19) It is easy to see that I − J = x+ C. Note that

I + J =

∫
sin3 x+ cos3 x

sin3 x− cos3 x
dx

=

∫
(sinx+ cosx)(sin2 x− sinx cosx+ cos2 x)

(sinx− cosx)(sin2 x+ sinx cosx+ cos2 x)
dx

=

∫
(sin2 x− cos2 x)(1− 1

2
sin 2x)

(sinx− cosx)2(1 + 1
2
sin 2x)

dx

=

∫ − cos 2x(1− 1
2
sin 2x)

(1− sin 2x)(1 + 1
2
sin 2x)

dx

=
1

2

∫
− cos 2x

1 + 1
2
sin 2x

dx− 1

2

∫
cos 2x

(1− sin 2x)(1 + 1
2
sin 2x)

dx

=− 1

2
ln(1 +

1

2
sin 2x) +

1

6
ln(1− sin 2x)− 1

6
ln(1 +

1

2
sin 2x) + C

=
1

6
ln(1− sin 2x)− 2

3
ln(1 +

1

2
sin 2x) + C.

□

Problem 11.7. Suppose that F (x) ia a primitive function of f(x) on (0,+∞), and

F (1) =
√
2π
4
. If there is

f(x)F (x) =
arctan

√
x√

x(1 + x)
, x ∈ (0,+∞),

find f(x).

Proof. A direct integrating yields

1

2
F (x)2 =

∫
arctan

√
x√

x(1 + x)
dx = (arctan

√
x)2 + C.

By F (1) =
√
2π
4
, we know that C = 0. Hence F (x) =

√
2 arctan

√
x, which gives us

f(x) =

√
2

2
√
x(1 + x)

.

□
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Exercise 11.8. Use an elementary way to show that for positive integer n,∫
sin(nx) sinx

1− cosx
dx = x+

sin(nx)

n
+ 2

n−1∑
k=1

sin(kx)

k

Hint: Let

F (x) = x+
sin(nx)

n
+ 2

n−1∑
k=1

sin(kx)

k
.

Then

F ′(x) = 1 + cos(nx) + 2
n−1∑
k=1

cos(kx).

Therefore, we only need to prove that

sin(nx) sinx

1− cosx
= 1 + cos(nx) + 2

n−1∑
k=1

cos(kx),

or equivalently that

(11.2) sin(nx) sin(x) = (1− cos(x))

(
1 + cos(nx) + 2

n−1∑
k=1

cos(kx)

)
.

Note that

z = cos(x) + i sin(x)

and calculate

1 + 2z + 2z2 + ..+ 2zn−1 + zn = 2(1 + z + z2 + ..+ zn−1 + zn)− 1− zn

= 2
1− zn+1

1− z
− 1− zn

=
2− zn+1 − zn

1− z
− 1 =

(2− zn+1 − zn)(1− z̄)
(1− cos(x))2 + sin(x)2

− 1

=
2− zn+1 − zn − 2z̄ + zn + zn−1

2− 2 cos(x)
− 1

=
2− zn+1 − 2z̄ + zn−1

2− 2 cos(x)
− 1.
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By taking the real parts we get:(
1 + cos(nx) + 2

n−1∑
k=1

cos(kx)

)
=

2− cos((n+ 1)x)− 2 cos(x) + cos((n− 1)x)− 2 + 2 cos(x)

2− 2 cos(x)

=
− cos((n+ 1)x) + cos((n− 1)x)

2− 2 cos(x)

=
2 sin(nx) sin(x)

2− 2 cos(x)
,

which is exactly what we want. □

Remark 11.9. We can also try to prove (11.2) by writing

(1− cos(x))

(
n−1∑
k=1

cos(kx)

)
= 2 sin2(

x

2
)

(
n−1∑
k=1

cos(kx)

)
,

and use the fact that
n−1∑
k=1

cos(kx) sin(
x

2
)

is telescopic.
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12. Week 15 (12.12)

Problem 12.1 (7.3). Use the definition of integral to calculate limitations.

(1) lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
;

(2) lim
n→∞

n
√
n(n+ 1) · · · (2n− 1)

n
;

(3) lim
n→∞

2π

n

n∑
k=1

(
2 + sin

2kπ

n

)
.

Solution. (1) By definition, we have

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)
= lim

n→∞

1

n

n∑
i=1

1

1 + i
n

=

∫ 1

0

1

1 + x
dx

= ln(1 + x)
∣∣1
0
= ln 2.

(2) Take logarithm. By definition, we have

lim
n→∞

1

n

n∑
i=1

ln

(
1 +

i− 1

n

)
=

∫ 1

0

ln(1 + x) dx

=((1 + x) ln(1 + x)− x)
∣∣1
0
= 2 ln 2− 1.

Hence

lim
n→∞

n
√
n(n+ 1) · · · (2n− 1)

n
= e2 ln 2−1 =

4

e
.

(3) By definition, we have

lim
n→∞

2π

n

n∑
k=1

(
2 + sin

2kπ

n

)
=

∫ 2π

0

(2 + sin x) dx

=(2x− cosx)
∣∣2π
0

= 4π.

□

Problem 12.2 (7.5). Suppose that f ∈ R[a, b], g(x) is defined on (a, b) and g(x) is
different from f(x) at only a finite number of points on (a, b). Prove that g(x) is
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integrable on (a, b), and there is∫ b

a

g(x) dx =

∫ b

a

f(x) dx.

Proof. Denote I =

∫ b

a

f(x) dx. By definition, we know that ∀ ε > 0, there exists δ′ > 0

such that for any ∆′ : a = x0 < x1 < · · · < xn = b with λ(∆′) < δ′ and any ξi ∈
[xi−1, xi] (i = 1, 2, · · · , n), there is∣∣∣∣∣

n∑
i=1

f(ξi)∆xi − I

∣∣∣∣∣ < ε

2
,

where λ(∆′) = max
1≤i≤n

{xi − xi−1}. Since f ∈ R[a, b] and g(x) is different from f(x) at

only a finite number of points on (a, b), we know that f(x) and g(x) are both bounded.
Assume that ∃M > 0 such that |f(x)| ≤ M and |g(x)| ≤ M . Then, if we choose
δ < min{δ′, ε

4kM
}, where k is the number of points where g(x) is different from f(x), we

have for any ∆ : a = x0 < x1 < · · · < xn = b with λ(∆) < δ and any ξi ∈ [xi−1, xi] (i =
1, 2, · · · , n) that ∣∣∣∣∣

n∑
i=1

g(ξi)∆xi − I

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

f(ξi)∆xi − I

∣∣∣∣∣+ 2kMλ(∆)

<
ε

2
+
ε

2
= ε.

