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Abstract. In this paper, we investigate the interior Hölder regularity of solutions
to the linearized Monge-Ampère equation. In particular, we focus on the cases with
singular right-hand side, which arise from the study of the semigeostrophic equation
and singular Abreu equations. In the two-dimensional case, we give a new proof
of the Caffarelli-Gutiérrez Hölder estimate (Amer. J. Math. 119 (1997), no. 2,
423-465) and the result of Le (Comm. Math. Phys. 360 (2018), no. 1, 271-305)
for the linearized Monge-Ampère equation with singular right-hand side term in
divergence form. The main new ingredient in the proof contains the application of
the partial Legendre transform to the linearized Monge-Ampère equation. Building
on this idea, we also establish a new Moser-Trudinger type inequality in dimension
two. In higher dimensions, we derive the interior Hölder estimate under certain
integrability assumptions on the coefficients using De Giorgi’s iteration.

1. Introduction

In this paper, we investigate the interior Hölder regularity for solutions to the
inhomogeneous linearized Monge-Ampère equation

(1.1)
n∑

i,j=1

Dj

(
ΦijDiu

)
= divF + f

in a bounded convex domain Ω ⊂ Rn (n ≥ 2), where Φ = (Φij) is the cofactor matrix
of the Hessian matrix of a convex function ϕ ∈ C2(Ω), F : Ω → Rn is a vector field,

and f : Ω → R is a function. Since Φ is divergence free, i.e.
n∑

j=1

DjΦ
ij = 0, for all

i = 1, 2, · · · , n, we can rewrite (1.1) in the non-divergence form as follows:

(1.2)
n∑

i,j=1

ΦijDiju = divF + f.
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When the equation is uniformly elliptic, it is well known that the Harnack and
Hölder estimates of the solution are established in the classical De Giorgi-Nash-Moser
theory for equations of divergence form [De, Na, Mo1], and in the Krylov-Safonov the-
ory for general equations of non-divergence form [KS]. The main interest on equation
(1.1) or (1.2) lies in the lack of uniform ellipticity. In a celebrated work, Caffarelli-
Gutiérrez obtained the Harnack inequality and the Hölder estimate for equation (1.1)
or (1.2) with F ≡ 0 and f ≡ 0, under the A∞ condition [CG]. In particular, this
condition is satisfied if

(1.3) 0 < λ ≤ detD2ϕ ≤ Λ in Ω.

The Hölder estimate for the inhomogeneous equation (F = 0 and f ̸= 0), as well
as higher order estimates and the boundary regularity, were later established by
[TrW, GN1, GN2, LN1, LS] under certain assumptions on f . For further extensions
and related work, one can refer to [Le1, Le5, LN2, KLWZ] and the references therein.

When F ̸= 0, the equation arises from the study of semigeostrophic equations
[ACDF, Le2, Lo] and singular Abreu equations [KLWZ, Le4, LZ] in the study of
convex functionals with a convexity constraint related to the Rochet-Choné model
for the monopolist problem in economics. So far, very little is known about the
regularity of (1.1) when F ̸= 0. We focus mainly on the linearized Monge-Ampère
equation under the condition (1.3). Loeper [Lo] obtained the interior Hölder regularity
for (1.1) under the stronger assumption that detD2ϕ is sufficiently close to a positive
constant, using the W 2,p estimate of the Monge-Ampère equation and a result derived
in [Tr2]. Later, Le [Le2] showed the same result when n = 2, only assuming (1.3). The
main ingredient used in [Le2] is the W 2,1+ε-estimate of the Monge-Ampère equation
established by [DFS, Sc]. Under certain integral bounds on the Hessian D2ϕ, Le [Le6]
also extended the Hölder estimates to higher dimensions. More recently, Kim [Kim]
derived similar estimates for (1.1) with drift terms under a similar condition as [Le6].
For the estimates to boundary case, see [Le3].

The results in [Kim, Le2, Le6, Lo] used both the De Giorgi-Nash-Moser iteration
and the Caffarelli-Gutiérrez estimate, corresponding to the divergence form and the
non-divergence form of linearized Monge-Ampère equations, respectively. Note that it
has been pointed out that in general it is impossible to obtain the Caffarelli-Gutiérrez
estimate by the De Giorgi-Nash-Moser iteration [TW, Remark 3.4], which means
that the celebrated theory of Caffarelli-Gutiérrez’s is essential in their arguments.
However, in this paper we find that there is a new proof of the theorem below without
using the Caffarelli-Gutiérrez estimate in dimension two.

