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1. Week 2 (3.1)

Problem 1.1. Calculate

∫ 2

0

dx√
(4− x2) (9− x2)

.

Solution. Let x = 2 sin θ. The integral becomes∫ π/2

0

dθ√
9− 4 sin2 θ

=
1

3

∫ π/2

0

dθ√
1− 4

9
sin2 θ

=
1

3
F

(
2

3
,
π

2

)
.

□

Problem 1.2. Calculate

∫ 1

0

dx√
(1 + x2) (1 + 2x2)

.
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Solution. Let x = tan θ. The integral becomes∫ π/4

0

sec2 θdθ√
1 + tan2 θ

√
1 + 2 tan2 θ

=

∫ π/4

0

dθ√
cos2 θ + 2 sin2 θ

=

∫ π/4

0

dθ√
2− cos2 θ

=
1√
2

∫ π/4

0

dθ√
1− 1

2
cos2 θ

.

Let ϕ = π/2− θ. The integral becomes

1√
2

∫ π/2

π/4

dϕ√
1− 1

2
sin2 ϕ

=
1√
2

{
F

(
1√
2
,
π

2

)
− F

(
1√
2
,
π

4

)}
.

□

Problem 1.3. Calculate

∫ 6

4

dx√
(x− 1)(x− 2)(x− 3)

.

Solution. Let u =
√
x− 3 or x = 3 + u2. The integral becomes

2

∫ √
3

1

du√
(u2 + 2) (u2 + 1)

.

Let u = tan θ. The integral becomes

2

∫ π/3

π/4

dθ√
2 cos2 θ + sin2 θ

= 2

∫ π/3

π/4

dθ√
2− sin2 θ

=
√
2

∫ π/3

π/4

dθ√
1− 1

2
sin2 θ

=
√
2

{
F

(
1√
2
,
π

3

)
− F

(
1√
2
,
π

4

)}
.

□

Problem 1.4. Calculate

∫ √
sinx dx.

Solution. ∫ √
sinx dx =

∫ √
cos
(
x− π

2

)
dx

=

∫ √
1− 2 sin2

(x
2
− π

4

)
dx
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= 2

∫ √
1− 2 sin2 φ dφ

= 2E(
√
2, φ).

□

Problem 1.5. Calculate

∫ 2π

0

√
2 + sin 2θ dθ.

Solution.∫ 2π

0

√
2 + sin 2θ dθ = 2

∫ π

0

√
2 + sin 2θ dθ

= 2

∫ π

0

√
2 + cos 2

(
θ − π

4

)
dθ

= 2

∫ 2π

0

√
3− 2 sin2

(
θ − π

4

)
dθ

= 2
√
3

∫ 3
4
π

−π
4

√
1− 2

3
sin2 θ dθ

= 2
√
3

∫ π
4

0

√
1− 2

3
sin2 θ dθ + 2

√
3

∫ 3
4
π

0

√
1− 2

3
sin2 θ dθ

= 2
√
3

(
E

(√
6

3
,
π

4

)
+ E

(√
6

3
,
3π

4

))
.

□

Problem 1.6. Calculate the perimeter of an ellipse.

Solution. The ellipse x = a cos θ, 4y = b sin θ, a > b > 0, has length

L = 4

∫ π/2

0

√
dx2 + dy2 = 4

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θdθ

= 4

∫ π/2

0

√
a2 − (a2 − b2) sin2 θdθ = 4a

∫ π/2

0

√
1− e2 sin2 θdθ,

where e2 = (a2 − b2) /a2 = c2/a2 is the square of the eccentricity of the ellipse. The
result can be written as

L = 4aE
(
e,
π

2

)
= 4aE(e).

For the special case of a circle, a = b = r, i.e., e = 0, and E(0) = π/2, and we recover
the circumference of a circle: L = 2πr. □
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Remark 1.7. The term elliptic integral was coined by Count Fagnano (1682-1766) in
1750. He discovered that the arclength of the lemniscate can be expressed in terms of an
elliptic integral of the first kind.

Problem 1.8. Calculate the arclength of a lemniscate.

Solution. The lemniscate is the curve:(
x2 + y2

)2
= a2

(
x2 − y2

)2
,

or in polar form
r2 = a2 cos 2θ.

From ds2 = dx2 + dy2 = dr2 + r2dθ2,

L = 4

∫ π/4

r=0

ds = 4a

∫ π/4

0

dθ√
cos 2θ

,
(
cos 2θ = cos2 u

)
=

∫ π/2

0

du√
2− sin2 u

=
1√
2

∫ π/2

0

du√
1− 1

2
sin2 u

=
1√
2
· F
(

1√
2
,
π

2

)
.

Thus,

L = 4a · 1√
2
F

(
1√
2
,
π

2

)
= a · 2

√
2(1.85407) = 5.244102a.

□

Remark 1.9. (Historical note: The rectification of the lemniscate was first done by
Fagnano in 1718. The lemniscatus, L. ’decorated by ribbons’, was first studied in as-
tronomy in 1680 by Cassini, known as the ovals of Cassini, but his book was published in
1749, many years after his death. The curves were popularized by the Bernoulli brothers
in 1694.) Cassini considered more general forms of the lemniscate for whose points the
products of the distances to two foci is a constant:

d1d2 = b2,

b4 = r4 +
a2

4
− r2a2 cos 2θ.

When b = a√
2
centered at the origin, we get the ribbon-shaped curve.

Exercise 1.10 (Leave to the reader). Calculate the finite-amplitude pendulum.

Solution. The equation of motion is:

mlθ̈ = −mg sin θ.

Let p = θ̇, we have

p
dp

dθ
= −g

l
sin θ,
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which yields
p2

2
=

g

l
cos θ + C.

For the initial condition, t = 0 : θ = θ0, θ̇ = 0, we have

dθ

dt
= −

√
2g

l

√
cos θ − cos θ0.

The period, T , is given by

T

4
= −

√
l

2g

∫ 0

θ0

dθ√
cos θ − cos θ0

or, T = 4

√
l

2g

∫ θ0

0

dθ√
cos θ − cos θ0

= 2

√
l

g

∫ θ0

0

dθ√
sin2 (θ0/2)− sin2(θ/2)

= 4

√
l

g

∫ π/2

0

du√
1− k2 sin2 u

, sin

(
θ

2

)
= sin

θ0
2
· sinu, k = sin

(
θ0
2

)
.

Hence

T = 4

√
l

g
· F
(
k,

π

2

)
,

an elliptic integral. For the special case of smalloscillations, k = 0, we get the classical
result:

T = 2π

√
l

g

□
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2. Week 3 (3.8)

Problem 2.1. Calculate the area of regions closed by the following curves.

(1) The cycloid: x = a(t− sin t), y = a(1− cos t) (0 ≤ t ≤ 2π, a > 0) and x-axis.
(2) The evolvent of sphere x = a(cos t + t sin t), y = a(sin t − t cos t) (0 ≤ t ≤

2π, a > 0) and x = a.
(3) The rhodonea curve r = a sin 3θ.

(4) The folium of Descartes r =
3a sin θ cos θ

sin3 θ + cos3 θ
.

Solution. (1)

S =

∫ 2πa

0

y dx =

∫ 2π

0

a(1− cos t) · a(1− cos t) dθ

= a2
∫ 2π

0

(cos2 t− 2 cos t+ 1) dθ

= 3πa2.

Figure 1. Graph of the cycloid for a = 1

(2)

S =

∫
(x− a) dy = a2

∫ 2π

0

(cos t+ t sin t− 1)(cos t− cos t+ t sin t) dt

= a2
∫ 2π

0

(
t sin t cos t+ t2 sin2 t− t sin t

)
dt

6



=
a2

3
(4π3 + 3π)

Figure 2. Graph of the evolvent for a = 1

(3)

S = 3 · 1
2

∫ π
3

0

a2 sin2 3θ dθ

= 3 · a
2

2

∫ π
3

0

1− cos 6θ

2
dθ

=
π

4
a2.

(4)

S =
1

2

∫ π
2

0

9a2 sin2 cos2 θ(
sin3 θ + cos3 θ

)2 dθ
=

9a2

2

∫ π
2

0

tan2 θ

(tan3 θ + 1)
2 d tan θ

=
3a2

2

∫ π
2

0

1

(tan3 θ + 1)
2 d tan θ

=
3a2

2

−1

tan3 θ + 1

∣∣∣∣π2
0

=
3a2

2
.

□
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Figure 3. Graph of the rhodonea curve for a = 1

Figure 4. Graph of the folium of Descartes for a = 1

Problem 2.2 (7.43). Find volumes of the solid of revolution obtained by rotating
the region closed by y = x2 (0 ≤ x ≤ h), y = 0 and x = h around x-axis, y-axis,
respectively.

Solution. Around x-axis:

V = π

∫ h

0

y2 dx = π

∫ h

0

x4 dx =
π

5
h5.
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Around y-axis: First way:

V = π

∫ h

0

(h2 − x2) dy = π

∫ h

0

(h2 − x2)2x dx =
π

2
h4.

Second way:

V = 2π

∫ h

0

xy dx = 2π

∫ h

0

x3 dx =
π

2
h4.

□

Problem 2.3 (7.49). Calculate the arc length of the following curves.

(2) Archimedean spiral: r = aθ (0 ≤ θ ≤ 2π).
(4) The evolvent of sphere x = a(cos t + t sin t), y = a(sin t − t cos t) (0 ≤ t ≤

2π, a > 0).

Solution. (2)

L =

∫ 2π

0

√
r2 + r′2 dθ = a

∫ 2π

0

√
1 + θ2 dθ

=
a

2
θ
√
1 + θ2 +

a

2
ln(θ +

√
1 + θ2)

∣∣∣2π
0

= aπ
√
1 + 4π2 +

a

2
ln(4π +

√
1 + 4π2).

Figure 5. Graph of the Archimedean spiral for a = 1

(4)

L =

∫ 2π

0

√
dx2 + dy2 = a

∫ 2π

0

√
(t cos t)2 + (t sin t)2 dt
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= a

∫ 2π

0

t dt = 2π2a.

□

Problem 2.4 (7.51(4)). Calculate the area of the surface of revolution obtained by
rotating the curve y = sinx (0 ≤ x ≤ π) around x-axis.

Solution.
dS = 2πy

√
y′2 + 1dx

= 2π sinx
√
1 + cos2 x dx.

S = 2π

∫ π

0

−
√
1 + cos2 x d cosx

= 4π

∫ 1

0

√
1 + t2 dt = 2

√
2π + 2π ln(

√
2 + 1).

Figure 6. y = sinx rotated around x-axis

□

Problem 2.5. Find the area of the region determined by x2 + xy + y2 = 1.

Solution. First way: From the equation, we have

y1,2(x) = −x

2
±
√

1− 3

4
x2, − 2√

3
≤ x ≤ 2√

3
.
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Then

S =

∫ 2/
√
3

−2/
√
3

[y1(x)− y2(x)] dx = 2

∫ 2/
√
3

−2/
√
3

√
1− 3

4
x2 dx

=
4√
3

∫ π/2

−π/2

dθ =
2π√
3
.

Second way: Let x = r cos θ, y = r sin θ, we have

r2 =
1

1 + sin θ cos θ
.

Then

S =
1

2

∫ 2π

0

r2 dθ =
1

2

∫ 2π

0

dθ

1 + sin θ cos θ
=

∫ 2π

0

dθ

2 + sin θ
=

2π√
3
.