Hence g(x) is integrable on (a, b), and∫ b

a

g(x) dx =

∫ b

a

f(x) dx.

□

Problem 12.3 (7.6). Suppose that f(x) is defined on [a, b]. Prove that f(x) ∈ R[a, b]
if and only if there exists I ∈ R, for ∀ ε > 0, ∃∆ : a = x0 < x1 < · · · < xn = b and
for any ξi ∈ [xi−1, xi] (i = 1, 2, · · · , n), there is∣∣∣∣∣

n∑
i=1

f(ξi)∆xi − I

∣∣∣∣∣ < ε.

Proof. “⇒” By the definition of intagral, it’s trival.
“⇐” Denote wi = sup

x∈[xi−1,xi]

f(x) − inf
x∈[xi−1,xi]

f(x). It suffices to prove that for some

partition ∆ : a = x0 < x1 < · · · < xn = b, there is
n∑

i=1

wi∆xi < ε.
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By assumption, we know that for ∀ ε > 0, ∃∆ : a = x0 < x1 < · · · < xn = b and for any
ξi ∈ [xi−1, xi] (i = 1, 2, · · · , n), there is∣∣∣∣∣

n∑
i=1

f(ξi)∆xi − I

∣∣∣∣∣ < ε

4
.

By the definition of superemum and infimum, we have that there exist ξi, ηi ∈ [xi−1, xi]
such that

f(ξi) +
ε

4(b− a)
> sup

x∈[xi−1,xi]

f(x) and f(ηi)−
ε

4(b− a)
< inf

x∈[xi−1,xi]
f(x).

Hence, there is

n∑
i=1

wi∆xi =
n∑

i=1

(
sup

x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x)

)
∆xi

≤

∣∣∣∣∣
n∑

i=1

(f(ξi)− f(ηi))∆xi

∣∣∣∣∣+ ε

2

≤

∣∣∣∣∣
n∑

i=1

f(ξi)∆xi − I

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

f(ηi)∆xi − I

∣∣∣∣∣+ ε

2

<
ε

4
+
ε

4
+
ε

2
= ε,

which gives us that f(x) is integrable on [a, b]. □

Problem 12.4 (7.10). Suppose that f(x) is bounded on [a, b]. Prove that f ∈ R[a, b] if
and only if for ∀ ε > 0, there exist continous functions g(x) and h(x) on [a, b] satisfying

(1) g(x) ≤ f(x) ≤ h(x), ∀x ∈ [a, b];

(2)

∫ b

a

[h(x)− g(x)] dx < ε.

Proof. “⇐” For ∀ ε > 0, by the definition of upper integral and lower integral, we know
that there exists a partition ∆ : a = x0 < x1 < · · · < xn = b, such that

n∑
i=1

sup
x∈[xi−1,xi]

h(x)∆xi <

∫ b

a

h(x) dx+
ε

4
,

and
n∑

i=1

inf
x∈[xi−1,xi]

g(x)∆xi >

∫ b

a

g(x) dx− ε

4
,
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where ∆xi = xi − xi−1. Then

∫ b

a

[h(x)− g(x)] dx < ε/2 implies

n∑
i=1

[
sup

x∈[xi−1,xi]

h(x)− inf
x∈[xi−1,xi]

g(x)

]
∆xi <

∫ b

a

(h(x)− g(x)) dx+ ε

2
< ε.

Since g(x) ≤ f(x) ≤ h(x), ∀x ∈ [a, b], we have that

wi = sup
x∈[xi−1,xi]

f(x)− inf
x∈[xi−1,xi]

f(x) ≤ sup
x∈[xi−1,xi]

h(x)− inf
x∈[xi−1,xi]

g(x),

i.e.
n∑

i=1

wi∆xi ≤
n∑

i=1

[
sup

x∈[xi−1,xi]

h(x)− inf
x∈[xi−1,xi]

g(x)

]
∆xi < ε,

which gives us that f ∈ R[a, b].
“⇒” Since f ∈ R[a, b], we have that for ∀ ε > 0, there exists a partition ∆ : a = x0 <

x1 < · · · < xn = b, such that
n∑

i=1

(Mi −mi)∆xi <
ε

2
,

where

Mi = sup
x∈[xi−1,xi]

f(x), mi = inf
x∈[xi−1,xi]

f(x), ∆xi = xi − xi−1.

Firstly, we define

φ(x) =

{
mi, x ∈ [xi−1, xi), i = 1, 2, · · · , n− 1;

mn, x ∈ [xn−1, xn],

and

ψ(x) =

{
Mi, x ∈ [xi−1, xi), i = 1, 2, · · · , n− 1;

Mn, x ∈ [xn−1, xn].

It is clear that φ(x) ≤ f(x) ≤ ψ(x), and

∫ b

a

[ψ(x)− φ(x)] dx < ε/2.

Next, we assume that m ≤ f(x) ≤M (since f(x) is bounded), r = min
1≤i≤n

∆xi. Choose

0 < η < min

{
r

2
,

ε

4n(M −m+ 1)

}
. Define

h(x) =



M1, x ∈ [a, x1 − η) ,
Mi, x ∈ [xi + η, xi+1 − η] , i = 1, · · · , n− 2;

di +
Mi−di

η
(xi − x) , x ∈ [xi − η, xi] , i = 1, · · · , n− 1;

di +
Mi+1−di

η
(x− xi) , x ∈ [xi, xi + η] , i = 1, · · · , n− 1;

Mn, x ∈ [xn−1 + η, xn] ;
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and

g(x) =



m1, x ∈ [a, x1 − η) ,
mi, x ∈ [xi + η, xi+1 − η] , i = 1, · · · , n− 2;

ci +
mi−ci

η
(xi − x) , x ∈ [xi − η, xi] , i = 1, · · · , n− 1;

ci +
mi+1−ci

η
(x− xi) , x ∈ [xi, xi + η] , i = 1, · · · , n− 1;

mn, x ∈ [xn−1 + η, xn] .

where di = max {Mi,Mi+1} , ci = min {mi,mi+1}.
By the construction of g(x) and h(x), we know that g(x) ≤ f(x) ≤ h(x), and∫ b

a

(h(x)− g(x))dx =
n∑

i=1

∫ xi

xi−1

[h(x)− g(x)]dx

=

∫ x1−η

a

[h(x)− g(x)]dx+
n−1∑
i=1

∫ xi+η

xi−η

[h(x)− g(x)]dx

+
n−1∑
i=1

∫ xi+1−η

xi+η

[h(x)− g(x)]dx+
∫ b

xn−1+η

[h(x)− g(x)]dx

≤
∫ b

a

[ψ(x)− ϕ(x)]dx+ 2(n− 1)(M −m)η

< ε.

