HOMEWORK

LING WANG 2001110014

1. Monday, March 22

We need the following basic tools.
[A] (Co-area formula) Given a Lipschitz function $\varrho: X \rightarrow \mathbb{R}$ with Lipschitz constant 1, then

$$
\begin{equation*}
\operatorname{Vol}_{n-1}(z \cap\{\varrho=t\}) \leq\left. E_{n} \frac{d}{d r}\right|_{r=t} \operatorname{Vol}_{n}(z \cap\{\varrho \leq r\}) \tag{1.1}
\end{equation*}
$$

for almost every $r \in \mathbb{R}$.
[B] (Cone inequality) If X is a Banach space, $x_{0} \in X$, then the ($\mathrm{n}+1$)-chain c obtained by joining each point in z by by the geodesic line (respectively, straight line if X is a Banach space) with x_{0} satisfies $\partial c=z$ and

$$
\begin{equation*}
\operatorname{Vol}_{n+1}(c) \leq D_{n} R \operatorname{Vol}_{n}(z) \tag{1.2}
\end{equation*}
$$

where R is the smallest number such that z is contained in the ball of radius R around x_{0}.
$[\mathrm{C}]$ (Lower density estimate) For almost every $x \in \operatorname{Supp}(z)$,

$$
\begin{equation*}
\liminf _{r \rightarrow 0^{+}} \frac{1}{r^{n}} \operatorname{Vol}_{n}(z \cap B(x, r))>A_{n} \tag{1.3}
\end{equation*}
$$

Lemma 1.1 (5r-Lemma). If (X, d) is a metric space. Let \mathscr{C} be a collection of balls of radius less than or equal to $R<\infty$. Then there exists a subfamilies \mathscr{F} such that
(1) $\forall B, B^{\prime} \in \mathscr{F}, B \cap B^{\prime}=\emptyset$,
(2) $\bigcup_{B \in \mathscr{C}} B \subset \bigcup_{B^{\prime} \in \mathscr{F}} 5 B^{\prime}$,
(3) If $B \in \mathscr{C}, B \cap B^{\prime} \neq \emptyset$ for some $B^{\prime} \in \mathscr{F}$, then $\operatorname{rad}\left(B^{\prime}\right) \geq \frac{1}{2} \operatorname{rad}(B)$.

Proof. Let \mathscr{P} be the collection of families of balls such that if $\mathscr{G} \in \mathscr{P}$, then \mathscr{G} is disjoint and $\forall B \in \mathscr{C}$, if $B \cap B^{\prime} \neq \emptyset$ for some $B^{\prime} \subset \mathscr{G}$, then $\operatorname{rad}\left(B^{\prime}\right) \geq \frac{1}{2} \operatorname{rad}(B)$.

Step 1. \mathscr{P} is not empty. Let $B_{0} \in \mathscr{C}$ such that $\operatorname{rad}\left(B_{0}\right)>\frac{1}{2} R$, then $\left\{B_{0}\right\} \in \mathscr{P}$.
Step 2. The partial order in \mathscr{P} is defined by inclusion, then for any $\left\{\mathscr{G}_{1} \subset \mathscr{G}_{2} \subset\right.$ $\left.\cdots \subset \mathscr{G}_{s} \subset \cdots\right\} \subset \mathscr{P}$, we know $\bigcup_{i=1}^{\infty} \mathscr{G}_{i}$ is an upper bound.

Step 3. By Zorn's lemma, there exists a max element in \mathscr{P}, defined by \mathscr{F}. Clearly, \mathscr{F} satisfies (1) and (3).

Next, we claim that $\forall B \in \mathscr{C}, \exists B^{\prime} \in \mathscr{F}$, such that $B \cap B^{\prime} \neq \emptyset$. In fact, suppose the contrary, if $\exists B \in \mathscr{C}$, such that $\forall B^{\prime} \in \mathscr{P}, B \cap B^{\prime}=\emptyset$, then we add B^{\prime} to \mathscr{F} to get a contradiction to maximality of \mathscr{F}.

Finally, since $\operatorname{rad}\left(B^{\prime}\right) \geq \frac{1}{2} \operatorname{rad}(B)$, we know that $B \subset 5 B^{\prime}$, that is (2). Then, we are done.