Third way: Note that

1 = x2 + xy + y2 =
3

4
x2 +

(
y +

x

2

)2
.

Let

x =
2√
3
cos t, y = sin t− 1√

3
cos t, 0 ≤ t ≤ 2π.

Since

x(t)y′(t)− y(t)x′(t)

=
2√
3
cos t

(
cos t+

1√
3
sin t

)
−
(
sin t− 1√

3
cos t

)(
− 2√

3
sin t

)
=

2√
3
,

we have

S =
1

2

∫ 2π

0

(x dy − y dx) =
1

2

∫ 2π

0

2√
3
dt =

2π√
3
.

□

Problem 2.6. Suppose that a curve is given by y =

∫ x

0

√
sin t dt, 0 ≤ x ≤ π. Calcu-

late its arc length.

Solution. By the formula of arc length calculation, we have

L =

∫ π

0

√
1 + f ′2(x) dx =

∫ π

0

√
1 + sin x dx

=

∫ π

0

(
sin

x

2
+ cos

x

2

)
dx

11



= 2

(∫ π/2

0

sin t dt+

∫ π/2

0

cos t dt

)

= 4

∫ π/2

0

sin t dt = 4.

□

Problem 2.7. Use Young’s inequality to prove when a, b ≥ 1, there is ab ≤ ea−1+b ln b.

Proof. Choosing f(x) = ex − 1, g(y) = ln(y + 1), we have

(a− 1)(b− 1) ≤
∫ a−1

0

(ex − 1) dx+

∫ b−1

0

ln(y + 1) dy

= ea−1 − (a− 1)− 1 + b ln b− (b− 1)

= ea−1 + b ln b− a− b+ 1,

i.e.

ab ≤ ea−1 + b ln b.

□

Exercise 2.8 (Leave to the reader). Use Minkowski’s inequality to show that∫ π

0

|f(x)− sinx|2 dx ≤ 3

4
and

∫ π

0

|f(x)− cosx|2 dx ≤ 3

4

cannot be simultaneously true, where f ∈ R[a, b].

Hint:

√
π =

(∫ π

0

| sinx− cosx|2 dx
) 1

2

=

(∫ π

0

|(f(x)− cosx)− (f(x)− sinx)|2 dx
) 1

2

≤
(∫ π

0

|f(x)− sinx|2 dx
) 1

2

+

(∫ π

0

|f(x)− cosx|2 dx
) 1

2

≤
√
3

2
+

√
3

2
=

√
3,

contradiction. □

Problem 2.9. Find the minimum of the area enclosed by the parabola y2 = 2x and
its chord (passing through the focus).
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Solution. Since the focus of parabola y2 = 2x is (1
2
, 0), we can assume that the equation

of a chord is x = ky + 1
2
. Then

S =

∫ y2

y1

[(
ky +

1

2

)
− y2

2

]
dy

=
k

2
(y2 − y1) · (y2 + y1) +

1

2
(y2 − y1)−

1

6
(y2 − y1)

(
y22 + y1y2 + y21

)
,

where y1, y2 are the intersection points of the parabola and its chord. By y2 = 2x, we
have

y2 = 2ky + 1.

Hence, the Vieta theorem gives us that

y1 + y2 = 2k,

y1 · y2 = −1.

Then

S =
1

6
(y2 − y1) ·

[
3k (y2 + y1) + 3−

(
y22 + y1y2 + y21

)]
=

1

6
· 2 ·

√
k2 + 1 ·

[
3k · 2k + 3−

(
4k2 + 1

)]
=

1

3

√
k2 + 1 ·

(
2k2 + 2

)
=

2

3
·
(
k2 + 1

) 3
2 .

Hence

Smin =
2

3
.

Figure 7. Graph of y2 = 2x and x = 1
2
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□

Problem 2.10 (Wirtinger’s inequality). Suppose that f : R → R is a continuous

differentiable function with period 2π, and satisfies

∫ 2π

0

f(x) dx = 0. Prove that∫ 2π

0

f ′(x)2 dx ≥
∫ 2π

0

f(x)2 dx.

“=” holds iff f(x) = a cosx+ b sinx.

Proof. Firstly, we show there is a t0 ∈ [0, π) such that f(t0) = f(t0 + π). Indeed, if
f(0) = f(π), we can take t0 = 0. If f(0) ̸= f(π), let g(x) = f(x) − f(x + π), then
g(0)g(π) < 0, hence by the intermediate value theorem, we know that there exists a
t0 ∈ [0, π) such that g(t0) = 0, i.e. f(t0) = f(t0 + π).
Next, let c = f(t0) = f(t0 + π). It’s easy to calculate that (Leave to the reader!)

f ′2 − (f − c)2 − (f ′ − (f − c) cot (t− t0))
2
=
(
(f − c)2 cot (t− t0)

)′
.

Note that (f − c)2 cot (t− t0) is continuous at t0 and t0 + π, we have∫ 2π

0

f ′(t)2 dt−
∫ 2π

0

(f(t)− c)2 dt ≥
(
(f − c)2 cot (t− t0)

)∣∣2π
0

= 0.

So ∫ 2π

0

f ′(t)2 dt−
∫ 2π

0

f(t)2 dt ≥ 2πc2 ≥ 0.

“=” holds iff c = 0, and f ′(t) = f(t) cot (t− t0), then f(t) = A sin (t− t0). □

Problem 2.11 (Isoperimetric inequality). Prove the isoperimetric inequality in R2:
4πA ≤ L2, “=” holds iff the curve is a circle.

Proof. Suppose that γ(t) = (x(t), y(t)) : [0, 2π] → R2 is a curve parameterized by arc

length. Without loss of generality, we may assume that
∫ 2π

0
x(t)dt = 0. Then, by

Problem 2.10, we have

L2 − 4πA =2π

∫ 2π

0

(
x′2 + y′2

)
dt− 4π

∫ 2π

0

xy′dt

=2π

∫ 2π

0

(
x′2 − x2 + (y′ − x)

2
)
dt

≥2π

∫ 2π

0

(
x′2 − x2

)
dt ≥ 0.

“=” holds iff x(t) = a cos t+ b sin t, y′(t) = x(t), thus it is a circle. □
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Exercise 2.12. Suppose a flat plate of uniform density has the shape contained by
y = x2, y = 1, and x = 0, in the first quadrant. Find the center of mass.

Hint: We compute the moment around the y-axis:

My =

∫ 1

0

x
(
1− x2

)
dx =

1

4
,

and the total mass

M =

∫ 1

0

(
1− x2

)
dx =

2

3
,

and finally

x̄ =
1

4
· 3
2
=

3

8
.

Next we do the same thing to find ȳ.

Mx =

∫ 1

0

y
√
ydy =

2

5
,

and

ȳ =
2

5
· 3
2
=

3

5
,

since the total mass M is the same. □

Remark 2.13. Since the density is constant, the center of mass depends only on the
shape of the plate, not the density, or in other words, this is a purely geometric quantity.
In such a case the center of mass is called the centroid.

Exercise 2.14. Suppose that a water tank is shaped like a right circular cone with the
tip at the bottom, and has height 10 meters and radius 2 meters at the top. If the tank
is full, how much work is required to pump all the water out over the top?

Hint: Here we have a large number of atoms of water that must be lifted different
distances to get to the top of the tank. Fortunately, we don’t really have to deal with in-
dividual atoms–we can consider all the atoms at a given depth together. To approximate
the work, we can divide the water in the tank into horizontal sections, approximate the
volume of water in a section by a thin disk, and compute the amount of work required
to lift each disk to the top of the tank. As usual, we take the limit as the sections get
thinner and thinner to get the total work.

At depth h the circular cross-section through the tank has radius r = (10− h)/5, by
similar triangles, and area π(10 − h)2/25. A section of the tank at depth h thus has
volume approximately π(10−h)2/25∆h and so contains σπ(10−h)2/25∆h kilograms of
water, where σ is the density of water in kilograms per cubic meter; σ ≈ 1000. The force
due to gravity on this much water is 9.8σπ(10 − h)2/25∆h, and final1y, this section of

15



Figure 8. A conical water tank

water molst be lifted a distance h, which requires h9.8σπ(10−h)2/25∆h Newton-meters
of work. The total work is therefore

W =
9.8σπ

25

∫ 10

0

h(10− h)2dh =
980000

3
π ≈ 1026254 Newton-meters.

□
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3. Week 4 (3.15)

Problem 3.1 (8.1). Calculate the following improper integrals in infinite intervals.

(1)

∫ +∞

1

lnx

(1 + x)2
dx.

(3)

∫ +∞

1

dx

x
√
x2 + x+ 1

.

(5)

∫ +∞

0

dx

(1 + x2)n
.

Solution. (1)

∫ +∞

1

lnx

(1 + x)2
dx = −

∫ +∞

1

lnx d

(
1

1 + x

)
= − lnx

x+ 1

∣∣∣∣+∞

1

+

∫ +∞

1

dx

x(x+ 1)

= −(0− 0) + ln

(
x

x+ 1

)∣∣∣∣+∞

1

= ln 2.

(3)

∫ 0

1

d
(
1
t

)
1
t

√
1
t2
+ 1

t
+ 1

=

∫ 1

0

dt√
t2 + t+ 1

=

∫ 1

0

dt√(
t+ 1

2

)2
+ 3

4

= ln

[(
t+

1

2

)
+
√
t2 + t+ 1

]∣∣∣∣1
0

= ln

√
3 + 3

2

1 + 1
2

= ln

(
2 +

√
3√

3

)
.
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(5) First way:

In =

∫ +∞

0

dx

(1 + x2)n

=
x

(1 + x2)n

∣∣∣∣+∞

0

+

∫ +∞

0

2nx2

(1 + x2)n+1 dx

= 2n (In − In+1) ,

⇒ 2nIn+1 = (2n− 1)In, i.e. In+1 =
2n− 1

2n
In.

I1 =

∫ +∞

0

dx

1 + x2
= arctanx|+∞

0 =
π

2

In =
2n− 3

2n− 2
· · · · · 1

2
I1 =

π

2
· (2n− 3)!!

(2n− 2)!!

⇒ In =

{ π
2
, n = 1

(2n−3)!!
(2n−2)!!

π
2
, n ≥ 2.

Second way:

In =

∫ +∞

0

dx

(1 + x2)n
=

∫ π
2

0

dx

sec2n−2 x

=

∫ π
2

0

sec2 x− tan2 x

sec2n−2 x
dx

= In−1 −
∫ π

2

0

tan2 x

sec2n−2 x
dx

= In−1 +
1

2n− 2
· tanx

sec2n−2 x

∣∣∣∣π2
0

− 1

2n− 2
In−1

=
2n− 3

2n− 2
In−1, n ≥ 2.

Then

I1 =

∫ +∞

0

dx

1 + x2
=

π

2
,

and

In =
2n− 3

2n− 2
· · · · · 1

2
I1 =

π

2
· (2n− 3)!!

(2n− 2)!!
, n ≥ 2.

□

Problem 3.2 (8.2). Determine the convergence or divergence of the following im-
proper intergals.
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(1)

∫ +∞

0

sinx

1 + e−x
dx.

(6)

∫ +∞

1

x

(
1− cos

1

x

)α

dx, (α > 0).

(7)

∫ +∞

1

ln

(
cos

1

x
+ sinp 1

x

)
dx, (p > 1).

Hints. (1) ∫ (2N+1)π

2Nπ

sinx

2
dx ≤

∫ (2N+1)π

2Nπ

sinx

1 + e−x
dx

⇒ 1 ≤
∫ (2N+1)π

0

sinx

1 + e−x
dx−

∫ 2Nπ

0

sinx

1 + e−x
dx.