□

Problem 12.5 (7.16). Suppose that f(x) is defined on R, and f(x) is integrable on
every finite closed interval. Prove that for any closed interval [a, b], there is

(12.1) lim
h→0

∫ b

a

|f(x+ h)− f(x)| dx = 0.

Proof. Since f(x) is integrable on [a − 1, b + 1], we know that for ∀ ε > 0, there is
g(x) ∈ C[a− 1, b+ 1] such that∫ b+1

a−1

|f(x)− g(x)| dx < ε

3
.

(Leave to the reader.) Since g(x) is continuous on [a− 1, b+ 1], we have by the Cantor
theorem that g(x) is uniformly continuous on [a − 1, b + 1]. Then there exists δ : 0 <
δ < 1, such that ∀h ∈ (−δ, δ), there is

|g(x+ h)− g(x)| < ε

3(b− a)
, ∀x ∈ [a, b].
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Therefore, we have for ∀h ∈ (−δ, δ) that∫ b

a

|f(x+ h)− f(x)| dx ≤
∫ b

a

|f(x+ h)− g(x+ h)| dx+
∫ b

a

|g(x+ h)− g(x)| dx

+

∫ b

a

|g(x)− f(x)| dx

=

∫ b+h

a+h

|f(x)− g(x)| dx+
∫ b

a

|g(x+ h)− g(x)| dx

+

∫ b

a

|g(x)− f(x)| dx

<
ε

3
+

ε

3(b− a)
(b− a) + ε

3

=ε,

i.e.

lim
h→0

∫ b

a

|f(x+ h)− f(x)| dx = 0.

□

Remark 12.6. (12.1) is called the absolute continuity of integrals.

Problem 12.7 (7.18). Suppose that f(x), g(x) ∈ R[a, b]. Prove the Cauchy-Schwarz
inequality:

(12.2)

∣∣∣∣∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤ [∫ b

a

f 2(x)dx

] 1
2
[∫ b

a

g2(x)dx

] 1
2

.

Proof. If

∫ b

a

f(x)g(x)dx = 0, (12.2) is clearly. Now, we assume that

∫ b

a

f(x)g(x)dx ̸= 0.

It’s obvious that

∫ b

a

f 2(x)dx ̸= 0 and

∫ b

a

g2(x)dx ̸= 0 (Leave to the reader). Note that

0 ≤
∫ b

a

(f(x)− tg(x))2 dx =

∫ b

a

f 2(x)dx− 2t

∫ b

a

f(x)g(x)dx+ t2
∫ b

a

g2(x)dx, ∀ t ∈ R.

Then there is

4

[∫ b

a

f(x)g(x)dx

]2
− 4

[∫ b

a

f 2(x)dx

] [∫ b

a

g2(x)dx

]
≤ 0,

i.e. ∣∣∣∣∫ b

a

f(x)g(x)dx

∣∣∣∣ ≤ [∫ b

a

f 2(x)dx

] 1
2
[∫ b

a

g2(x)dx

] 1
2

.

□
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Problem 12.8 (7.19). Prove the following limitations.

(1) lim
n→∞

∫ 1

−1

(1− x2)ndx = 0;

(2) Suppose that f(x) ∈ C[−1, 1], then

lim
n→∞

∫ 1

−1
f(x)(1− x2)ndx∫ 1

−1
(1− x2)ndx

= f(0).

Proof. (1) For any δ > 0, we have∫ 1

−1

(1− x2)ndx =

∫
|x|≤δ

(1− x2)ndx+
∫
δ<|x|≤1

(1− x2)ndx

≤ 2δ + 2(1− δ2)n

→ 2δ as n→∞.

Since δ is arbitrary, we know that lim
n→∞

∫ 1

−1

(1− x2)ndx = 0.

(2) Since f(x) ∈ C[−1, 1], we have that ∀ ε > 0, there exists δ > 0, such that
∀x : |x| < δ, there is

|f(x)− f(0)| ≤ ε.

Then ∣∣∣∣∣
∫ 1

−1
f(x)(1− x2)ndx∫ 1

−1
(1− x2)ndx

− f(0)

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

−1
(f(x)− f(0))(1− x2)ndx∫ 1

−1
(1− x2)ndx

∣∣∣∣∣
≤

∫
|x|<δ
|f(x)− f(0)| (1− x2)ndx∫ 1

−1
(1− x2)ndx

+

∫
δ≤|x|<1

|f(x)− f(0)| (1− x2)ndx∫ 1

−1
(1− x2)ndx

≤ ε+ 2M ·

∫
δ≤|x|<1

(1− x2)ndx∫ 1

−1
(1− x2)ndx

≤ ε+ 2M ·

∫
δ≤|x|<1

(1− x2)ndx∫
|x|≤ δ

2
(1− x2)ndx

≤ ε+ 2M
(1− δ2)n

(1− (δ/2)2)nδ

→ ε as n→∞,
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where M = max
x∈[−1,1]

f(x). Since ε is arbitrary, we have

lim
n→∞

∫ 1

−1
f(x)(1− x2)ndx∫ 1

−1
(1− x2)ndx

= f(0).

□

Exercise 12.9 (7.21(1)). Suppose that f(x) has continuous derivative on [a, b]. Prove
that for any x ∈ [a, b], there is

|f(x)| ≤
∣∣∣∣ 1

b− a

∫ b

a

f(x)dx

∣∣∣∣+ ∫ b

a

|f ′(x)|dx.

Hint: By the mean value theorem for definite integrals, we know that there is ξ ∈ (a, b)
such that

f(ξ) =
1

b− a

∫ b

a

f(x)dx.

By the Newton-Leibniz formula, we have

|f(x)− f(ξ)| =
∣∣∣∣∫ x

ξ

f ′(t)dt

∣∣∣∣ ≤ ∫ b

a

|f ′(x)|dx.

Hence

|f(x)| ≤ |f(ξ)|+ |f(x)− f(ξ)| ≤
∣∣∣∣ 1

b− a

∫ b

a

f(x)dx

∣∣∣∣+ ∫ b

a

|f ′(x)|dx.