Proposition 1.2. Let X be a metric space and let z be an n-cycle in $X, n \geq 2$. There exist finitely many pairwise disjoint closed balls $B_{i} \subset X, i=1, \ldots, k$, with the following properties:
(1) The volume of z contained in each ball is "not too small":

$$
\operatorname{Vol}_{n}\left(z \cap B_{1}\right) \geq 4^{-n} A_{n} \varepsilon \operatorname{diam}\left(B_{1}\right)^{n}
$$

(2) The restriction $z \cap B_{i}$ is an n-chain whose boundary has "small" volume:

$$
\operatorname{Vol}_{n-1}\left(\partial\left(z \cap B_{i}\right)\right) \leq E_{n}\left(A_{n} \varepsilon\right)^{\frac{1}{n}} n \operatorname{Vol}_{n}\left(z \cap B_{i}\right)^{\frac{n-1}{n}}
$$

(3) An essential part of the volume of z is contained in the union of these balls:

$$
\operatorname{Vol}_{n}\left(z \cap \bigcup_{i=1}^{k} B_{i}\right) \geq \frac{1}{5^{n}} \operatorname{Vol}_{n}(z)
$$

Proof. For $x \in \operatorname{supp} z$ and $r \geq 0$ define $V(x, r):=\operatorname{Vol}_{n}(z \cap B(x, r))$ and

$$
r_{0}(x):=\max \left\{r \geq 0: \frac{V(x, r)}{r^{n}} \geq A_{n} \varepsilon\right\}
$$

Note that $0<r_{0}(x)<\infty$ for almost every $x \in \operatorname{supp} z$ by the lower density estimate [C]; moreover,

$$
V\left(x, 5 r_{0}(x)\right)<5^{n} A_{n} \varepsilon r_{0}(x)^{n}=5^{n} V\left(x, r_{0}(x)\right)
$$

By the Vitali $5 r$-covering lemma there exist finitely many points $x_{1}, \ldots, x_{k} \in \operatorname{supp} z$ such that the balls $B\left(x_{1}, 2 r_{0}\left(x_{1}\right)\right)$ are pairwise disjoint, the balls $B\left(x_{1}, 5 r_{0}\left(x_{1}\right)\right)$ cover $\operatorname{supp} z$ and

$$
\operatorname{Vol}_{n}\left(z \cap \bigcup_{i=1}^{k} B\left(x_{i}, r_{0}\left(x_{i}\right)\right)\right) \geq \frac{1}{5^{n}} \operatorname{Vol}_{n}(z)
$$

Fix $i \in\{1, \ldots, k\}$. We claim that by the definition of $r_{0}\left(x_{i}\right)$ there exists a positive measure set of points $r \in\left(r_{0}\left(x_{i}\right), 2 r_{0}\left(x_{i}\right)\right)$ with

$$
\frac{d}{d r} V\left(x_{i}, r\right)<\left(A_{n} \varepsilon\right)^{\frac{1}{n}} n V\left(x_{i}, r\right)^{\frac{n-1}{n}}
$$

In fact, the above inequality equivalents to

$$
\frac{d}{d r}\left(V^{\frac{1}{n}}\left(x_{i}, r\right)\right)<\left(A_{n} \varepsilon\right)^{\frac{1}{n}}
$$

Suppose to the contrary, we know $\frac{d}{d r}\left(V^{\frac{1}{n}}\left(x_{i}, r\right)\right) \geq\left(A_{n} \varepsilon\right)^{\frac{1}{n}}$ for a.e. $r \in\left(r_{0}\left(x_{i}\right), 2 r_{0}\left(x_{i}\right)\right)$, then

$$
\int_{r_{0}}^{r} \frac{d}{d r}\left(V^{\frac{1}{n}}\left(x_{i}, r\right)\right) d t \geq \int_{r_{0}}^{r}\left(A_{n} \varepsilon\right)^{\frac{1}{n}} d t
$$

and note $A_{n} \varepsilon r_{0}(x)^{n}=V\left(x, r_{0}(x)\right)$, we have

$$
V\left(x_{i}, r\right) \geq A_{n} \varepsilon r^{n}
$$

contradiction.
Therefore, by the coarea inequality,

$$
\begin{aligned}
\operatorname{Vol}_{n-1}\left(\partial\left(z \cap B\left(x_{i}, r\right)\right)\right. & =\operatorname{Vol}_{n-1}\left(z \cap\left\{x \in X \mid d\left(x, x_{1}\right)=r\right\}\right) \\
& <E_{n}\left(A_{n} \varepsilon\right)^{\frac{1}{n}} n \operatorname{Vol}_{n}\left(z \cap B\left(x_{i}, r\right)\right)^{\frac{n-1}{n}} .
\end{aligned}
$$

Choose an r such that the above inequality holds and set $B_{i}:=B\left(x_{i}, r\right)$. The so-defined B_{i} clearly satisfy (1), (2) and (3).