(6) Note that

1− cos
1

x
=

1

2
· 1

x2
+ o

(
1

x2

)
, x → +∞.

Then

x

(
1− cos

1

x

)α

∼ 1

2α
· 1

x2α−1
, x → +∞.

(7) Note that

ln

(
cos

1

x
+ sinp 1

x

)
= ln

(
1 + cos

1

x
− 1 + sinp 1

x

)
= cos

1

x
− 1 + sinp 1

x
+ o

(
1

x2

)
+ o

(
1

xp

)
= −1

2
· 1

x2
+

1

xp
+ o

(
1

x2

)
+ o

(
1

xp

)
, x → +∞.

□

Problem 3.3 (8.3). Determine the convergence or absolute convergence of the follow-
ing improper intergals.

(3)

∫ +∞

1

sinx

xα + sinx
dx.

(4)

∫ +∞

1

sin

(
sinx

x

)
dx.

Hints. (3) ∫ +∞

1

sinx

xα + sinx
dx =

∫ +∞

1

sinx

xα
dx−

∫ +∞

1

sin2 x

xα(xα + sinx)
dx.
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(4)

sin

(
sinx

x

)
=

sinx

x
+ o

(
1

x3

)
, x → +∞.

□

Problem 3.4 (8.9). Suppose that f(x) ∈ C(−∞,+∞) is a periodic function with

period 2π, and

∫ 2π

0

f(x) dx = 0. Prove that for any α > 0, the improper intergral∫ +∞

1

x−αf(x) dx converges.

Proof. Since f(x) is a continuous periodic function on R, we know that its intergral exists
on any finite closed intervals. Note that ∀X > 0, there exist k ∈ Z and 0 ≤ r < 2π such
that

X = 2kπ + r.

Then ∣∣∣∣∫ X

1

f(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣+ ∣∣∣∣∫ X

0

f(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣+ ∣∣∣∣∫ 2kπ+r

0

f(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣+ ∣∣∣∣∫ r

0

f(x) dx

∣∣∣∣
≤ 2

∫ 2π

0

|f(x)| dx.

Hence by the Dirichlet test rule, we know that the improper intergral

∫ +∞

1

x−αf(x) dx

converges. □

Problem 3.5 (8.10). Suppose that f(x) is uniformly continuous on [0,+∞, and the

improper intergral

∫ +∞

0

f(x) dx converges. Prove that lim
x→+∞

f(x) = 0.

Proof. Prove by contradiction. Assume that lim
x→+∞

f(x) ̸= 0, i.e. there exists ε0 > 0,

such that ∀n ∈ N, there is xn > n satisfying |f(xn)| ≥ ε0. Since f(x) is uniformly
continuous, we have that for ε0/2, there exists a δ0 > 0, such that ∀ y : |y − xn| < δ0,

|f(y)− f(xn)| <
ε0
2
.
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Then
|f(y)| ≥ |f(xn)| − |f(y)− f(xn)| >

ε0
2
, ∀ y ∈ (xn − δ0, xn + δ0),

and f(y), f(xn) have the same sign in (xn − δ0, xn + δ0). Therefore, we have∣∣∣∣∣
∫ xn+

δ0
2

xn− δ0
2

f(x) dx

∣∣∣∣∣ ≥ ε0δ0
2

,

contradicts with the convergence of

∫ +∞

0

f(x) dx. Thus, lim
x→+∞

f(x) = 0. □

Problem 3.6 (8.14). Calculate the following improper integrals with discontinuous
integrand.

(1)

∫ 1

0

dx

(2− x)
√
1− x

.

(6)

∫ π
2

0

√
tanx dx.

Solution. (1) ∫ 1

0

dx

(2− x)
√
1− x

= −2

∫ 1

0

d
√
1− x

2− x
=

π

2
.

(6)

I =

∫ π/2

0

√
tanx dx =

∫ π/2

0

sinx√
cosx sinx

dx =

∫ π/2

0

cosx√
cosx sinx

dx.

2I =

∫ π/2

0

sinx+ cosx√
sinx cosx

dx

=

∫ π/2

0

√
2 d(sin x− cosx)√
1− (sinx− cosx)2

=
√
2π.

i.e. I = π√
2
. □

Problem 3.7 (8.16). Determine the convergence or divergence of the following im-
proper intergals.

(5)

∫ +∞

0

sin
(
x+ 1

x

)
xp

dx.

Hints. Note that
sin
(
x+ 1

x

)
xp

=
sinx cos 1

x

xp
+

cosx sin 1
x

xp
.
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□

Problem 3.8. Suppose that f(x) is integrable on any finite closed interval, and
lim

x→+∞
f(x) = A, lim

x→−∞
f(x) = B. Prove that ∀ a > 0, improper inegral∫ +∞

−∞
[f(x+ a)− f(x)] dx

converges.

Hints. For any M , N , we have∫ N

M

[f(x+ a)− f(x)] dx =

∫ N

M

f(x+ a) dx−
∫ N

M

f(x) dx

=

∫ N+a

M+a

f(x) dx−
∫ N

M

f(x) dx

=

∫ N+a

N

f(x) dx−
∫ M+a

M

f(x) dx

→ a(A−B), as M → −∞, N → +∞.

□

Problem 3.9. Suppose that f(x) is integrable on any finite closed interval, and∫ +∞

−∞
f 2 dx converges. Prove that ∀ a > 0, improper inegral∫ +∞

−∞
|f(x+ a)f(x)| dx

converges.

Hints. For any M , N , by Cauchy-Schwarz’s inequality, we have[∫ N

M

|f(x+ a)f(x)| dx
]2

≤
∫ N

M

[f(x+ a)]2 dx ·
∫ N

M

[f(x)]2 dx

=

∫ N+a

M+a

[f(x)]2 dx ·
∫ N

M

[f(x)]2 dx.

Then letting M → −∞, N → +∞. □

Problem 3.10. Prove that

∫ +∞

0

x

1 + x6 sin2 x
dx converges.
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Hints. It suffices to show that

F (A) =

∫ A

0

x

1 + x6 sin2 x
dx

is bounded on [0,+∞). Note that∫ nπ

0

x

1 + x6 sin2 x
dx =

n∑
k=1

∫ kπ

(k−1)π

x

1 + x6 sin2 x
dx

≤
n∑

k=1

kπ

∫ kπ

(k−1)π

dx

1 + (k − 1)6π6 sin2 x

=
n∑

k=1

kπ

∫ π

0

dx

1 + (k − 1)6π6 sin2 x

=
n∑

k=1

2kπ

∫ π/2

0

dx

1 + (k − 1)6π6 sin2 x

≤
n∑

k=1

2kπ

∫ π/2

0

dx

1 + 4(k − 1)6π4x2

=
n∑

k=1

k

π(k − 1)3

∫ (k−1)3π3

0

dx

1 + x2

∼
n∑

k=1

1

2k2
(k → ∞).

Hence F (nπ) is bounded, which gives us that F (A) converges. □

Problem 3.11. Suppose that f(x) is continuous on [0,+∞), and lim
x→+∞

f(x) exists.

For 0 < a < b, calculate ∫ +∞

0

f(ax)− f(bx)

x
dx.

Hints. For 0 < r < R < +∞, we have∫ R

r

f(ax)− f(bx)

x
dx =

∫ R

r

f(ax)

x
dx−

∫ R

r

f(bx)

x
dx

=

∫ aR

ar

f(x)

x
dx−

∫ bR

br

f(x)

x
dx

=

∫ br

ar

f(x)

x
dx−

∫ bR

aR

f(x)

x
dx.
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Then by the first mean value theorem for definite integrals, we have∫ br

ar

f(x)

x
dx = f(ξ)

∫ br

ar

dx

x
= f(ξ) ln

b

a
(ar < ξ < br),

∫ bR

aR

f(x)

x
dx = f(η)

∫ br

ar

dx

x
= f(η) ln

b

a
(aR < η < bR).

Then letting r → 0, and N → +∞ yield∫ +∞

0

f(ax)− f(bx)

x
dx = [f(0)− f(+∞)] ln

b

a
.

□

Problem 3.12. Prove that for any α ∈ R, there ia∫ +∞

0

dx

(1 + x2)(1 + xα)
=

π

4
converges.

Hints. Note that by changing of variable, we have∫ 1

0

dx

(1 + x2)(1 + xα)
=

∫ +∞

1

xα dx

(1 + x2)(1 + xα)
.

□

Problem 3.13. Suppose that f(x) is integrable on any finite closed interval, and

∀ p ≥ 1,

∫ +∞

−∞
|f |p dx converges. Prove that

lim
h→0

∫ +∞

−∞
|f(x+ h)− f(x)|p dx = 0.

Hints. Note that∫ +∞

−∞
|f(x+ h)− f(x)|p dx =

∫ −R

−∞
|f(x+ h)− f(x)|p dx+

∫ +∞

R

|f(x+ h)− f(x)|p dx

+

∫ R

−R

|f(x+ h)− f(x)|p dx.

Since

∫ +∞

−∞
|f |p dx converges, we know that for ∀ ε > 0, there exists R > 0 such that∫ −R

−∞
|f(x+ h)− f(x)|p dx <

ε

3
,
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and ∫ +∞

R

|f(x+ h)− f(x)|p dx <
ε

3
.

Since

lim
h→0

∫ R

−R

|f(x+ h)− f(x)|p dx = 0,

we have ∫ +∞

−∞
|f(x+ h)− f(x)|p dx < ε.

□
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4. Week 5 (3.22)

Problem 4.1 (8.17). Determine the conditional convergence or absolute convergence
of the following improper intergals.

(1)

∫ +∞

0

| lnx|p sinx
xq

dx.

Hints. (1) When p ≥ 0, the flaw points are 0 and +∞. Then∫ +∞

0

| lnx|p sinx
xq

dx =

∫ 1

0

| lnx|p sinx
xq

dx+

∫ +∞

1

| lnx|p sinx
xq

dx.

Note that
sinx

xq
∼ 1

xq−1
, as x → 0.

Hence when 1 < q < 2,

∫ +∞

0

| lnx|p sinx
xq

dx converges absolutely; when 0 < q < 1,∫ +∞

0

| lnx|p sinx
xq

dx converges conditionally.

When p < 0, we know that 1 is also the flaw point, and there is

| lnx|p ∼ 1

|x− 1|−p
, as x → 1.

Hence for −1 < p < 0, we write∫ +∞

0

| lnx|p sinx
xq

dx =

∫ 1/2

0

| lnx|p sinx
xq

dx+

∫ 3/2

1/2

| lnx|p sinx
xq

dx

+

∫ +∞

3/2

| lnx|p sinx
xq

dx.

Hence when 1 < q < 2,

∫ +∞

0

| lnx|p sinx
xq

dx converges absolutely; when 0 ≤ q < 1,∫ +∞

0

| lnx|p sinx
xq

dx converges conditionally. □

Problem 4.2 (8.21). Suppose that f(x) is monotonic on (0, 1], and

∫ 1

0

f(x) dx con-

verges. Prove that ∫ 1

0

f(x) dx = lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
.

If we remove the condition that f(x) is monotonic on (0, 1], is the conclusion still
true?
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Proof. Without loss of generality, we may assume that f(x) is monotonic decreasing on
(0, 1]. Hence there is∫ 1

1
n

f(x) dx+
f(1)

n
≤ 1

n

n∑
k=1

f

(
k

n

)
≤
∫ 1

0

f(x) dx,

which gives us that ∫ 1

0

f(x) dx = lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
.