□

Problem 12.10 (7.22). Suppose that f(x) ∈ C(R) and f ′(0) exists. Assume that
∀x ∈ R, there is

(12.3)

∫ x

0

f(t)dx =
1

2
xf(x).

Prove that f(x) ≡ cx, where c = f ′(0).

Proof. Denote F (x) =

∫ x

0

f(t)dt. Since f(x) ∈ C(R), we have that F (x) ∈ C1(R).

Then by (12.3), we have f(0) = 0. Define

g(x) =


F (x)

x2
, x ̸= 0,

1

2
f ′(0), x = 0.
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Then by (12.3), we have

g′(x) =
x2f(x)− 2xF (x)

x4
= 0, ∀x ̸= 0.

By definition, we know that

g′(0) = lim
x→0

g(x)− g(0)
x

= lim
x→0

g′(ξx)

x
= 0.

Hence F (x) = f ′(0)
2
x2, ∀x ∈ R. Then f(x) = f ′(0)x, ∀x ∈ R. □

Problem 12.11 (7.23). Suppose that Pn(x) is a polynomial with degree n ≥ 1, and
[a, b] is an closed interval. Prove that∫ b

a

|P ′
n(x)|dx ≤ 2n max

a≤x≤b
{|Pn(x)|}.

Proof. Since P ′
n(x) is a polynomial with degree n − 1, we may assume that there are

a ≤ x1 ≤ · · · ≤ xk ≤ b with k ≤ n − 1, where x1, · · · , xn−1 are zero points of P ′
n(x).

Hence, we have∫ b

a

|P ′
n(x)|dx =

∣∣∣∣∫ x1

a

P ′
n(x)dx

∣∣∣∣+ · · ·+ ∣∣∣∣∫ b

xk

P ′
n(x)dx

∣∣∣∣
= |Pn(x1)− Pn(a)|+ · · ·+ |Pn(b)− Pn(xk)|
≤ 2(k + 1) max

a≤x≤b
{|Pn(x)|}

≤ 2n max
a≤x≤b

{|Pn(x)|}.

□

Problem 12.12 (7.28). Suppose that f(x) is a periodic function with period 2π and
f(x) ∈ R[0, 2π]. Prove that

lim
T→∞

1

T

∫ T

0

f(x)dx =
1

2π

∫ 2π

0

f(x)dx.

Proof. For any T > 0, we know that there exists n ∈ N such that T = 2nπ + r, where
0 ≤ r < 2π. Then∫ T

0

f(x)dx =

∫ 2nπ+r

0

f(x)dx

=

∫ 2π

0

f(x)dx+ · · ·+
∫ 2nπ

2(n−1)π

f(x)dx+

∫ 2nπ+r

2nπ

f(x)dx

= n

∫ 2π

0

f(x)dx+

∫ r

0

f(x)dx.
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Hence, we have

lim
T→∞

1

T

∫ T

0

f(x)dx = lim
T→∞

n

2nπ + r

∫ 2π

0

f(x)dx+ lim
T→∞

1

T

∫ r

0

f(x)dx =
1

2π

∫ 2π

0

f(x)dx.

□

Problem 12.13 (7.35). Suppose that f(x) ∈ C[a, b] is nonnegative. Denote that
M = sup

a≤x≤b
f(x). Prove that

lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

=M.

Proof. Firstly, it is easy to see that[∫ b

a

fn(x)dx

] 1
n

≤M(b− a)
1
n .

Then

lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

≤M.

Secondly, since f(x) is continuous, we know that there is x0 ∈ [a, b] such that f(x0) =M .
Then ∀ ε > 0, there exists δ > 0 such that ∀x : |x− x0| < δ, there is |f(x)− f(x0)| < ε,
thus f(x) > M − ε. Hence, we have[∫ b

a

fn(x)dx

] 1
n

≥
[∫ x0+δ

x0−δ

fn(x)dx

] 1
n

≥ (M − ε)(2δ)
1
n .

Therefore, there is

lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

≥M − ε.

Since ε is arbitrary, we have

lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

≥M ≥ lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

,

which implies

lim
n→∞

[∫ b

a

fn(x)dx

] 1
n

=M.

□
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Exercise 12.14 (7.37). Suppose that f(x) is monotonic on (a, b), g(x) is a periodic

function with period T > 0 on R, and
∫ T

0

g(x) = 0. Prove that

lim
λ→∞

∫ b

a

f(x)g(λx)dx = 0.

Hint: By the second mean value theorem for definite integrals, we have that there exists
ξ ∈ (a, b) such that∫ b

a

f(x)g(λx)dx = f(a)

∫ ξ

a

g(λx)dx+ f(b)

∫ b

ξ

g(λx)dx.

Note that ∫ ξ

a

g(λx)dx =
1

λ

∫ ξλ

aλ

g(x)dx =
ξ

ξλ

∫ ξλ

0

g(x)dx− a

aλ

∫ aλ

0

g(x)dx.

Hence by Problem 12.12 and

∫ T

0

g(x) = 0, we have

lim
λ→∞

∫ ξ

a

g(λx)dx = 0.

Similarly, we have

lim
λ→∞

∫ b

ξ

g(λx)dx = 0.

Then we obtain that

lim
λ→∞

∫ b

a

f(x)g(λx)dx = 0.

□

Remark 12.15. In fact, we can remove the monotonicity of f(x). It is the Riemann-
Lebesgue lemma, which can be proved by real analysis’ method, we leave it to the reader.

Exercise 12.16. Suppose that f ∈ C[−1, 1], Prove that

lim
h→0+

∫ 1

−1

h

h2 + x2
f(x) dx = πf(0).
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Hint: Note that∫ 1

−1

h

h2 + x2
f(x) dx− 2 arctan

1

h
f(0)

=

∫ 1

−1

h

h2 + x2
(f(x)− f(0)) dx

=

∫
|x|<δ

h

h2 + x2
(f(x)− f(0)) dx+

∫
1≥|x|≥δ

h

h2 + x2
(f(x)− f(0)) dx,

where δ > 0 is such that |f(x) − f(0)| < ε whence |x| < δ (Since f(x) is continous).
Then, we have∣∣∣∣∫ 1

−1

h

h2 + x2
f(x) dx− 2 arctan

1

h
f(0)

∣∣∣∣
≤
∫
|x|<δ

h

h2 + x2
|f(x)− f(0)| dx+

∫
1≥|x|≥δ

h

h2 + x2
|f(x)− f(0))| dx

≤ ε

∫ 1

−1

h

h2 + x2
dx+ 2 sup |f |

∫
1≥|x|≥δ

h

h2 + x2
dx

= 2ε arctan
1

h
+ 4 sup |f |

(
arctan

1

h
− arctan

δ

h

)
≤ πε, as h→ 0.

