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1. Monday, March 22

We need the following basic tools.
[A] (Co-area formula) Given a Lipschitz function ϱ : X → R with Lipschitz

constant 1, then

Voln−1(z ∩ {ϱ = t}) ≤ En
d

dr

∣∣∣∣
r=t

Voln(z ∩ {ϱ ≤ r}) (1.1)

for almost every r ∈ R.
[B] (Cone inequality) If X is a Banach space, x0 ∈ X , then the (n+1)-chain

c obtained by joining each point in z by by the geodesic line (respectively, straight
line if X is a Banach space) with x0 satisfies ∂c = z and

Voln+1(c) ≤ DnRVoln(z) , (1.2)

whereR is the smallest number such that z is contained in the ball of radiusR around x0 .
[C] (Lower density estimate) For almost every x ∈ Supp(z) ,

lim inf
r→0+

1

rn
Voln(z ∩B(x, r)) > An . (1.3)

Lemma 1.1 (5r-Lemma). If (X, d) is a metric space. Let C be a collection of balls
of radius less than or equal to R < ∞ . Then there exists a subfamilies F such
that

(1) ∀ B, B′ ∈ F , B ∩B′ = ∅ ,
(2)

∪
B∈C B ⊂

∪
B′∈F 5B′ ,

(3) If B ∈ C , B ∩B′ ̸= ∅ for some B′ ∈ F , then rad(B′) ≥ 1
2 rad(B).

Proof. Let P be the collection of families of balls such that if G ∈ P, then G is
disjoint and ∀ B ∈ C , if B ∩B′ ̸= ∅ for some B′ ⊂ G , then rad(B′) ≥ 1

2 rad(B).

Step 1. P is not empty. Let B0 ∈ C such that rad(B0) >
1
2R, then {B0} ∈ P.

Step 2. The partial order in P is defined by inclusion, then for any {G1 ⊂ G2 ⊂
· · · ⊂ Gs ⊂ · · · } ⊂ P, we know

∪∞
i=1 Gi is an upper bound.

Step 3. By Zorn’s lemma, there exists a max element in P, defined by F . Clear-
ly, F satisfies (1) and (3).

Next, we claim that ∀ B ∈ C , ∃ B′ ∈ F , such that B ∩B′ ̸= ∅. In fact, suppose
the contrary, if ∃ B ∈ C , such that ∀ B′ ∈ P, B∩B′ = ∅ , then we add B′ to F to
get a contradiction to maximality of F .

Finally, since rad(B′) ≥ 1
2 rad(B), we know that B ⊂ 5B′, that is (2). Then, we

are done. �
Proposition 1.2. Let X be a metric space and let z be an n-cycle in X,n ≥ 2.
There exist finitely many pairwise disjoint closed balls Bi ⊂ X, i = 1, . . . , k, with
the following properties:
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(1) The volume of z contained in each ball is ”not too small”:

Voln (z ∩B1) ≥ 4−nAnε diam (B1)
n
;

(2) The restriction z ∩Bi is an n -chain whose boundary has ”small” volume:

Voln−1 (∂ (z ∩Bi)) ≤ En (Anε)
1
n nVoln (z ∩Bi)

n−1
n ;

(3) An essential part of the volume of z is contained in the union of these balls:

Voln

(
z ∩

k∪
i=1

Bi

)
≥ 1

5n
Voln(z).

Proof. For x ∈ supp z and r ≥ 0 define V (x, r) := Voln(z ∩B(x, r)) and

r0(x) := max

{
r ≥ 0 :

V (x, r)

rn
≥ Anε

}
.

Note that 0 < r0(x) < ∞ for almost every x ∈ supp z by the lower density estimate
[C]; moreover,

V (x, 5r0(x)) < 5nAnεr0(x)
n = 5nV (x, r0(x)) .

By the Vitali 5r -covering lemma there exist finitely many points x1, . . . , xk ∈ supp z
such that the balls B (x1, 2r0 (x1)) are pairwise disjoint, the balls B (x1, 5r0 (x1))
cover supp z and

Voln

(
z ∩

k∪
i=1

B (xi, r0 (xi))

)
≥ 1

5n
Voln(z).

Fix i ∈ {1, . . . , k}. We claim that by the definition of r0 (xi) there exists a positive
measure set of points r ∈ (r0 (xi) , 2r0 (xi)) with

d

dr
V (xi, r) < (Anε)

1
n nV (xi, r)

n−1
n .

In fact, the above inequality equivalents to

d

dr

(
V

1
n (xi, r)

)
< (Anε)

1
n .

Suppose to the contrary, we know d
dr

(
V

1
n (xi, r)

)
≥ (Anε)

1
n for a.e. r ∈ (r0 (xi) , 2r0 (xi)) , then∫ r

r0

d

dr

(
V

1
n (xi, r)

)
dt ≥

∫ r

r0

(Anε)
1
n dt ,

and note Anεr0(x)
n = V (x, r0(x)), we have

V (xi, r) ≥ Anεr
n,

contradiction.
Therefore, by the coarea inequality,

Voln−1 (∂ (z ∩B (xi, r)) = Voln−1

(
z ∩

{
x ∈ X

∣∣d (x, x1) = r
})

< En (Anε)
1
n nVoln (z ∩B (xi, r))

n−1
n .