If f(x) is not monotonic decreasing on (0, 1], then the conclusion may be wrong. For
example, we can consider the function

f(x) =

n2, x =
1

n
,

0, others.

□

Problem 4.3 (8.22). Suppose that f(x) is monotonic on [0,+∞), and

∫ +∞

0

f(x) dx

converges. Prove that

lim
λ→∞

∫ +∞

0

f(x) sinλx dx = 0.

Hint. Consider∫ +∞

0

f(x) sinλx dx =

∫ R

0

f(x) sinλx dx+

∫ +∞

R

f(x) sinλx dx,

and use Exercise 12.14 in the notes of Mathematical analysis I . □

Problem 4.4 (8.24). Suppose that f(x) is monotonic on [0,+∞), and g(x) ̸≡ 0 is

periodic and continuous on R with period T > 0. Prove that

∫ +∞

0

f(x) dx converges

if and only if

∫ +∞

0

f(x)|g(x)| dx converges.

Proof. “=⇒” Since f(x) is monotonic on [0,+∞), we may assume that f(x) ≥ 0. Since
g(x is periodic and continuous on R, we know that there exists a M > 0 such that
|g(x)| ≤ M , ∀x ∈ R. Then, we have∫ +∞

0

f(x)|g(x)| dx ≤ M

∫ +∞

0

f(x) dx < ∞.
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“⇐=” Since g(x) ̸≡ 0 is a continuous and periodic function with period T > 0, we
know there exist a A > 0 and [a, b] ⊂ (0, T ) such that for any x ∈ [a, b], there is
|g(x)| > A. Then we know∫ T

0

|g(x)| dx ≥
∫ b

a

|g(x)| dx ≥ A(b− a).

Without loss of generality, we may assume that f(x) is monotonic decreasing and non-
negative. Then∫ kT

(k−1)T

f(x)|g(x)| dx ≥ f(kT )

∫ kT

(k−1)T

|g(x)| dx ≥ A(b− a)f(kT ), k ≥ 1.

Note that ∫ (k+1)T

kT

f(x) dx ≤ f(kT )T ≤ T

A(b− a)

∫ kT

(k−1)T

f(x)|g(x)| dx.

Then ∫ (n+1)T

T

f(x) dx =
n∑

k=1

∫ (k+1)T

kT

f(x) dx

≤ T

A(b− a)

n∑
k=1

∫ kT

(k−1)T

f(x)|g(x)| dx

=
T

A(b− a)

∫ nT

0

f(x)|g(x)| dx

→
∫ +∞

0

f(x)|g(x)| dx, as n → ∞,

which implies that

∫ +∞

0

f(x) dx converges. □

Problem 4.5. Suppose that f(x) is differentiable,

∫ +∞

0

f(x) dx and

∫ +∞

0

f ′(x) dx

converge. Prove that lim
x→+∞

f(x) = 0.

Hint. Firstly, using

∫ +∞

0

f ′(x) dx converges to prove lim
x→+∞

f(x) = α exists (by Cauchy’s

convergence test and Heine’s theorem). Then, using

∫ +∞

0

f(x) dx to show α = 0 (by

contradiction). □
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Exercise 4.6. Suppose that F (x) =

∫ x

0

(
1

t
−
[
1

t

])
dt. Prove that F ′(0) =

1

2
.

Hints: By changing of variable, t = x
y
, we have

F (x) =

∫ x

0

(
1

t
−
[
1

t

])
dt = x

∫ +∞

1

(y
x
−
[y
x

]) 1

y2
dy.

Hence

F (x)

x
=

∫ +∞

1

(y
x
−
[y
x

]) 1

y2
dy =

∫ +∞

1

φ
(
y
x

)
y2

dy,

where φ(t) = t − [t] is a periodic function with period T = 1. Hence, by Riemann’s
theorem, we know

F ′(0) = lim
x→0

F (x)

x
=

1

T

∫ T

0

φ(y) dy ·
∫ +∞

1

1

y2
dy

=

∫ 1

0

y dy =
1

2
.

□
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5. Week 6 (3.29)

Problem 5.1 (9.10). Discuss the convergence and divergence of the following series.

(1)
∞∑
n=1

(−1)[
√
n]

np
, (p > 0).

Problem 5.2 (9.16). Suppose that
∞∑
n=1

an converges, and
∞∑
n=1

(bn − bn+1) converges

absolutely. Prove that
∞∑
n=1

anbn converges.

Problem 5.3 (9.21). Suppose that the sequence {an} satisfies lim
n→∞

nan exists and

series
∞∑
n=1

n(an − an+1) converges. Prove that series
∞∑
n=1

an converges.

Problem 5.4 (9.23). Suppose that non-constant function f(x) is nonnegative and con-

tinuous on [0, 1], and f(x) ≤ 1, x ∈ [0, 1]. For ∀n ∈ N, defining an =

[∫ 1

0

f(x) dx

] 1
n

.

Prove that series
∞∑
n=1

(1− an) diverges.

Problem 5.5. Suppose that an > 0 and
∞∑
n=1

1

an
converges. Prove that

∞∑
n=1

n2

(a1 + a2 + · · ·+ an)2
an

converges, too.

Problem 5.6. Suppose that xn = 1+
1√
2
+ · · ·+ 1√

n
−2

√
n. Prove that lim

n→∞
xn exists.
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Problem 5.7. Suppose that an > 0 and S =
∞∑
n=1

an converges. Prove that

lim
n→∞

n∑
k=1

kak

n
= 0,

and
∞∑
n=1

a1 + 2a2 + · · ·+ nan
n(n+ 1)

= S.

Problem 5.8. Suppose that an > 0,
∞∑
n=1

an converges and {an − an+1} is decreasing.

Prove that {an} is decreasing and

lim
n→∞

1

an+1

− 1

an
= +∞.

Problem 5.9. Suppose that {an} is positive and decreasing. If series
∞∑
n=1

an√
n

con-

verges, prove that
∞∑
n=1

a2n also converges.

Problem 5.10.

(1) If for evrey sequence {bn} satisfying lim
n→∞

bn = 0, there is
∞∑
n=1

anbn converges.

Prove that
∞∑
n=1

an converges absolutely.

(2) If for every convergent series
∞∑
n=1

bn, we have that series
∞∑
n=1

anbn converges.

Prove that
∞∑
n=1

|an − an+1| must be convergent.
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6. Week 7 (4.5)

Problem 6.1. Suppose that {xn} is positive, monotonic decreasing and
∞∑
n=1

xn = +∞.

Prove that
∞∑
n=1

xne
− xn

xn+1 = +∞.

Proof. Firsr way: Clearly, {xn} converges. If xn → a > 0, then xn/xn+1 → 1, and
hence e−xn/xn+1 lower bounded, say by b > 0, and hence∑

xne
−xn/xn+1 ≥ b

∑
xn = ∞.

If xn → 0, set

Sk = {n ∈ N : 2−k < xn ≤ 2−k+1}
Then

∑∞
k=0

∑
n∈Sk

xn = ∞, and

∞∑
k=0

2−k+1|Sk| ≥
∞∑
k=0

∑
n∈Sk

xn ≥
∞∑
k=0

2−k|Sk|.

Hence
∑∞

k=0 2
−k|Sk| = 1

2

∑∞
k=0 2

−k+1|Sk| = ∞. Also, if n, n + 1 ∈ Sk, then e−xn/xn+1 ≥
e−2. Hence, if Sk = {j, j + 1, . . . , ℓ}, then∑

n∈Sk

xne
−xn/xn+1 >

ℓ−1∑
n=j

xne
−xn/xn+1 ≥

ℓ−1∑
n=j

xne
−2 ≥ 2−k(|Sk| − 1)e−2.

Thus
∞∑
k=0

∑
n∈Sk

xne
−xn/xn+1 ≥

∞∑
k=0

2−k(|Sk| − 1)e−2 = ∞

Second way: Divide N into two complementary sets of indices

A = {n ∈ N | xn+1 ≤
1

2
xn} , B = {n ∈ N | xn+1 >

1

2
xn} .

If k < l are two elements of A then xl ≤ 1
2
xk (here we need the fact the the given

sequence is decreasing). It follows that the k’th element of A is ≤ 2−kx1. A can be
empty, finite, or infinite, but in any case is∑

n∈A

xn < ∞

and therefore ∑
n∈B

xn = ∞ .
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Then
∞∑
n=1

xne
− xn

xn+1 ≥
∑
n∈B

xne
− xn

xn+1 ≥ e−2
∑
n∈B

xn = ∞ .

□

Remark 6.2. The proof shows that under the given conditions,
∞∑
n=1

xnf

(
xn

xn+1

)
= ∞

holds for any positive, monotonic decreasing function f : (0,∞) → (0,∞).

Problem 6.3. Let f be an increasing function on [0, 1] such that 0 ≤ f(x) ≤ 1 and∫ 1

0
(f(x)− x)dx = 0. Show that ∫ 1

0

|f(x)− x|dx ≤ 1

2
.

Proof. Here we present a bit different, calculus-themed approach. In this answer, we will
assume that f : [0, 1] → [0, 1] is monotone-increasing. We also write I(f) =

∫ 1

0
|f(x) −

x| dx for brevity.
Step 1 - Proof under extra assumptions. Assume further that f is piecewise-

smooth, f(0) = 0, and f(1) = 1. Then by the formula
∫
|x| dx = 1

2
x|x|+ C, we have∫ 1

0

|f(x)− x|(f ′(x)− 1) dx =

[
1

2
|f(x)− x|(f(x)− x)

]1
0

= 0.

In particular,

I(f) =
1

2

∫ 1

0

|f(x)− x|(f ′(x) + 1) dx.

Now pick α ∈ [0, 1] so that f(α) + α = 1. (This is possible since x 7→ f(x) + x increases
from 0 to 2. Then by triangle inequality,∫ α

0

|f(x)− x|(f ′(x) + 1) dx ≤
∫ α

0

(f(x) + x)(f ′(x) + 1) dx =
1

2
.

Similarly, by writing |f(x)− x| = |(1− f(x))− (1− x)| ≤ (1− f(x)) + (1− x), we get∫ 1

α

|f(x)− x|(f ′(x) + 1) dx ≤
∫ 1

α

(2− f(x)− x)(f ′(x) + 1) dx =
1

2
.

Therefore
∫ 1

0
|f(x)− x|(f ′(x) + 1) dx ≤ 1, which in turn implies I(f) ≤ 1

2
as required.

Step 2 - General case. For the general case, let fn be the linear interpolation of
the points

(0, 0), ( 1
n
, f( 1

n
)), · · · , (n−1

n
, f(n−1

n
)).
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Then by monotonicity,

|I(fn)− I(f)| ≤
∫ 1

0

|fn(x)− f(x)| dx =
n∑

k=1

∫ k
n

k−1
n

|fn(x)− f(x)| dx

≤ 1

n

(
[f( 1

n
)− 0] +

n−1∑
k=2

[f( k
n
)− f(k−1

n
)] + [1− f(n−1

n
)]

)

=
1

n
,

hence I(fn) → I(f) as n → ∞ and the desired inequality I(f) ≤ 1
2
follows from the

previous step. □

Remark 6.4. Let γ(t) = (f(t) + t, f(t)− t). Then
∫ 1

0
|f(t)− t|(f ′(t) + 1) dt =

∫
γ
|y| dx

computes the area between the path γ and the horizontal axis. Note that γ is essentially
the −45◦-rotation of the graph y = f(x) up to scaling.