Since ε is arbitrary, we know

lim
h→0

∫ 1

−1

h

h2 + x2
f(x) dx = lim

h→0
2 arctan

1

h
f(0) = πf(0).

□

Exercise 12.17. Suppose that f ∈ C[−1, 1], given
∫ 1

−1

f(x)xndx = 0 for n = 0, 1, 2, ...

then f(x) = 0, ∀x ∈ [−1, 1].

Hint: Since
lim sup
n→∞

|f(x)− pn(x)| = 0,

we know for any ϵ > 0, there is N ∈ N such that for ∀n > N

|f − pn| <
ϵ

2M
,

where M := max[−1,1] |f(x)|.
Hence ∣∣∣∣∫ 1

−1

f(x) (f(x)− pn(x)) dx
∣∣∣∣ < ϵ

2M

∫ 1

−1

|f(x)| dx ≤ ϵ, ∀n > N.
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□

Exercise 12.18 (Challenge!). Assume that f(x) ∈ C[0,+∞), and for all a ≥ 0, we
have

lim
x→∞

(f(x+ a)− f(x)) = 0.(12.4)

Prove that there exists g(x) ∈ C[0,+∞) and h(x) ∈ C1[0,+∞) such that f(x) =
g(x) + h(x), and such that they satisfy

lim
x→∞

g(x) = 0, lim
x→∞

h′(x) = 0.

Hint: By Exercise 4.23, we first know that f(x) is uniformly continuous. Let’s chose

a = 1 and set h(x) =
∫ x+1

x
f(t) dt. We begin by writing

h(x)− f(x) =
∫ 1

0

(f(x+ t)− f(x)) dt.

The integrand converges to 0 pointwise (from condition (12.4)), but this is not quite
sufficient! We’ll have to be a bit more careful and also use the uniform continuity of f .
Let ϵ > 0. Because f is uniformly continuous, there exists an integer n > 0 such that
for all x, y ≥ 0 with |x− y| ≤ 1

n
, we have |f(x)− f(y)| ≤ ϵ.

Now we use condition (12.4) to get that for 1 ≤ k ≤ n, there exists xk such that for
all x ≥ xk, ∣∣∣∣f (x+ k

n

)
− f(x)

∣∣∣∣ ≤ ε.

We set x0 = max
1≤k≤n

(xk). Now, for x ≥ x0 we have

|h(x)− f(x)|=
∣∣∣∣∫ 1

0

(f(x+ t)− f(x)) dt
∣∣∣∣

≤
∫ 1

0

|f(x+ t)− f(x)| dt

≤
n∑

k=1

∫ k
n

k−1
n

∣∣∣∣f(x+ t)− f
(
x+

k

n

)∣∣∣∣︸ ︷︷ ︸
≤ε (from continuity)

+

∣∣∣∣f (x+ k

n

)
− f(x)

∣∣∣∣︸ ︷︷ ︸
≤ε (from (12.4))

dt

≤ 2ε.

□
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13. Final exam (12.28)

Problem 13.1. Calculate the following limitations.

(1) lim
n→∞

n∑
k=1

(
k

n2

)1+ k
n2

;

(2) lim
n→∞

1

nk

∫ 1

0

lnk(1 + enx) dx;

(3) lim
x→0

[1 + ln(1 + x)]
1

tan x − e(1− x)
x2

.

Solution. (1) Firstly, we have(
k

n2

)1+ k
n2

≤ k

n2
, k = 1, 2, · · · , n,

since
k

n2
≤ 1. Then there is

n∑
k=1

(
k

n2

)1+ k
n2

≤
n∑

k=1

k

n2
=
n(n+ 1)

2n2
=
n+ 1

2n
→ 1

2
, as n→∞.

On the other hand, we have(
k

n2

)1+ k
n2

≥
(
k

n2

)1+ 1
n

, k = 1, 2, · · · , n.

Since un(x) = x1+
1
n is increasing on (0, 1), we know that

n∑
k=1

(
k

n2

)1+ 1
n

=
1
n
√
n
· 1
n

n∑
k=1

un

(
k

n

)

≥ 1
n
√
n

n∑
k=1

∫ k
n

k−1
n

un(x) dx

=
1
n
√
n

∫ 1

0

un(x) dx

=
n1− 1

n

2n+ 1
→ 1

2
, as n→∞.

Hence

lim
n→∞

n∑
k=1

(
k

n2

)1+ k
n2

=
1

2
.
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(2) By changing of variables and the Stolz theorem, we have

lim
n→∞

1

nk

∫ 1

0

lnk(1 + enx) dx
y=nx
===== lim

n→∞

1

nk+1

∫ n

0

lnk(1 + ey) dy

Stolz
==== lim

n→∞

∫ n+1

n
lnk(1 + ey) dy

(n+ 1)k+1 − nk+1

= lim
n→∞

lnk(1 + eθn)

(k + 1)nk

(∗)
===

1

k + 1
,

where we used lim
n→∞

ln(1 + eθn)

n
= 1 in (∗) since

ln(1 + en)

n
≤ ln(1 + eθn)

n
≤ ln(1 + en+1)

n
.

(3) By Taylor’s formula, we have

lim
x→0

[1 + ln(1 + x)]
1

tan x − e(1− x)
x2

= lim
x→0

e
1

tan x
ln(1+ln(1+x)) − e(1− x)

x2

= lim
x→0

e
1

tan x
ln(1+x− 1

2
x2+ 1

3
x3) − e(1− x)

x2

= lim
x→0

e
(x− 1

2x2+1
3x3)− 1

2 (x− 1
2x2)2+1

3x3

x+1
3x3 − e(1− x)

x2

= lim
x→0

e
x−x2+7

6x3

x+1
3x3 − e(1− x)

x2

= lim
x→0

e1−x+ 5
6
x2 − e(1− x)
x2

= lim
x→0

e(1− x+ 5
6
x2 + 1

2
x2)− e(1− x)

x2

= lim
x→0

4e
3
x2

x2

=
4e

3
.

□

Problem 13.2. Calculate the following integrals.

(1)

∫ 1

−1

1√
1 + x+

√
1− x+ 2

dx;
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(2)

∫ 2

1

x2 − 1

x3
√
2x4 − 2x2 + 1

dx;

(3)

∫
x sin(lnx) dx, where x > 0;

(4)

∫
1

x+
√
x2 − x+ 1

dx.

