Exercises II

June 11, 2022

1. (1) Let $a_{i}, x \in \mathbb{R}$ with $a_{n} \neq 0$. Suppose $R>0$ such that all real roots of $f(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n}=0$ are contained in $(-R, R)$. Compute the degree $\operatorname{deg}(f,[-R, R], 0)$. We can also consider f as a continuous map from $S^{1}=\mathbb{R} \cup\{\infty\}=\mathbb{R} P^{1}$ into itself. Compute $\operatorname{deg}\left(f, S^{1}\right)$.
(2) Let $a_{i}, z \in \mathbb{C}$ with $a_{n} \neq 0$. Suppose $R>0$ such that all complex roots of $f(z)=a_{0}+a_{1} z+\cdots a_{n} z^{n}=0$ are contained in $D(R)=\{z \in \mathbb{C}| | z \mid<R\}$. Compute the degree $\operatorname{deg}(f, D(R), 0)$. We can also consider f as a continuous map from $S^{2}=\mathbb{C} \cup\{\infty\}=\mathbb{C} P^{1}$, the Riemannian sphere, into itself. Compute $\operatorname{deg}\left(f, S^{2}\right)$.
2. Let $B=\left\{x=\left.\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}\left|\sum_{1}^{n}\right| x_{i}\right|^{2} \leq 1\right\}$. Assume that $f: \bar{B} \rightarrow$ \mathbb{R} be a C^{2} function such that

$$
\nabla f(x) \cdot x=\sum_{1}^{n} \frac{\partial f}{\partial x_{i}} x_{i} \neq 0, \quad x \in \partial B
$$

Determine the degree

$$
\operatorname{deg}(\nabla f, B, 0), \quad \nabla f=\left(\frac{\partial f}{\partial x} \cdots, \frac{\partial f}{\partial x_{n}}\right): B \rightarrow \mathbb{R}^{n}
$$

3. Let

$$
\begin{gathered}
Q=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0, x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \partial Q=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0, x_{1}^{2}+x_{2}^{2}=1\right\}, \\
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0,\left(x_{2}-1\right)^{2}+x_{3}^{2}=1\right\}, \quad \phi: Q \rightarrow \mathbb{R}^{3}
\end{gathered}
$$

be continuous with $\phi(x)=x, x \in \partial Q$. Prove $\phi(Q) \cap S \neq \emptyset$.
4. Let $\lambda \in \mathbb{R}$. Consider the equation

$$
\begin{align*}
-u^{\prime \prime} & =\lambda f(u), \quad x \in[0, \pi] \\
u^{\prime}(0) & =u^{\prime}(\pi)=0, \tag{0.1}
\end{align*}
$$

$f(u)=u+\cos u-1$. Prove: $(\lambda, 0)$ is a bifurcation point iff $\lambda=n^{2}, n$ is a non-negative integer.
5. Let $X=l^{2}$ be the real Hilbert space with the standard inner product, and

$$
\begin{gathered}
A x=\left(x_{1}, \cdots, k^{-1} x_{k}, \cdots\right): X \rightarrow X, \\
T(x)=\left(x_{1}^{2}, \cdots, k^{-2} x_{k}^{2}, \cdots\right): X \rightarrow X .
\end{gathered}
$$

Prove: (1) $f(x)=A x+T(x)$ is a compact map from X to X, (2) compute the Leray-Schauder degree $\operatorname{deg}(i d-f, B, 0)$, where $B=\left\{x \in X \left\lvert\,\|x\| \leq \frac{1}{2}\right.\right\}$.

6 . Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain. Given some conditions on $f: \bar{\Omega} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that the equation

$$
\begin{align*}
-\triangle u & =f(x, u, \nabla u), \quad x \in \Omega \tag{0.2}\\
u(x) & =0, \quad x \in \partial \Omega
\end{align*}
$$

possesses a solution $u \in C^{2, \gamma}$.
7. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain with $n \geq 3$ and $2<q<\frac{2 n}{n-2}$. Suppose $u \in H_{0}^{1}(\omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla \phi d x=\int_{\Omega}|u|^{q-2} u \phi d x, \quad \forall \phi \in H_{0}^{1}(\Omega) .
$$

Prove that u is C^{2} via the L^{p} and C^{α} estimate of $-\triangle$.
8. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded regular domain and $X=W_{0}^{1, p}(\Omega)$ with $p>1$, $f: \Omega \times \mathbb{R}$ be continuous satisfying

$$
|f(x, u)| \leq C\left(1+|u|^{\alpha}\right), \quad(x, u) \in \Omega \times \mathbb{R},
$$

$\alpha<\frac{n+2}{n-2}, F(x, u)=\int_{0}^{u} f(x, s) d s$.
(1) Prove the functional

$$
I(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega} F(x, u(x)) d x
$$

is w.s.l.s.c. in X; (2) compute the Euler-Lagrange equation of $I(u)$.
9. Let $S^{2}=\left\{x=\left.\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\left|\sum_{1}^{3}\right| x_{i}\right|^{2}=1\right\}, A, B \in S^{2}$,

$$
\begin{gathered}
M=\left\{\gamma(t):[0,1] \rightarrow S^{2}, \gamma(0)=A, \gamma(1)=B, \gamma \in H^{1}\left([0,1], \mathbb{R}^{3}\right)\right\}, \\
E(\gamma)=\frac{1}{2} \int_{0}^{1}|\dot{\gamma}(t)|^{2} d t=\frac{1}{2} \int_{0}^{1}\left(\dot{\gamma}_{1}(t)^{2}+\dot{\gamma}_{2}(t)^{2}+\dot{\gamma}_{3}(t)^{2}\right) d t,
\end{gathered}
$$

$\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$. Find a $\gamma_{0} \in M$ such that $E\left(\gamma_{0}\right)=\inf _{\gamma \in M} E(\gamma)$ via solving the Euler-Lagrange equation.