Figure 9. Graph

Then the above bounds immediately follow from the fact that the graph of γ defines a
function on [0, 2] which is squeezed between lines y = ±x and y = ±(2− x).

Problem 6.5. Let f be an increasing function on [0, 1] such that 0 ≤ f(x) ≤ 1 and∫ 1

0
(f(x)− x)dx = 0. Show that ∫ 1

0

|f(x)− x|dx ≤ 1

4
.

Proof. Step 1. (Proof under extra assumptions) Assume that

• f : [0, 1] → [0, 1] is continuous and non-decreasing;

•
∫ 1

0

(f(x)− x) dx = 0;
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• f(0) = 0, and f(1) = 1.

Then the set U+ = {x ∈ [0, 1] : f(x) > x} is open, hence it is written as the union of at
most countably many disjoint open intervals (ai, bi), i = 1, 2, . . . Also, the continuity of
f forces that f(bi) = bi. So,

I+ :=

∫
U+

|f(x)− x| dx =
∑
i

∫
(ai,bi)

(f(x)− x) dx

≤
∑
i

∫
(ai,bi)

(bi − x) dx =
∑
i

(bi − ai)
2

2

≤ 1

2

(∑
i

(bi − ai)

)2

=
1

2
|U+|2.

A similar argument shows that, for U− = {x ∈ [0, 1] : f(x) < x} we have

I− :=

∫
U−

|f(x)− x| dx ≤ 1

2
|(U−|2.

Moreover, from
∫ 1

0
(f(x) − x) dx = 0 we get I+ = I−. Therefore, together with the

observations
∫ 1

0
|f(x)− x| dx = 2I+ = 2I− and |U+|+ |U−| ≤ 1, we conclude that∫ 1

0

|f(x)− x| dx ≤ min{|U+|, |U−|}2 ≤
1

4
.

These inequalities have a nice interpretation in terms of areas:

Figure 10. Graph

Step 2. (General case by approximation) Now suppose f : [0, 1] → [0, 1] is

non-decreasing and satisfies
∫ 1

0
(f(x)− x) dx = 0. Then it is not hard to find a sequence

fn(x) satisfying the conditions in Step 1 and fn(x) → f(x) for almost every x. So, by
the dominated convergence theorem,∫ 1

0

|f(x)− x| dx = lim
n→∞

∫ 1

0

|fn(x)− x| dx ≤ 1

4
.

□
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Actually, there is an extension of the above two problems. But the proof needs some
tools of real analysis. We still give proof here in case someone is interested in. Note that
in this case, the bound of RHS can not be improved to 1/4.

Exercise 6.6 (Hard!). f, g are monotonically increasing in [0, 1] and 0 ≤ f, g ≤ 1.∫ 1

0
(f − g)dx = 0. Prove that ∫ 1

0

|f − g|dx ≤ 1

2
.

Hint: Let f = 1[ 1
2
,1], g = 1

2
, then

∫ 1

0
|f − g|dx = 1

2
. Except for swapping f, g, this is the

only case to reach the maximum.
We can decompose f−g = (f−g)+−(f−g)− where h+ = max(0, h), h− = −min(h, 0).

So
∫
(f − g)+ =

∫
(f − g)−.

f, g is monotone means f − g has bounded variation. In particular,

V (f − g) ≤ V (f) + V (g) ≤ 2.

So sup(f − g)+ + sup(f − g)− ≤ 1. To see this we can assume f(0) = g(0) =
0, f(1) = g(1) = 1 since we don’t assume f, g to be continuous. And for simplicity
assume supermum can be taken, say f(a)−g(a) = max(f−g), f(b)−g(b) = min(f−g).

Assume a < b otherwise swap f, g. Then

V (f − g) = V a
0 (f − g) + V b

a (f − g) + V 1
b (f − g)

≥ (max−0) + (max−min) + (0−min)

= 2(max−min)

= 2(sup(f − g)+ + sup(f − g)−).

Then use∫
|f − g| =

∫
(f>g)

(f − g)+ +

∫
(f<g)

(f − g)− = 2

∫
(f>g)

(f − g)+ =: 2I.

And we have

I ≤ m(f > g) · sup(f − g) and I ≤ m(f < g) · sup(g − f)

with m(f > g) +m(f < g) ≤ 1, sup(f − g) + sup(g − f) ≤ 1.
If

I >
1

4
, m(f > g) sup(f − g) ≥ I,

then
m(f < g) sup(g − f) ≤ (1−m(f > g))(1−max(f − g))

≤ 1 +m(f > g) sup(f − g)− (m(f > g) + sup(f − g))

≤ 1 + I − 2
√
I = (1−

√
I)2 < I,

contradiction. □
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7. Week 8 (4.12)

Problem 7.1. Suppose that f ∈ C(−∞,+∞), let

fn(x) =
n−1∑
k=0

1

n
f

(
x+

k

n

)
.

Prove that {fn(x)} converges uniformly on any finite intervals.

Exercise 7.2. Assume f(x) is Riemann integrable in any closed subset of R, and

Sn(x) =
n∑

k=1

1

n
f

(
x+

k

n

)
, n = 1, 2, · · · ,

does function sequences {Sn} converges uniformly on any closed subset of R ?

Hint: First way: Prove it first for continuous f ; uniform continuity will be helpful
here. For the full result, let [a, b] be given. If ε > 0, there exists a continuous g on

[a, b+ 1] such that

∫ b+1

a

|f − g| < ε. Use this and Problem 7.1.

Second way: Suppose [a, b] is given. Let ε > 0. Then there exists δ > 0 such that∑
P

(Mj −mj)∆xj < ε,

whenever the partion P of [a, b+ 1] satisfies µ(P ) < δ. Here µ(P ) is the mesh size of P
and mj,Mj are the inf and sup of f over the jth subinterval determined by P.
Suppose 1/n < δ. Let x ∈ [a, b] and let xk = x + k/n. Then {xk : k = 0, . . . , n} can

be extended to a partition P of [a, b+ 1] with µ(P ) < δ. Thus∣∣∣∣Sn(x)−
∫ x+1

x

f(t) dt

∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

∫ xk

xk−1

(f(x+ k/n)− f(t))dt

∣∣∣∣∣
≤

n∑
k=1

∫ xk

xk−1

|f(x+ k/n)− f(t)|dt

≤
n∑

k=1

(Mk −mk) ·
1

n
≤
∑
P

(Mj −mj)∆xj < ε.

□
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Problem 7.3. Suppose that f1(x) is integrable on [a, b], and let

fn+1(x) =

∫ x

a

fn(t) dt, n = 1, 2, · · · .

Prove that {fn(x)} converges uniformly to 0.

Problem 7.4. Suppose that f ∈ C(−∞,+∞), and |f(x)| < |x|, ∀x ̸= 0. Define
f1(x) = f(x), f2(x) = f(f1(x)), · · · , fn(x) = f(fn−1(x)),· · · . Porve that {fn(x)}
converges uniformly on [−A,A].

Problem 7.5. Suppose that there exists M > 0 such that |f0(x)| ≤ M and
m∑

n=0

|fn(x)− fn+1(x)| ≤ M, m = 0, 1, 2, · · · .

Prove that if
∞∑
n=0

bn converges, then
∞∑
n=0

bnfn(x) converges uniformly.

Exercise 7.6. Suppose f(x) is positive monotone increasing function over [0,∞), and

f(x) ∈ C1[0,+∞). Prove that if

∫ +∞

0

ex

f(x) + f ′(x)
dx is convergent, then

∫ +∞

0

1

f(x)
dx

is convergent.

Hint: For each n ∈ {0, 1, 2, · · · }, let
En = {x ∈ [n, n+ 1] : f ′(x) ≥ 2f(n+ 1)}.

Also, let |En| denotes the length of En.
We firstly show that |En| ≤ 1

2
. Indeed, if |En| > 1

2
, then there is

f(n+ 1) ≥ f(n) +

∫
En

f ′(x) dx > f(n) + f(n+ 1),

a contradiction. Then∫ n+1

n

dx

f(x) + f ′(x)
≥
∫
[n,n+1]\En

dx

f(x) + f ′(x)

≥
∫
[n,n+1]\En

dx

3f(n+ 1)

≥ 1

6f(n+ 1)
.
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Hence
1

f(n+ 1)
≤ 6

∫ n+1

n

dx

f(x) + f ′(x)
.

Therefore ∫ ∞

0

dx

f(x)
≤

∞∑
n=0

1

f(n)
≤ 1

f(0)
+ 6

∫ ∞

0

dx

f(x) + f ′(x)
.

Now by the assumption, the right-hand side is finite, and therefore

∫ ∞

0

dx

f(x)
converges.

□

Exercise 7.7. Determine whether the following series converges:
∞∑
n=2

(−1)n√
n− (−1)[

√
n]
,

where
[x] = max{k ∈ Z : k ≤ x}.

Hint: First I write

(−1)n√
n− (−1)[

√
n]

=
(−1)n(

√
n+ (−1)[

√
n])

n− 1
=

(−1)n
√
n

n− 1
+

(−1)n+[
√
n]

n− 1
.

It is trivial that
∞∑
n=2

(−1)n
√
n

n− 1
converges. Now I claim that the series

∞∑
n=2

(−1)n+[
√
n]

n− 1

converges. Consider the sequence n+ [
√
n], this sequence is (starting from n = 1):

2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21 . . .

we see that the numbers do not show up in the sequence are 5, 11, 19, 29, . . . , i.e. numbers
of the form m2 +m− 1, and these are all odd numbers (Prove this!).
Define

an =

{
(−1)n+[

√
n]

n−1
, n is not a complete squre,

0, otherwise.

Then by alternating series test
∞∑
n=2

an converges. On the other hand, define

bn =

{
(−1)n+[

√
n]

n−1
= 1

n−1
, n is a complete squre,

0, otherwise.

then the series
∑∞

n=2 bn is definitely convergent.
Observe that

(−1)n+[
√
n]

n− 1
= an + bn, ∀n ∈ N,
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therefore the series
∞∑
n=2

(−1)n+[
√
n]

n− 1
is convergent. Hence the original series is convergent.

□

Exercise 7.8. Let f(x) be a function with positive values and with continuous deriv-
ative on [0,+∞). Suppose a and b real numbers. We know that the following integral
converges: ∫ +∞

0

√
a2 + b2(f ′(x))2

f(x)
dx < +∞.

Prove that a = 0 or b = 0.

Hint: If there is a sequence {xn} such that lim
n→∞

xn = ∞ and lim
n→∞

f(xn) = ∞ then for

any n, one has∫ ∞

0

√
a2 + b2(f ′(x))2

f(x)
dx ≥ |b|

∫ xn

0

f ′(x)

f(x)
dx = |b| ln f(xn)

f(0)
.

Hence b = 0. If there is not the sequence as above, that is f is bounded, then there is

M > 0 such that
1

f
≥ M . From this, it is easy to see that a = 0. □

Remark 7.9. Exercise 7.8 implies that∫ +∞

0

√
1 + (f ′(x))2

f(x)
dx = +∞.

Exercise 7.10. Determine whether the following series converges:
∞∑
n=1

sinn · sinn2

n
.

Hint: Approach 1: Telescoping Sum

n∑
k=1

sin(k) sin
(
k2
)
=

1

2

n∑
k=1

(cos(k(k − 1))− cos(k(k + 1)))

=
1− cos(n(n+ 1))

2
.