Choose an r such that the above inequality holds and set Bi := B (xi, r). The
so-defined Bi clearly satisfy (1), (2) and (3). �
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2. Wednesday, March 24

Theorem 2.1 (Gromov). Let X be an L∞-space and n ≥ 1. Then the filling volume
of any n-dimensional singular Lipschitz cycle z in X with integer or Z2 coefficients
satisfies

Fillvol(z) ≤ Cn Vol(z)
1+ 1

n

where Cn depends only on n.

Proof. The proof is by induction on n and the case n = 1 is trivial, since the
diameter of a closed curve is bounded by its length and thus the isoperimetric
inequality is a direct consequence of the cone inequality. Suppose now that n ≥ 2
and that the statement of the theorem holds for (n− 1)-cycles with some constant
Cn−1 ≥ 1. Set

ε := min

{
1

4n−1Cn−1
n−1AnEn

nn
n
,
1

2

}
,

let z be an n-cycle in X and choose a ball B of finite radius that contains z. Let
B1, . . . , Bk be balls as in the Proposition 1.2. By the isoperimetric inequality in
dimension n − 1 we can choose for each i = 1, · · · , k an n -chain ci satisfying
∂ci = ∂ (z ∩Bi) and

Vol (ci) ≤ Cn−1 Voln−1 (∂ (z ∩Bi))
n

n−1 ≤ 1

4
Vol (z ∩Bi) . (2.1)

Here the second inequality follows from (2) of Proposition 1.2 and the definition of
ε. We may of course assume that ci is contained in Bi since otherwise we can project
it to Bi via a 1−Lipschitz projection P : X → Bi (and this decreases the volume).
If X = L∞(Ω), then P (f)(y) := sgn(f(y))min{|f(y)|, 1}. Set ẑi := (z ∩Bi) − ci
and

z′ = z −
k∑

i=1

ẑi =
(
z ∩

(∪
B1

)c)
+

k∑
i=1

ci.

Observe that these are n-cycles and that, by (2.1),

3

4
Vol (z ∩Bi) ≤ Vol (ẑi) ≤

5

4
Vol (z ∩Bi) . (2.2)

From the Proposition 1.2 and from (2.1),(2.2) we conclude

diam (ẑi) ≤ diamBi ≤
4

(Anε)
1
n

Vol (z ∩Bi)
1
n ≤

(
4n+1

3Anε

) 1
π

Vol (ẑi)
1
n , (2.3)

and

3

5

[
k∑

t=1

Vol (ẑi)

]
+Vol (z′) ≤ Vol(z), (2.4)

as well as

Vol (z′) ≤
(
1− 3

4
5−n

)
Vol(z). (2.5)

Let ĉi sad c′ be (n + 1)-chains with boundaries ẑi and z′, respectively, and which
satisfy the cone inequality. The (n+ 1)-chain c := ĉ1 + · · ·+ ĉk + c′ has boundary
z and satisfies

Vol(c) ≤ Vol (ĉ1) + · · ·+Vol (ĉk) + Vol (c′) ≤ Cn Vol(z)
1+ 1

n +Vol (c′) , (2.6)
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for some Cn only depending on n. This is a consequence of (2.3),(2.4) and the fact
that for a1, · · · , ak ≥ 0 sad α ≥ 1,

aα1 + · · ·+ aαk ≤ (a1 + · · ·+ ak)
α
.

Then we denote z′ by z(1), and similarly change notations related to z′, decomposing

z(1) as above, we have another finite balls {B(1),i}
k(1)

i=1 , such that there exists z(2)

satisfies

Vol
(
z(2)

)
≤
(
1− 3

4
5−n

)
Vol(z(1)) ≤

(
1− 3

4
5−n

)2

Vol(z),

and let ĉ
(1)
i sad c(2) be (n+1)-chains with boundaries ẑ

(1)
i and z(2), respectively, and

which satisfy the cone inequality. The (n+1)-chain c′ = c(1) = ĉ
(1)
1 +· · ·+ ĉ

(1)
k(1)

+c(2)

has boundary z(1) and satisfies

Vol(c(1)) ≤ Vol
(
ĉ
(1)
1

)
+ · · ·+Vol

(
ĉ
(1)
k(1)

)
+Vol

(
c(2)
)

≤ Cn Vol(z
(1))1+

1
n +Vol

(
c(2)
)
,

(2.7)

hence, combine (2.5),(2.6),(2.7) we have

Vol(c) ≤ Cn

(
1 +

(
1− 3

4
5−n

)1+ 1
n

)
Vol(z)1+

1
n +Vol

(
c(2)
)
.

Thereafter, we set λ :=
(
1− 3

45
−n
)1+ 1

n . Clearly, λ < 1 fixed. Then, repeating the
above process m times yields

Vol
(
z(m)

)
≤
(
1− 3

4
5−n

)m

Vol(z),

and

Vol(c) ≤ Cn

(
1 + λ+ · · ·+ λm−1

)
Vol(z)1+

1
n +Vol

(
c(m)

)
.

Since
∞∑
k=1

λk < +∞ and cone inequality

Vol
(
c(m)

)
≤ Dn diam

(
z(m)

)
Vol

(
z(m)

)
,

we know for large enough m, there is

Vol(c) ≤ Cn Vol(z)
1+ 1

n ,

which completes the proof. �
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