2. Wednesday, March 24

Theorem 2.1 (Gromov). Let X be an L^{∞}-space and $n \geq 1$. Then the filling volume of any n-dimensional singular Lipschitz cycle z in X with integer or \mathbb{Z}_{2} coefficients satisfies

$$
\operatorname{Fillvol}(z) \leq C_{n} \operatorname{Vol}(z)^{1+\frac{1}{n}}
$$

where C_{n} depends only on n.
Proof. The proof is by induction on n and the case $n=1$ is trivial, since the diameter of a closed curve is bounded by its length and thus the isoperimetric inequality is a direct consequence of the cone inequality. Suppose now that $n \geq 2$ and that the statement of the theorem holds for $(n-1)$-cycles with some constant $C_{n-1} \geq 1$. Set

$$
\varepsilon:=\min \left\{\frac{1}{4^{n-1} C_{n-1}^{n-1} A_{n} E_{n}^{n} n^{n}}, \frac{1}{2}\right\}
$$

let z be an n-cycle in X and choose a ball B of finite radius that contains z. Let B_{1}, \ldots, B_{k} be balls as in the Proposition 1.2. By the isoperimetric inequality in dimension $n-1$ we can choose for each $i=1, \cdots, k$ an n-chain c_{i} satisfying $\partial c_{i}=\partial\left(z \cap B_{i}\right)$ and

$$
\begin{equation*}
\operatorname{Vol}\left(c_{i}\right) \leq C_{n-1} \operatorname{Vol}_{n-1}\left(\partial\left(z \cap B_{i}\right)\right)^{\frac{n}{n-1}} \leq \frac{1}{4} \operatorname{Vol}\left(z \cap B_{i}\right) \tag{2.1}
\end{equation*}
$$

Here the second inequality follows from (2) of Proposition 1.2 and the definition of ε. We may of course assume that c_{i} is contained in B_{i} since otherwise we can project it to B_{i} via a $1-$ Lipschitz projection $P: X \rightarrow B_{i}$ (and this decreases the volume). If $X=L^{\infty}(\Omega)$, then $P(f)(y):=\operatorname{sgn}(f(y)) \min \{|f(y)|, 1\}$. Set $\hat{z}_{i}:=\left(z \cap B_{i}\right)-c_{i}$ and

$$
z^{\prime}=z-\sum_{i=1}^{k} \hat{z}_{i}=\left(z \cap\left(\bigcup B_{1}\right)^{c}\right)+\sum_{i=1}^{k} c_{i}
$$

Observe that these are n-cycles and that, by (2.1),

$$
\begin{equation*}
\frac{3}{4} \operatorname{Vol}\left(z \cap B_{i}\right) \leq \operatorname{Vol}\left(\hat{z}_{i}\right) \leq \frac{5}{4} \operatorname{Vol}\left(z \cap B_{i}\right) \tag{2.2}
\end{equation*}
$$

From the Proposition 1.2 and from (2.1),(2.2) we conclude

$$
\begin{equation*}
\operatorname{diam}\left(\hat{z}_{i}\right) \leq \operatorname{diam} B_{i} \leq \frac{4}{\left(A_{n} \varepsilon\right)^{\frac{1}{n}}} \operatorname{Vol}\left(z \cap B_{i}\right)^{\frac{1}{n}} \leq\left(\frac{4^{n+1}}{3 A_{n} \varepsilon}\right)^{\frac{1}{\pi}} \operatorname{Vol}\left(\hat{z}_{i}\right)^{\frac{1}{n}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{3}{5}\left[\sum_{t=1}^{k} \operatorname{Vol}\left(\hat{z}_{i}\right)\right]+\operatorname{Vol}\left(z^{\prime}\right) \leq \operatorname{Vol}(z) \tag{2.4}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\operatorname{Vol}\left(z^{\prime}\right) \leq\left(1-\frac{3}{4} 5^{-n}\right) \operatorname{Vol}(z) \tag{2.5}
\end{equation*}
$$