Thus, the partial sums are bounded, by Dirichlet’s Test we know the series is convergent.
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Approach 2: Summation by Parts
∞∑
k=1

sin(k) sin (k2)

k
= lim

n→∞

n∑
k=1

sin(k) sin (k2)

k

= lim
n→∞

1

2

n∑
k=1

cos(k(k − 1))− cos(k(k + 1))

k

= lim
n→∞

(
1

2
− cos(n(n+ 1))

2n
− 1

2

n−1∑
k=1

cos(k(k + 1))

k(k + 1)

)

=
1

2
− 1

2

∞∑
k=1

cos(k(k + 1))

k(k + 1)
,

and the last sum converges by comparison to
∞∑
k=1

1

k(k + 1)
= 1.

□
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8. Week 10 (4.26)

Problem 8.1. Suppose that an ≥ 0,
∞∑
n=1

an converges, and

bm =
∞∑
n=1

(
1 +

1

nm

)n

an.

Prove that R, the radius of convergence of the power series
∞∑

m=1

bmx
m, satisfying 1/e ≤

R ≤ 1.

Problem 8.2. Suppose that {an} satisfying lim
n→∞

n
√
|an| = 1. Denote that Sn =

n∑
k=0

ak.

Prove that
lim
n→∞

n
√

|Sn| = 1.

Problem 8.3. Suppose that an ≥ 0,
∞∑
n=1

an diverges, and

lim
n→∞

an
a1 + a2 + · · ·+ an

= 0.

Prove that
lim
n→∞

n
√
an = 1.

Problem 8.4. Expand f(x) = sin3 x as a power series at x = 0, and find the domain
of convergence.

Exercise 8.5. Find the Taylor series of
x sinα

1− 2x cosα + x2
(|x| < 1).

Hint. Suppose that

x sinα

1− 2x cosα + x2
=

∞∑
n=0

anx
n.
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Then

x sinα = (1− 2x cosα + x2)
∞∑
n=0

anx
n

= a0 + a1x+ a2x
2 + a3x

3 + · · · − (2a0 cosα)x

− (2a1 cosα)x
2 − (2a2 cosα)x

3 + · · ·+ a0x
2 + a1x

3 + · · · .
Comparing the coefficients, we have a0 = 0, a1 = sinα, a2 = sin 2α, · · · , an = sinnα,
· · · . □

Problem 8.6. Compute the integral

∫ 1

0

lnx

1− x2
dx.

Exercise 8.7. Prove that

ex + e−x ≤ 2ex
2/2, x ∈ R.

Hint. Since

ex + e−x = 2
∞∑
n=0

x2n

(2n)!
,

and

2ex
2/2 = 2

∞∑
n=0

x2n

(2n)!!
.

□

Problem 8.8. Suppose that for −1 < x < 1, there is

f(x) =
∞∑
n=0

anx
n, lim

n→∞
nan = 0.

Prove that if lim
x→1−0

f(x) = S, then
∞∑
n=0

an = S.

Problem 8.9. Suppose that {an}, {bn} satisfying an > 0, and series
∞∑
n=0

anx
n con-

verges in |x| < 1, diverges at x = 1. Assume that lim
n→∞

bn
an

= A, 0 ≤ A < +∞. Prove
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that

lim
x→1−0

∞∑
n=0

bnx
n

∞∑
n=0

anxn

= A.

Exercise 8.10. Suppose that f(x) =
∞∑
n=0

anx
n, and its radius of convergence is R =

+∞. Let

fn(x) =
n∑

k=0

akx
k.

Prove that when n → ∞,

f(fn(x)) ⇒ f(f(x)), (a ≤ x ≤ b).

Hint. fn ⇒ f and f is uniformly continuous. □
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9. Week 12 (5.10)

Problem 9.1 (Interchanging the Order of Summation). If
∞∑
j=1

∞∑
k=1

|ajk| < ∞, then

∞∑
j=1

∞∑
k=1

ajk =
∞∑
k=1

∞∑
j=1

ajk.

Proof. The two double sums in the problem really mean

∞∑
j=1

∞∑
k=1

ajk = lim
n→∞

n∑
j=1

[
∞∑
k=1

ajk

]
= lim

n→∞

n∑
j=1

[
lim

m→∞

m∑
k=1

ajk

]

= lim
n→∞

lim
m→∞

n∑
j=1

m∑
k=1

ajk,

∞∑
k=1

∞∑
j=1

ajk = lim
m→∞

m∑
k=1

[
∞∑
j=1

ajk

]
= lim

m→∞

m∑
k=1

[
lim
n→∞

n∑
j=1

ajk

]

= lim
m→∞

lim
n→∞

n∑
j=1

m∑
k=1

ajk.

That all of these limits exist is part of the conclusion of the probelm. □

Remark 9.2. The hypothesis
∞∑
j=1

∞∑
k=1

|ajk| < ∞ really means that for each j ∈ N,

∞∑
k=1

|ajk| = Mj < ∞ and
∞∑
j=1

Mj < ∞.

Problem 9.3 (11.14). Suppose that f(x) can be expanded as a power series in a
neighborhood of x = 0, and the sequence {f (n)(0)} is bounded. Prove that f(x) is the
restriction of a smooth function, which is defined on R.

Problem 9.4 (11.15). Suppose that f(x) is continuous on [0, 1], satisfying∫ 1

0

f(x)xn dx = 0, n = 0, 1, 2, · · · .

Prove that f(x) ≡ 0 on [0, 1].
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Problem 9.5. Suppose that f ∈ R[0, 1], satisfying∫ 1

0

f(x)xn dx = 0, n = 0, 1, 2, · · · .

Prove that f(x) = 0 at every continuous point.

Proof. For ∀ ε > 0, there exists a g ∈ C[0, 1] such that∫ 1

0

|f(x)− g(x)| dx < ε.

By Weierstrass theorem, we know there is a polynomial P such that |P (x)− g(x)| < ε.
Note that |f | ≤ M since f is integrable. Then∫ 1

0

f 2(x) dx =

∫ 1

0

[f(f − g + g − P ) + Pf ] dx

=

∫ 1

0

[f(f − g + g − P )] dx

≤ M

[∫ 1

0

|f − g|+ |g − P | dx
]
≤ 2Mε.

Hence

∫ 1

0

f 2(x) dx = 0, which means that f(x) = 0 at every continuous point. □

Problem 9.6.

(1) Suppose that f(x) ∈ C[−1, 1], satisfying∫ 1

−1

x2nf(x) dx = 0, n = 0, 1, 2, · · · .

Prove that f(x) is an odd function.
(2) Suppose that f(x) ∈ C[−1, 1], satisfying∫ 1

−1

x2n+1f(x) dx = 0, n = 0, 1, 2, · · · .

Prove that f(x) is an even function.

Exercise 9.7. Suppose that f(x) is continuous on [0, 1], satisfying∫ 1

0

f(x)xn dx = 0, n ≥ n0.

Prove that f(x) ≡ 0 on [0, 1].
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Hint. Note that for any polynomial P (x), there is∫ 1

0

xn0f(x)P (x) dx = 0.

□

Problem 9.8 (11.17). Suppose that f(x) can be approximated by polynomials on a
infinte interval. Prove that f(x) must be a polynomial.

Problem 9.9 (11.20). Suppose that f(x) is continuous on [0, 1]. For any n ∈ N, we
define

Bn(f, x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

Prove that Bn(f, x) ⇒ f(x) (x ∈ [0, 1]).

Problem 9.10 (Lebesgue). Any continuous function on a interval must have primitive
functions.

Proof. Suppose that f ∈ C[a, b]. By the Weierstrass approximation theorem, we know
that there exist polynomials {Pn(x)} on [a, b] such that Pn(x) ⇒ f(x), n → ∞.

For every Pn(x), there is a polynomial Qn(x) such that Q′
n = Pn on [a, b]. And we

may always assume Qn(a) = 0.
First, we show that {Qn(x)} is uniformly convergent on [a, b]. Indeed, since {Pn(x)}

converges uniformly, we know for ∀ ε > 0, there exists N ∈ N, such that for ∀n ≥ N
and p ∈ N, there is

|Pn+p(x)− Pn(x)| < ε.

Then by Lagrange’s theorem, we have

|Qn+p(x)−Qn(x)| = |[Qn+p(x)−Qn(x)]− [Qn+p(a)−Qn(a)]|
= |Pn+p(ξ)− Pn(ξ)| < ε.

Hence, the Cauchy theorem tells us that {Qn(x)} converges uniformly on [a, b]. Denote
F (x) := lim

n→∞
Qn(x).

Next, we show that F is differentiable and F ′ = f on [a, b]. To prove this, it suffices
to prove for given x0 ∈ [a, b] and ε > 0, there exists δ > 0, such that 0 < |h| < δ, there
is ∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ < 3ε.
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Note that∣∣∣∣F (x0 + h)− F (x0)

h
− f(x0)

∣∣∣∣ ≤ ∣∣∣∣Qn(x0 + h)−Qn(x0)

h
− Pn(x0)

∣∣∣∣+ |Pn(x0)− f(x0)|

+

∣∣∣∣F (x0 + h)−Qn(x0 + h)− F (x0) +Qn(x0)

h

∣∣∣∣ .
For ∀ ε > 0, there exists N ∈ N, such that ∀n ≥ N , there is |Pn(x0) − f(x0)| < ε. Set
n = N , by Lagrange’s theorem and PN(x) is uniformly continuous on [a, b], we have that
there exists δ > 0, such that for |h| < δ, there is∣∣∣∣QN(x0 + h)−QN(x0)

h
− PN(x0)

∣∣∣∣ = |PN(x0 + θh)− PN(x0)| < ε,

where 0 < θ < 1. By Lagrange’s theorem, we also have∣∣∣∣QN+p(x0 + h)−QN(x0 + h)−QN+p(x0) +QN(x0)

h

∣∣∣∣
≤|PN+p(x0 + θh)− PN(x0 + θh)| < ε

2
.

Then, letting p → ∞, we have∣∣∣∣F (x0 + h)−QN(x0 + h)− F (x0) +QN(x0)

h

∣∣∣∣ ≤ ε

2
,

which gives us the desired inequality. □
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10. Week 13 (5.17)

Problem 10.1. Use power series to prove Vandermonde’s identity:
n∑

k=0

(
α

k

)(
β

n− k

)
=

(
α + β

n

)
.

Consequently, we get
n∑

k=0

(
n

k

)2

=

(
2n

n

)
.

Problem 10.2. Suppose that {gn(x)} is nonnegative and continuous on [0, 1], and for
every xk (k = 0, 1, 2, · · · ),

lim
n→∞

∫ 1

0

xkgn(x) dx

exists. Prove that for any f ∈ C[0, 1],

lim
n→∞

∫ 1

0

f(x)gn(x) dx

exists.

Problem 10.3.

(1) Suppose that f ∈ C[1,+∞), f(+∞) = A. Prove that for any ε > 0, there
exists a polynomial P such that∣∣∣∣f(x)− P

(
1

x

)∣∣∣∣ < ε, x ∈ [1,+∞).

(2) Suppose that f ∈ C[0,+∞), f(+∞) = A. Prove that for any ε > 0, there
exists a polynomial P such that∣∣f(x)− P

(
e−x
)∣∣ < ε, x ∈ (0,+∞).

Problem 10.4 (Riemann’s lemma). Suppose that f(x) ∈ R[a, b], then

lim
p→+∞

∫ b

a

f(x) sin px dx = 0, lim
p→+∞

∫ b

a

f(x) cos px dx = 0.