Solution. (1) By changing of variables, we have∫ 1

−1

1√
1 + x+

√
1− x+ 2

dx = 2

∫ 1

0

1√
1 + x+

√
1− x+ 2

dx

x=sin 4t
====== 8

∫ π
8

0

cos 4t√
1 + sin 4t+

√
1− sin 4t+ 2

dt

= 8

∫ π
8

0

cos 4t√
1 + 2 sin 2t cos 2t+

√
1− 2 sin 2t cos 2t+ 2

dt

= 8

∫ π
8

0

cos 4t

sin 2t+ cos 2t+ cos 2t− sin 2t+ 2
dt

= 4

∫ π
8

0

cos 4t

cos 2t+ 1
dt

= 2

∫ π
8

0

cos 4t

cos2 t
dt

= 2

∫ π
8

0

2 cos2 2t− 1

cos2 t
dt

= 2

∫ π
8

0

2(2 cos2 t− 1)2 − 1

cos2 t
dt

= 2

∫ π
8

0

8 cos4 t− 8 cos2 t+ 1

cos2 t
dt

= 2

∫ π
8

0

8 cos2 t dt− 2

∫ π
8

0

8 dt+ 2

∫ π
8

0

1

cos2 t
dt

= 16

∫ π
8

0

1 + cos 2t

2
dt− 2π + 2 tan t|

π
8
0

= π + 2
√
2− 2π + 2 tan

π

8

= 4
√
2− 2− π,

since

1 =
2 tan π

8

1− tan2 π
8
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gives us that tan π
8
=
√
2− 1.

(2) By changing of variables, we have∫ 2

1

x2 − 1

x3
√
2x4 − 2x2 + 1

dx
x= 1

t2=====
1

2

∫ 1

1
4

1− t√
t2 − 2t+ 2

dt

=
1

2

∫ 1

1
4

1− t√
(t− 1)2 + 1

dt

= −1

2

√
(t− 1)2 + 1

∣∣∣1
1
4

=
1

8
.

(3) By integral by parts, we have∫
x sin(lnx) dx =

1

2
x2 sin(lnx)− 1

2

∫
x cos(lnx) dx

=
1

2
x2 sin(lnx)− 1

2

(
1

2
x2 cos(lnx) +

1

2

∫
x sin(lnx) dx

)
=

1

2
x2 sin(lnx)− 1

4
x2 cos(lnx)− 1

4

∫
x sin(lnx) dx,

which yields ∫
x sin(lnx) dx =

2

5
x2 sin(lnx)− 1

5
x2 cos(lnx) + C.

(4) By changing of variables, we have∫
1

x+
√
x2 − x+ 1

dx
t=x+

√
x2−x+1

=========== 2

∫
t2 − t+ 1

t(2t− 1)2
dt

=

∫
2

t
dt−

∫
3

2t− 1
dt+

∫
3

(2t− 1)2
dt

= ln t− 3

2
ln(2t− 1)− 3

2

1

2t− 1
+ C

= ln(x+
√
x2 − x+ 1)

− 3

2
ln(2(x+

√
x2 − x+ 1)− 1)

− 3

2(2(x+
√
x2 − x+ 1)− 1)

+ C.

□

Problem 13.3. Suppose that a curve L can be given by y = y(x) ∈ C4(R) in the xy-
coordinate system. Rotate the xy-coordinate system against the clockwise π/4 to get
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the new coordinate system, say (t, s). Assume that L can be given by s = s(t) ∈ C4(R)
in the st-coordinate system. If y′(x) > −1 and y′′(x) ̸= 0, prove that s′′(t) ̸= 0 and
there is [

s′′(t)−
2
3

]′′
(t) =

[
y′′(x)−

2
3

]′′
(x),

where (x, y(x)) and (t, s(t)) are the same point in the curve.

Proof. Note that  t = x cos
π

4
+ y sin

π

4
,

s = −x sin π
4
+ y cos

π

4
.

By y = y(x), we know that L can be given by
t =

√
2

2
x+

√
2

2
y(x),

s = −
√
2

2
x+

√
2

2
y(x).

Hence, there is 
dt =

√
2

2
(1 + y′(x))dx,

ds =

√
2

2
(−1 + y′(x))dx.

Then we have

s′(t) =
−1 + y′(x)

1 + y′(x)
and

dx

dt
=

√
2

1 + y′(x)
.

Taking derivative yields

s′′(t) =
y′′(x)dx

dt
(1 + y′(x))− y′′(x)dx

dt
(−1 + y′(x))

(1 + y′(x))2
=

2
√
2y′′(x)

(1 + y′(x))3
.

Since y′′(x) ̸= 0, it is clear that s′′(t) ̸= 0. What’s more, since

s′′(t)−
2
3 = y′′(x)−

2
3
(1 + y′(x))2

2
,

we have[
s′′(t)−

2
3

]′
(t) =

[
y′′(x)−

2
3

]′ dx
dt

(1 + y′(x))2

2
+ y′′(x)−

2
3 (1 + y′(x))y′′(x)

dx

dt

=
[
y′′(x)−

2
3

]′ 1 + y′(x)√
2

+
√
2y′′(x)

1
3 .

Then[
s′′(t)−

2
3

]′′
(t) =

[
y′′(x)−

2
3

]′′
(x) +

[
y′′(x)−

2
3

]′ y′′(x)√
2

dx

dt
+

√
2

3
y′′(x)−

2
3y′′′(x)

dx

dt
121



=
[
y′′(x)−

2
3

]′′
(x) +

[
y′′(x)−

2
3

]′
y′′(x)

1

1 + y′(x)
+

2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)

=
[
y′′(x)−

2
3

]′′
(x)− 2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)
+

2

3
y′′(x)−

2
3y′′′(x)

1

1 + y′(x)

=
[
y′′(x)−

2
3

]′′
(x).

□

Problem 13.4. Suppose that f ∈ C∞(R) and for any k ∈ N, there is

sup
x∈R

∣∣|x|k|f(x)|+ |f (k)(x)|
∣∣ < +∞.

Prove that for any k, l ∈ N, there is

sup
x∈R

∣∣|x|k|f (l)(x)|
∣∣ < +∞.

Proof. We prove the conclusion by induction. For l = 0, it’s clear that sup
x∈R

∣∣|x|k|f(x)|∣∣ <
+∞ for any k ∈ N. Assume that for any 0 ≤ l ≤ n and k ∈ N, there is

sup
x∈R

∣∣|x|k|f (l)(x)|
∣∣ < +∞.