Let \hat{c}_{i} sad c^{\prime} be $(n+1)$-chains with boundaries \hat{z}_{i} and z^{\prime}, respectively, and which satisfy the cone inequality. The $(n+1)$-chain $c:=\hat{c}_{1}+\cdots+\hat{c}_{k}+c^{\prime}$ has boundary z and satisfies

$$
\begin{equation*}
\operatorname{Vol}(c) \leq \operatorname{Vol}\left(\hat{c}_{1}\right)+\cdots+\operatorname{Vol}\left(\hat{c}_{k}\right)+\operatorname{Vol}\left(c^{\prime}\right) \leq C_{n} \operatorname{Vol}(z)^{1+\frac{1}{n}}+\operatorname{Vol}\left(c^{\prime}\right) \tag{2.6}
\end{equation*}
$$

for some C_{n} only depending on n. This is a consequence of $(2.3),(2.4)$ and the fact that for $a_{1}, \cdots, a_{k} \geq 0 \operatorname{sad} \alpha \geq 1$,

$$
a_{1}^{\alpha}+\cdots+a_{k}^{\alpha} \leq\left(a_{1}+\cdots+a_{k}\right)^{\alpha}
$$

Then we denote z^{\prime} by $z^{(1)}$, and similarly change notations related to z^{\prime}, decomposing $z^{(1)}$ as above, we have another finite balls $\left\{B_{(1), i}\right\}_{i=1}^{k_{(1)}}$, such that there exists $z^{(2)}$ satisfies

$$
\operatorname{Vol}\left(z^{(2)}\right) \leq\left(1-\frac{3}{4} 5^{-n}\right) \operatorname{Vol}\left(z^{(1)}\right) \leq\left(1-\frac{3}{4} 5^{-n}\right)^{2} \operatorname{Vol}(z)
$$

and let $\hat{c}_{i}^{(1)} \operatorname{sad} c^{(2)}$ be $(n+1)$-chains with boundaries $\hat{z}_{i}^{(1)}$ and $z^{(2)}$, respectively, and which satisfy the cone inequality. The $(n+1)$-chain $c^{\prime}=c^{(1)}=\hat{c}_{1}^{(1)}+\cdots+\hat{c}_{k_{(1)}}^{(1)}+c^{(2)}$ has boundary $z^{(1)}$ and satisfies

$$
\begin{align*}
\operatorname{Vol}\left(c^{(1)}\right) & \leq \operatorname{Vol}\left(\hat{c}_{1}^{(1)}\right)+\cdots+\operatorname{Vol}\left(\hat{c}_{k_{(1)}}^{(1)}\right)+\operatorname{Vol}\left(c^{(2)}\right) \\
& \leq C_{n} \operatorname{Vol}\left(z^{(1)}\right)^{1+\frac{1}{n}}+\operatorname{Vol}\left(c^{(2)}\right) \tag{2.7}
\end{align*}
$$

hence, combine (2.5),(2.6),(2.7) we have

$$
\operatorname{Vol}(c) \leq C_{n}\left(1+\left(1-\frac{3}{4} 5^{-n}\right)^{1+\frac{1}{n}}\right) \operatorname{Vol}(z)^{1+\frac{1}{n}}+\operatorname{Vol}\left(c^{(2)}\right)
$$

Thereafter, we set $\lambda:=\left(1-\frac{3}{4} 5^{-n}\right)^{1+\frac{1}{n}}$. Clearly, $\lambda<1$ fixed. Then, repeating the above process m times yields

$$
\operatorname{Vol}\left(z^{(m)}\right) \leq\left(1-\frac{3}{4} 5^{-n}\right)^{m} \operatorname{Vol}(z)
$$

and

$$
\operatorname{Vol}(c) \leq C_{n}\left(1+\lambda+\cdots+\lambda^{m-1}\right) \operatorname{Vol}(z)^{1+\frac{1}{n}}+\operatorname{Vol}\left(c^{(m)}\right)
$$

Since $\sum_{k=1}^{\infty} \lambda^{k}<+\infty$ and cone inequality

$$
\operatorname{Vol}\left(c^{(m)}\right) \leq D_{n} \operatorname{diam}\left(z^{(m)}\right) \operatorname{Vol}\left(z^{(m)}\right)
$$

we know for large enough m, there is

$$
\operatorname{Vol}(c) \leq C_{n} \operatorname{Vol}(z)^{1+\frac{1}{n}}
$$

which completes the proof.