49



Hint. By approximation of Riemann integral and the Weierstrass approximation theo-
rem, we know that for any ε > 0, there is a polynomial P such that∫ b

a

|f(x)− P (x)| dx < ε.

By integral by parts, it’s easy to see

lim
p→+∞

∫ b

a

P (x) sin px dx = 0, lim
p→+∞

∫ b

a

P (x) cos px dx = 0.

□

Exercise 10.5. Suppose that f ∈ R[a, b]. Prove for ∀ ε > 0, there exist two polyno-
mials p(x) and P (x) on [a, b] satisfying

(1) p(x) ≤ f(x) ≤ P (x), ∀x ∈ [a, b];

(2)

∫ b

a

[P (x)− p(x)] dx < ε.

Hint. Firstly, show there exist continuous functions g(x) and h(x) on [a, b] satisfying

(1) g(x) ≤ f(x) ≤ h(x), ∀x ∈ [a, b];

(2)

∫ b

a

[h(x)− g(x)] dx < ε.

Then apply the Weierstrass approximation theorem. □

Problem 10.6. Find the sum of series
∞∑
n=1

1

n2
.

Problem 10.7.

(1) Find S =
∞∑
n=1

(−1)n

n
;

(2) Let an = 1− 1

2
+ · · ·+ (−1)n

n
− ln 2, n = 1, 2, · · · , find

∞∑
n=1

an.

Problem 10.8. Find f(x) =
∞∑
n=1

cosnx

n
, ∀x ∈ (0, 2π).
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Remark 10.9. By Problem 10.8, we know that

ln sin
x

2
= − ln 2−

∞∑
n=1

cosnx

n
, ∀x ∈ (0, 2π).

Hence, integrating terms by terms yields∫ π/2

0

ln sinx dx = −π

2
ln 2.

And there is another way to evaluate the integration.
Firstly, we have ∫ π

2

0

ln sinx dx
t=π

2
−x

=

∫ π
2

0

ln cos t dt,

and ∫ π

π
2

ln sinx dx
t=x−π

2=

∫ π
2

0

ln cos t dt.

Then

2

∫ π
2

0

ln sinx dx =

∫ π
2

0

ln sinx dx+

∫ π
2

0

ln cosx dx

=

∫ π
2

0

ln sin 2x dx− π

2
ln 2

=
1

2

∫ π

0

ln sinx dx− π

2
ln 2

=
1

2

(∫ π
2

0

ln sinx dx+

∫ π

π
2

ln sinx dx

)
− π

2
ln 2

=

∫ π
2

0

ln sinx dx− π

2
ln 2.

That is ∫ π
2

0

ln sinx dx = −π

2
ln 2.
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11. Week 14 (5.24)

Problem 11.1. Prove that π =
∞∑
n=0

(n!)22n+1

(2n+ 1)!
.

Proof. Note that

(n!)2 · 2n+1

(2n+ 1)!
=

(n!)2 · 2n+1

(2n+ 1)!! · (2n)!!
=

(2n)!!

(2n+ 1)!!
· 1

2n−1
=

1

2n−1

∫ π/2

0

(cosx)2n+1 dx.

Then
∞∑
n=0

(n!)2 · 2n+1

(2n+ 1)!
=

∞∑
n=0

1

2n−1

∫ π/2

0

(cosx)2n+1 dx =

∫ π/2

0

(2 cosx)
∞∑
n=0

(
cos2 x

2

)n

dx

=

∫ π/2

0

4 cosx

1− cos2 x
dx = 4arctan(sinx)|π/20 = π.

□

Problem 11.2. Suppose that f(x) ∈ C∞(R) satisfying |f (k)(x)| ≤ M , k = 0, 1, 2, · · ·

and f

(
1

2n

)
= 0, (n = 1, 2, · · · ). Prove that f ≡ 0.

Remark 11.3. |f (k)(x)| ≤ M , k = 0, 1, 2, · · · is necessary. For example

f(x) =

{
e−1/x2

sin
π

x
, x ̸= 0,

0, x = 0.

Exercise 11.4. Prove f(x) defined in Remark 11.3 is smooth on R.

Problem 11.5. Suppose that f(x) is a periodic function with period 2π, and f(x) is
bounded on (0, 2π). Prove that bn ≥ 0 if f(x) is decreasing.

Proof. By definition, we have

bn =
1

π

∫ 2π

0

f(x) sinnx dx =
1

π

n∑
k=1

∫ k 2π
n

(k−1) 2π
n

f(x) sinnx dx

=
1

π

n∑
k=1

[∫ (k− 1
2
) 2π

n

(k−1) 2π
n

f(x) sinnx dx+

∫ k 2π
n

(k− 1
2
) 2π

n

f(x) sinnx dx

]
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=
1

π

n∑
k=1

[∫ (k− 1
2
) 2π

n

(k−1) 2π
n

f(x) sinnx dx−
∫ (k− 1

2
) 2π

n

(k−1) 2π
n

f
(
x+

π

n

)
sinnx dx

]

=
1

π

n∑
k=1

∫ (k− 1
2
) 2π

n

(k−1) 2π
n

[
f(x)− f

(
x+

π

n

)]
sinnx dx ≥ 0.

□

Exercise 11.6. Suppose that f ′(x) is bounded on (0, 2π). Prove that an ≥ 0 if f ′(x)
is decreasing.

Hint. Similar to Problem 11.5. □

Problem 11.7. Suppose that f(x) is a periodic function with period 2π satisfying

|f(x)− f(y)| ≤ L|x− y|α (0 < α ≤ 1).

Prove that an = O

(
1

nα

)
, bn = O

(
1

nα

)
.

Proof. Note that

an =
1

π

∫ π

−π

f(x) cosnx dx

=
1

π

∫ π−π
n

−π−π
n

f
(
x+

π

n

)
cos(nx+ π) dx

= − 1

π

∫ π

−π

f
(
x+

π

n

)
cosnx dx.

Then

|an| =
∣∣∣∣ 12π

∫ π

−π

[
f(x)− f

(
x+

π

n

)]
cosnx dx

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣∣f(x)− f
(
x+

π

n

)∣∣∣ | cosnx| dx
≤ 1

2π
L
(π
n

)α ∫ π

−π

| cosnx| dx ≤ L
(π
n

)α
,

which gives us that an = O

(
1

nα

)
. Similarly, we have bn = O

(
1

nα

)
. □
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Problem 11.8. Find the Fourier expansion of

f(x) =

{
0, − π ≤ x ≤ 0,

sinx, 0 < x ≤ π.

Problem 11.9. Use
n∑

k=1

sin kx

k
=

n∑
k=1

∫ x

0

cos kt dt

to find

S(x) =
∞∑
n=1

sinnx

n
, ∀x ∈ (0, 2π).

Proof. Considering
n∑

k=1

sin kx

k
=

∫ x

0

n∑
k=1

cos kt dt = −x

2
+

∫ x

0

sin(n+ 1/2)t

2 sin t
2

dt

= −x

2
+

∫ x

0

[
1

2 sin t
2

− 1

t

]
sin(n+ 1/2)t dt+

∫ x

0

sin(n+ 1/2)t

t
dt.

By Riemann-Lebesgue’s lemma, we know that

lim
n→∞

∫ x

0

[
1

2 sin t
2

− 1

t

]
sin(n+ 1/2)t dt = 0.

Note that∫ x

0

sin(n+ 1/2)t

t
dt =

∫ (n+1/2)x

0

sin t

t
dt →

∫ ∞

0

sin t

t
dt =

π

2
, as n → ∞.

Hence
∞∑
n=1

sinnx

n
=

π − x

2
.

□

Problem 11.10. Let

S(x) =
∞∑
n=1

sinnx

n
, ∀x ∈ (0, 2π).

Show that

lim
n→∞

max
0≤x≤π

{Sn(x)− S(x)} =

∫ π

0

sin t

t
dt− π

2
,

where Sn(x) is the partial sum of the previous n terms.
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Exercise 11.11 (Hard!). Find Fourier series of

u(x) = ecosx cos sinx and v(x) = ecosx sin sinx.

Hint. See solution here. □

Exercise 11.12 (Hard!). There exists a continuous function whose Fourier series
diverges at a point.

Hint. We describe Fejér example of a continuous function with divergent Fourier series.
Fejér example is the even, (2π)-periodic function f defined on [0, π] by:

f(x) =
∞∑
p=1

1

p2
sin
[
(2p

3

+ 1)
x

2

]
.

According to Weierstrass M-test, f is continuous. We denote f ’s Fourier series by

1

2
a0 + (a1 cosx+ b1 sinx) + · · ·+ (an cosnx+ bn sinnx) + · · · .

As f is even, the bn are all vanishing. If we denote for all m ∈ N:

λn,m =

∫ π

0

sin

[
(2m+ 1)

t

2

]
cosnt dt and σn,m =

n∑
k=0

λk,m.

We have

an =
1

π

∫ π

−π

f(t) cosnt dt =
2

π

∫ π

0

f(t) cosnt dt

=
2

π

∫ π

0

(
∞∑
p=1

1

p2
sin
[
(2p

3

+ 1)
x

2

])
cosnt dt

=
2

π

∞∑
p=1

1

p2

∫ π

0

sin
[
(2p

3

+ 1)
x

2

]
cosnt dt

=
2

π

∞∑
p=1

1

p2
λn,2p3−1 .

We now introduce for all n ∈ N:

Sn =
π

2

n∑
k=0

ak =
∞∑
p=1

n∑
k=0

1

p2
λk,2p

3−1 =
∞∑
p=1

1

p2
σn,2p

3−1 .
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We will prove below that for all n,m ∈ N, we have σm,m ≥ 1
2
lnm and σn,m ≥ 0. Indeed,

λn,m =
1

2

∫ π

0

[
sin

(
2m+ 1

2
+ n

)
t+ sin

(
2m+ 1

2
− n

)
t

]
dt

=
1

2

(
1

m+ n+ 1/2
+

1

m− n+ 1/2

)
=

m+ 1/2

(m+ 1/2)2 − n2
.

Therefore for n ≤ m we get λn,m ≥ 0 and σq,m ≥ 0 for q ≤ m. While for q ≥ m:

2σq,m =

q∑
k=0

(
1

m+ k + 1/2
+

1

m− k + 1/2

)

=

q+m∑
i=m

1

i+ 1/2
+

m−q∑
i=m

1

i+ 1/2

=

q+m∑
i=m

1

i+ 1/2
+

1

m+ 1/2
+

m−1∑
i=m−q

1

i+ 1/2

=
1

m+ 1/2
+

q+m∑
i=q−m

1

i+ 1/2
≥ 0.

Hence for q = m, we have

2σm,m =
1

m+ 1/2
+

2m∑
i=0

1

i+ 1/2

≥
2m∑
i=0

∫ i+3/2

i+1/2

dt

t
=

∫ 2m+3/2

1/2

dt

t

= ln(4m+ 3) ≥ lnm,

i.e.

σm,m ≥ 1

2
lnm.

Then, we get

S2p3−1 ≥
1

p2
σ2p3−1,2p3−1 ≥

1

2p2
ln(2p

3−1) =
p3 − 1

2p2
ln 2.

As the right hand side diverges to ∞, we can conclude that {Sn} diverges and conse-
quently that the Fourier series of f diverges at 0. □
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12. Week 15 (5.31)

Problem 12.1. Suppose that bn ↘ 0, n → 0, and the series
∞∑
n=1

bn
n

converges. Then

f(x) =
∞∑
n=1

bn sinnx is integrable and absolutely integrable on [−π, π].