We will show that sup
x∈R

∣∣|x|k|f (n+1)(x)|
∣∣ < +∞ for any k ∈ N. Indeed, by Taylor’s formula,

we have for any x > 0 that

f(x+ h) = f(x) + f ′(x)h+ · · ·+ f (n+1)(x)

(n+ 1)!
hn+1 +

f (n+2)(ξ)

(n+ 2)!
hn+2.

Taking h = |x|−k, we have∣∣|x|k|f (n+1)(x)|
∣∣ ≤ (n+ 1)!

(
|x|(n+2)k|f(x+ |x|−k)|+ |x|(n+2)k|f(x)|

+ |x|(n+1)k|f ′(x)|+ · · ·+ 1

n!
|x|2k|f (n)(x)|+ |f

(n+2)(ξ)|
(n+ 2)!

)
.

By sup
x∈R

∣∣|x|k|f(x)|+ |f (k)(x)|
∣∣ < +∞, sup

x>0

x

x+ |x|−k
< +∞ and the assumption, we

know that
sup
x>0

∣∣|x|kf (n+1)(x)|
∣∣ < +∞ for any k ∈ N.

For any x < 0, we just need to take h = −|x|−k. For x = 0, it’s clear. Hence we know
that for any k, l ∈ N, there is

sup
x∈R

∣∣|x|kf (l)(x)|
∣∣ < +∞.

□
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Problem 13.5. Suppose that f(x) is twice differentiable on [−2, 2], |f(x)| ≤ 1 and
[f(0)]2 + [f ′(0)]2 = 4. Prove that there exists ξ ∈ (−2, 2) such that f ′′(ξ) + f(ξ) = 0.

Proof. Let

F (x) = f(x)2 + f ′(x)2, ∀x ∈ [−2, 2].
Then F (0) = 4. By the Lagrange Mean Value Theorem, we know that there exists
x1 ∈ (−2, 0) such that

f ′(x1) =
f(0)− f(−2)

2
.

Since |f(x)| ≤ 1, we have that |f ′(x1)| ≤ 1. Similarly, we know that there exists
x2 ∈ (0, 2) such that |f ′(x2)| ≤ 1. Then F (x1) ≤ 2 and F (x2) ≤ 2. Note that x1 < 0 < x2
and F (0) = 4 > 2, we know that there must be at least a maximum point in (x1, x2).
Hence, there exists ξ ∈ (−2, 2) such that F ′(ξ) = 0, i.e. f(ξ)+f ′′(ξ) = 0 since f ′(ξ) ̸= 0.
To prove f ′(ξ) ̸= 0, it suffices to note that F (ξ) ≥ 4 and f(ξ)2 ≤ 1. Then we are
done. □

Problem 13.6. Suppose that f(x) is nonnegative convex function on [−1, 1], satisfying
f(0) = 0 and f(−1) = f(1) = 1. Define S(h) = {x|f(x) ≤ h}, ∀h ∈ [0, 1].

(1) If there exists ε > 0 such that ∀x ∈ [−1, 1], there is f
(x
2

)
≤ 1− ε

2
f(x). Prove

that there exist α > 0 and C > 0 such that f(x) ≤ C|x|1+α, ∀x ∈ [−1, 1].

(2) If there exists ε ∈ (0, 1/2) such that ∀h ∈ [0, 1], there is l

(
h

2

)
≤ (1− ε)l(h),

where l(h) is the length of S(h). Prove that there exist β > 0 and C > 0 such
that f(x) ≥ C|x|1+β, ∀x ∈ [−1, 1].

Proof. (1) By f
(x
2

)
≤ 1− ε

2
f(x), we have

f
( x
2k

)
≤
(
1− ε
2

)k

f(x), ∀x ∈ [−1, 1], k ≥ 0.

Since f(x) is convex and f(−1) = f(1) = 1, we know that f(x) ≤ 1, ∀x ∈ [−1, 1].

Choosing α > 0 such that 2−α = 1− ε, i.e. α = − ln(1− ε)
ln 2

. Then there is

f
( x
2k

)
≤
(
1− ε
2

)k

=

(
1

2k

)1+α

, ∀x ∈ [−1, 1], k ≥ 0.

Hence, for ∀x′ ∈ [−1, 1], we know that there exists k = k(x′) such that

1

2k+1
< |x′| ≤ 1

2k
.
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Then taking x = 2kx′ ∈ [−1, 1], we have

f(x′) = f
( x
2k

)
≤
(

1

2k

)1+α

=

(
1

2k+1

)1+α

21+α ≤ 21+α|x′|1+α, ∀x′ ∈ [−1, 1].

i.e. there exist α = − ln(1− ε)
ln 2

and C = 21+α such that

f(x) ≤ C|x|1+α, ∀x ∈ [−1, 1].
(2) Similar to (1), we have

l(h) ≤ 21+αhα, ∀h ∈ [0, 1],

where α = − ln(1− ε)
ln 2

. Next, we prove that ∀x ∈ [−1, 1], there is

f(x) ≥ 2−(
2
α
+1)|x|

1
α .

We prove the claim by contradiction. Assume that there exists x0 ∈ [−1, 1] such that

f(x0) < 2−(
2
α
+1)|x0|

1
α .

Without loss of generality, we may assume that x0 > 0, and it’s similar for x0 < 0. Since
f(x) is a convex function, we know that ∀x ∈ [0, x0], there is

f(x) ≤ λf(x0) + (1− λ)f(0) ≤ f(x0) < 2−(
2
α
+1)|x0|

1
α .

Hence [0, x0] ⊂ S(h0), where h0 = 2−(
2
α
+1)|x0|

1
α < 1. Then

|x0| ≤ l(h0) ≤ 21+α
(
2−(

2
α
+1)|x0|

1
α

)α
= 21+α · 2−(2−α)|x0| =

1

2
|x0|,

contradiction. Hence, ∀x ∈ [−1, 1], there is

f(x) ≥ 2−(
2
α
+1)|x|

1
α .

Therefore, we can take C = 2−(
2
α
+1) and β =

1

α
− 1. Since ε ∈ (0, 1/2) and α =

− ln(1− ε)
ln 2

, we know that α ∈ (0, 1), then β > 0. □

Problem 13.7. Suppose that f(x) ∈ C1(R) satisfying sup
x∈R
|f(x)| ≤ A ∈ (0,+∞) and

sup
x∈R,y>x

∣∣∣∣f ′(y)− f ′(x)

y − x

∣∣∣∣ ≤ B ∈ (0,+∞). Prove that ∀x ∈ R, there is |f ′(x)| ≤
√
2AB.