Proof. It suffices to prove

∫ π

0

|f(x)| dx converges. Note that∫ π

π/(n+1)

|f(x)| dx =
n∑

k=1

∫ π/k

π/(k+1)

|f(x)| dx.

For π/(k + 1) ≤ x ≤ π/k, we have |f(x)| ≤

∣∣∣∣∣
k∑

i=1

bi sin ix

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=k+1

bi sin ix

∣∣∣∣∣ . Denote
Sk = b1 + b2 + · · ·+ bk, we know

∣∣∣∣∣
k∑

i=1

bi sin ix

∣∣∣∣∣ ≤ Sk. For the second term, we know∣∣∣∣∣
∞∑

i=k+1

bi sin ix

∣∣∣∣∣ ≤ bk+1

| sinx/2|
≤ bk+1

|x/π|
≤ (k + 1)bk+1 ≤ (k + 1)bk.

Hence ∫ π/k

π/(k+1)

|f(x)| dx ≤ [Sk + (k + 1)bk]
π

k(k + 1)
= π

[
Sk

k(k + 1)
+

bk
k

]
.

Then ∫ π

π/(n+1)

|f(x)| dx ≤ π
n∑

k=1

Sk

k(k + 1)
+ π

n∑
k=1

bk
k
.

Note that
n∑

k=1

Sk

k(k + 1)
=

n∑
k=1

k∑
i=1

bi
k(k + 1)

=
n∑

i=1

n∑
k=i

bi
k(k + 1)

=
n∑

i=1

bi
i
− Sn

n+ 1
,

which is
∞∑
n=1

Sn

n(n+ 1)
=

∞∑
n=1

bn
n
.

Then ∫ π

π/(n+1)

|f(x)| dx ≤ 2π
∞∑
n=1

bn
n
.

Hence

∫ π

0

|f(x)| dx converges. □
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Problem 12.2. Let

Sn(x) =
n∑

k=1

cos kx

k
.

Prove that Sn(x) ≥ −1, and lim
n→∞

min
0≤x≤π

{Sn(x)} = − ln 2.

Problem 12.3. Suppose f(x) is a periodic function with period 2π, and f(x) is con-
tinuous and piecewise smooth on [−π, π]. an, bn are its Fourier coefficients. Find the
Fourier expansion of the convolution function

F (x) =
1

π

∫ π

−π

f(t)f(x+ t) dt,

and derive the Parseval identity.

Problem 12.4. Suppose that f(x) is integrable on [0, 2π]. Prove

1

2π

∫ 2π

0

f(x)(π − x) dx =
∞∑
n=1

bn
n
,

where

bn =
1

π

∫ 2π

0

f(x) sinnx dx, (n = 1, 2, · · · ).

Exercise 12.5 (Hard!). Suppose f(x) is a continuous, periodic function with period
2π. Define

Vn(x) =
(2n)!!

2π(2n− 1)!!

∫ π

−π

f(t) cos2n
t− x

2
dt.

Prove that Vn ⇒ f(x), n → ∞, ∀x ∈ [−π, π].

Hint. Let t− x = u, we have

Vn(x) =
(2n)!!

2π(2n− 1)!!

∫ π−x

−π−x

f(x+ u) cos2n
u

2
du

=
(2n)!!

2π(2n− 1)!!

∫ π

−π

f(x+ u) cos2n
u

2
du

=
(2n)!!

2π(2n− 1)!!

∫ π

0

[f(x+ u)− f(x− u)] cos2n
u

2
du.
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Note that ∫ π

0

cos2n
x

2
dx =

(2n− 1)!!

(2n)!!
π.

Hence

f(x) =
(2n)!!

2π(2n− 1)!!

∫ π

0

2f(x) cos2n
u

2
du.

Then

|Vn(x)− f(x)| = (2n)!!

2π(2n− 1)!!

∣∣∣∣∫ π

0

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣ .
Denote φ(x, u) = f(x + u) + f(x − u) − 2f(x). Since f(x) is uniformly continuous on
[−π, 2π], we know for ∀ ε > 0, ∃ δ > 0 (δ < π), such that when |x′ − x′′| < δ, there is
|f(x′)− f(x′′)| < ε/4. Then, for x ∈ [0, π], |u| < δ, there is

|φ(x, u)| ≤ |f(x+ u)− f(x)|+ |f(x− u)− f(x)| < ε

2
.

Hence

(2n)!!

2π(2n− 1)!!

∣∣∣∣∫ δ

0

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣
≤ (2n)!!

2π(2n− 1)!!

∫ δ

0

|φ(x, u)| cos2n u

2
du

<
ε

2

(2n)!!

2π(2n− 1)!!

∫ δ

0

cos2n
u

2
du

<
ε

2

(2n)!!

2π(2n− 1)!!

∫ π

0

cos2n
u

2
du =

ε

2
.

Since f(x) is a continuous, periodic function with period 2π, we know that there exists
a M > 0 such that

|φ(x, u)| ≤ M.

Thus

(2n)!!

2π(2n− 1)!!

∣∣∣∣∫ π

δ

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣
≤M

(2n)!!

2π(2n− 1)!!

∫ π

δ

cos2n
u

2
du

≤M
(2n)!!

2π(2n− 1)!!
cos2n

δ

2
.

Denote q = cos
δ

2
. 0 < q < 1 since 0 < δ < π. Then

∞∑
n=1

(2n)!!

(2n− 1)!!
q2n converges, which

implies

lim
n→∞

(2n)!!

(2n− 1)!!
q2n = 0.
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Hence for ∀ ε > 0, ∃N > 0, when n > N there is

(2n)!!

2π(2n− 1)!!

∣∣∣∣∫ π

δ

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣ < ε

2
.

Combinig above all, we have

|Vn(x)− f(x)| ≤ (2n)!!

2π(2n− 1)!!

∣∣∣∣∫ δ

0

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣
+

(2n)!!

2π(2n− 1)!!

∣∣∣∣∫ π

δ

[f(x+ u) + f(x− u)− 2f(x)] cos2n
u

2
du

∣∣∣∣
<

ε

2
+

ε

2
= ε,

i.e. Vn ⇒ f(x), n → ∞, ∀x ∈ [−π, π]. □

Treating a Fourier series as the formal limit on the unit circle (in the complex plane)
of

u(z) =
∞∑
k=0

f̂(k)zk +
−1∑

k=−∞

f̂(k)z̄|k|, z = re2πiθ,

where

f̂(k) =

∫ 1/2

−1/2

f(t)e−2πikt dt.

Since {f̂(k)} is a bounded sequence, this function is well defined on |z| < 1. It can be
rewritten as

u
(
re2πiθ

)
=

∞∑
k=−∞

f̂(k)r|k|e2πikθ =

∫ 1/2

−1/2

f(t)Pr(θ − t) dt,

where

Pr(t) =
∞∑

k=−∞

r|k|e2πikt =
1− r2

1− 2r cos(2πt) + r2

is the Poisson kernel. The Poisson kernel has properties analogous to those of the Fejér
kernel:

Pr(t) ≥ 0,∫ 1

0

Pr(t)dt = 1,

lim
r→1−

∫
δ<|t|<1/2

Pr(t)dt = 0 if δ > 0.

Therefore, we can show:

Problem 12.6. If f is continuous on [0, 1], then

lim
r→1−

max
0≤x≤1

{Pr ∗ f(x)− f(x)} = 0.
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Since the function u is harmonic on |z| < 1, it is the solution to the Dirichlet problem
with continuous boundary condition:

∆u = 0 if |z| < 1,

u = f if |z| = 1.

What’s more, we can study the almost everywhere convergence of Pr ∗ f(x).

Exercise 12.7. Prove
∞∑
n=2

sinnx

n log n
is uniformly convergent on (0, 2π).

Hint. In fact, we can show more generally that if {an} be a decreasing sequence of real
numbers such that n · an → 0. Then the series

∑
n⩾2 an sin(nx) is uniformly convergent

on R.
Thanks to Abel transform, we can show that the convergence is uniform on [δ, 2π− δ]

for all δ > 0. Since the functions are odd, we only have to prove the uniform convergence

on [0, δ]. Put Mn := sup
k⩾n

kak, and Rn(x) =
∞∑
k=n

ak sin(kx). Fix x ̸= 0 and N such that

1

N
⩽ x <

1

N − 1
. Put for n < N :

An(x) =
N−1∑
k=n

ak sin kx and Bn(x) :=
+∞∑
k=n

ak sin(kx),

and for n ≥ N , An(x) := 0.
Since | sin t| ⩽ t for t ≥ 0 we have

|An(x)| ⩽
N−1∑
k=n

akkx ⩽ Mnx(N − n) ⩽
N − n

N − 1
Mn,

so |An(x)| ⩽ Mn.

If N > n, we have after writing Dk =
k∑

j=0

sin jx, |Dk(x)| ⩽
c

x
on (0, δ] for some

constant c. Indeed, we have |Dk(x)| ⩽
1√

2(1− cosx)
and cosx = 1− x2

2
(1 + ξ) where

|ξ| ⩽ 1

2
, so 2(1− cosx) ⩾

x2

2
and |Dk(x) ⩽

√
2

x
. Therefore

|Bn(x)| ⩽
√
2

x

+∞∑
k=N

(ak − ak+1) + aN

√
2

x
=

2
√
2

x
aN ⩽ 2

√
2NaN ⩽ 2

√
2Mn.

We get the same bound if N ⩽ n. Finally |Rn(x)| ⩽ (2
√
2 + 1)Mn for all 0 ⩽ x ⩽ δ, so

the convergence is uniform on R. □
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Remark 12.8. It’s an example of a Fourier series which is uniformly convergent on the
real line, but not absolutely convergent at any point of (0, 2π). Indeed take x ∈ (0, 2π).

Since | sin(nx)| ⩾ sin2(nx), we would have the convergence of
∑
n⩾2

sin2(nx)

n log n
. We have

sin2(nx) =
1

−4
(einx − e−inx)2 = −1

4
(e2inx + e−2inx − 2) =

1

2
− 1

2
cos(2nx) and an Abel

transform shows that the series
∑
n⩾2

cos(2nx)

n log n
is convergent. So the series

∑
n⩾2

1

n log n

would be convergent, which is not the case as the integral test shows.

Exercise 12.9. Show
∑
n≥2

cosnx

lnn
is a Fourier series for some integrable function.

Hint. The series converges pointwise to an even function f on [−π, π] \ {0}. By the
Dirichlet test, the series is uniformly convergent on any interval [δ, π] where 0 < δ < π.
Furthermore, we have f continuous on [δ, π]. Thus, we can integrate termwise to obtain∫ π

δ

f(x) dx =
∞∑
n=2

1

lnn

∫ π

δ

cosnx dx = −
∞∑
n=2

sinnδ

n lnn
.

By Exercise 12.7, the series on the RHS converges uniformly on [0, π] since the coefficients
bn = 1/(n lnn) are monotonically decreasing and satisfy nbn → 0 as n → ∞. Therefore,
we can interchange the limit as δ → 0 with the sum to obtain∫ π

0

f(x) dx = −
∞∑
n=2

lim
δ→0

sinnδ

n lnn
= 0.

This proves that f is integrable on [0, π] as well as [−π, π] since it is even. By a similar
argument we can show that

2

π

∫ π

0

f(x) cosnx dx =
1

lnn
.

Therefore, this is a Fourier series for f . □
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