Proof. By the Newton-Leibniz formula, we have

f(x+ h) = f(x) + f ′(x)h+

∫ x+h

x

(f ′(t)− f ′(x)) dt,
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f(x− h) = f(x)− f ′(x)h+

∫ x

x−h

(f ′(t)− f ′(x)) dt.

Hence there are

|f(x+ h)− f(x)− f ′(x)h| ≤ B

∫ x+h

x

(t− x) dt = B

2
h2,

|f(x− h)− f(x) + f ′(x)h| ≤ B

∫ x

x−h

(x− t) dt = B

2
h2.

Then

|2hf ′(x) + f(x− h)− f(x+ h)| ≤ Bh2,

which yields

|f ′(x)| ≤ 1

2h

(
Bh2 + |f(x+ h)− f(x− h)|

)
≤ A

h
+
Bh

2
.

Choosing h =

√
2A

B
, we have

|f ′(x)| ≤
√
2AB.

□

Problem 13.8. Suppose f(x) ∈ C[0, 1] is positive, and
∫ 1

0

f(x) dx = A,

∫ 1

0

f 2(x) dx =

B.

(1) Prove that for any n ∈ N+, there exists a partition ∆ : 0 = x0 < · · · < xn = 1

such that

∫ xk

xk−1

f(x) dx =
A

n
, k = 1, 2, · · · , n.

(2) Find lim
n→∞

1

n

n∑
k=1

f(xk).

Proof. (1) Since f(x) is continuous and positive, we know that

∫ x

0

f(t) dt is continuous

and increasing. By the intermediate value theorem, we have that there exist 0 = x0 <

· · · < xn = 1 such that

∫ xk

0

f(t) dt =
kA

n
, hence

∫ xk

xk−1

f(x) dx =
A

n
, k = 1, 2, · · · , n.

(2) By the mean value theorems for definite integrals, we know that there exists
ξk ∈ (xk−1, xk), such that∫ xk

xk−1

f(x) dx = f(ξk)(xk − xk−1) = f(ξk)∆xk =
A

n
, k = 1, 2, · · · , n.

Since f(x) is continuous on [0, 1], we know that f(x) is uniformly continuous. Then for
∀ ε > 0, there exits δ > 0 such that ∀x, x′ : |x − x′| < δ, there is |f(x) − f(x′)| < ε.
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Hence for n large enough, we have ∆xk < δ, which gives us that |f(xk) − f(ξk)| < ε.
Then∣∣∣∣∣ 1n

n∑
k=1

f(xk)−
B

A

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
k=1

f(xk)−
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

k=1

f(xk)−
1

A

n∑
k=1

f 2(xk)∆xk

∣∣∣∣∣
+

∣∣∣∣∣ 1A
n∑

k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
1
n
= 1

A
f(ξk)∆xk

==========

∣∣∣∣∣ 1A
n∑

k=1

f(xk)f(ξk)∆xk −
1

A

n∑
k=1

f 2(xk)∆xk

∣∣∣∣∣
+

∣∣∣∣∣ 1A
n∑

k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
≤ ε

∣∣∣∣∣ 1A
n∑

k=1

f(xk)∆xk

∣∣∣∣∣+
∣∣∣∣∣ 1A

n∑
k=1

f 2(xk)∆xk −
1

A

∫ 1

0

f 2(x) dx

∣∣∣∣∣
→ ε, as n→∞.

Since ε > 0 is arbitrary, we have

lim
n→∞

1

n

n∑
k=1

f(xk) =
B

A
.

□

Problem 13.9. Prove that for any n ∈ N+, there is

∣∣∣∣∫ 2

1

sin

(
nx− 1

x

)
dx

∣∣∣∣ < 2

n
.

Proof. Let

t = x− 1

nx
.

It’s clear that
dt

dx
= 1 +

1

nx2
> 0.

Hence we know that there exists inverse function of t = t(x), i.e. x = x(t). What’s
more, we have

dx

dt
=

(
1 +

1

nx2

)−1

.
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By changing of variables, we have∫ 2

1

sin

(
nx− 1

x

)
dx =

∫ 2− 1
2n

1− 1
n

sin(nt)x′(t) dt.

Note that
d2x

dt2
= −

(
1 +

1

nx2

)−2 −2
nx3

dx

dt
=

(
1 +

1

nx2

)−3
2

nx3
> 0,

which gives us that x′(t) is monotonic increasing. Then by the second mean value
theorem for definite integrals, we know that there exists ξ such that∣∣∣∣∫ 2

1

sin

(
nx− 1

x

)
dx

∣∣∣∣ =
∣∣∣∣∣
∫ 2− 1

2n

1− 1
n

sin(nt)x′(t) dt

∣∣∣∣∣
=

∣∣∣∣∣x′
(
2− 1

2n

)∫ 2− 1
2n

ξ

sin(nt) dt

∣∣∣∣∣
=

(
1 +

1

4n

)−1
1

n

∣∣∣∣cos(2− 1

2n

)
− cos ξ

∣∣∣∣
≤
(
1 +

1

4n

)−1
2

n

<
2

n
.

□

Problem 13.10. Suppose that f(x) is a nonnegative monotonic increasing function

on [0, π
2
]. Prove that when x ∈ [0, π

2
], there is (1−cosx)

∫ x

0

f(t) dt ≤ x

∫ x

0

f(t) sin t dt.

Proof. Let

g(x) =
1− cosx

x
,

and

h(x) =

∫ x

0

f(t) sin t dt− g(x)
∫ x

0

f(t) dt.

Then

h′(x) = f(x) sinx− g(x)f(x)− g′(x)
∫ x

0

f(t) dt

= f(x) sinx− f(x)1− cosx

x
− x sinx− 1 + cos x

x2

∫ x

0

f(t) dt

=
x sinx− 1 + cos x

x2

(
xf(x)−

∫ x

0

f(t) dt

)
.
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It’s easy to see that x sinx− 1 + cos x ≥ 0 on [0, π
2
] (Leave to the reader). Since f(x) is

nonnegative and monotonic increasing, we have∫ x

0

f(t) dt ≤ xf(x),

which implies
h′(x) ≥ 0

on [0, π
2
]. Note that h(0) = 0, we have h(x) ≥ h(0) = 0, ∀x ∈ [0, π

2
]. Hence

(1− cosx)

∫ x

0

f(t) dt ≤ x

∫ x

0

f(t) sin t dt, ∀x ∈
[
0,
π

2

]
.

□
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