Theorem 1.1. Assume n = 2. Let ϕ ∈ C2(Ω) be a convex function satisfying (1.3).
Let F := (F 1(x), F 2(x)) : Ω → R2 be a bounded vector field and f ∈ Lr(Ω) for r > 1.
Given Ω′ ⊂⊂ Ω and p ∈ (0,+∞), then for every solution u to (1.1) in Ω, there is

∥u∥Cγ(Ω′) ≤ C
(
∥u∥Lp(Ω) + ∥F∥L∞(Ω) + ∥f∥Lr(Ω)

)
,

where constant γ > 0 depending only on λ and Λ, and constant C > 0 depending only
on p, r, λ, Λ, and dist(Ω′, ∂Ω).
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Note that although we assume ϕ ∈ C2(Ω), the derived estimates are independent of
the smoothness of ϕ and depend only on the structure constants. Theorem 1.1 includes
[Le2, Theorem 1.3] and Caffarelli-Gutiérrez’s estimate [CG] in dimension two. Our
main new idea in Theorem 1.1 is the use of the partial Legendre transform. After
the partial Legendre transform, (1.1) becomes a linear uniformly elliptic equation in
divergence form with singular right-hand side (see (2.7)). Thus, the De Giorgi-Nash-
Moser theory implies that the solution after transformation is Hölder continuous.
Then transforming back to the original solution gives us the result. We still need the
W 2,1+ε-estimate of the Monge-Ampère equation to guarantee that the condition in
De Giorgi-Nash-Moser’s theory is satisfied. The partial Legendre transform has been
widely used in the study of the Monge-Ampère equation [DS, Fi, GP, Liu], and it
has also been used recently to study the Monge-Ampère type fourth order equation
[LZ, WZ]. However, we didn’t find its use in the linearized Monge-Ampère equation.
Our proof can be seen as an attempt in this direction.

On the other hand, due to the divergence form of the equation (1.1), we already
know that some interesting Sobolev inequalities of Monge-Ampère type were obtained
by [TW] in dimension n ≥ 3 and [Le2] in dimension n = 2 (see [Ma1] for some
extensions and [WZ23] for a complex version). Since we will use the Monge-Ampère
type Sobolev inequality later, we restate it here.

Theorem 1.2 ([TW, Theorem 1.1], [Le2, Proposition 2.6]). Assume n ≥ 2. Let ϕ ∈
C2(Ω) be a convex function satisfying (1.3). Then there exists a constant CSob > 0,
depending only on n, λ, Λ, and Ω such that(∫

Ω

|u|2∗dx
) 1

2∗

≤ CSob

(∫
Ω

ΦijDiuDju dx

) 1
2

, ∀u ∈ C∞
0 (Ω),

where 2∗ = 2n
n−2

for n ≥ 3, and any 2∗ > 2 for n = 2.

Therefore, with the new idea in Theorem 1.1, we also establish a new Moser-
Trudinger type inequality in two dimensions. To simplify the notation, we write

∥Du∥2Φ :=

∫
Ω

ΦijDiuDju dx.

Theorem 1.3. Let Ω be a uniformly convex domain in R2 and ϕ ∈ C2(Ω) be a
convex function satisfying (1.3). Assume that ϕ|∂Ω and ∂Ω are of class C3. For any
u ∈ C∞

0 (Ω), there exists a constant C > 0 depending only on λ, Λ ∥ϕ∥C3(∂Ω), the
uniform convexity radius of ∂Ω and the C3 regularity of ∂Ω such that

(1.4)

∫
Ω

e
β u2

∥Du∥2
Φ dx1dx2 ≤ C|Ω|

ε0
2+ε0 ,

where β ≤ 4π 1+ε0
2+ε0

min{λ, 1}, and ε0 depending only on λ and Λ is obtained by the

global W 2,1+ε-estimate for Monge-Ampère equations.

Remark 1.4. If ϕ(x) = 1
2
|x|2, we know that {Φij} = id, λ = 1 and ε0 = +∞. So in

this case the inequality (1.4) is identical to the classical Moser-Trudinger inequality.
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In higher dimensions, very little is known when the singular term F appears. For
general degenerate linear elliptic equations, there are some extensions of the classical
De Giorgi-Nash-Moser theory with some integral conditions on the elliptic coefficients
in [MS, Tr2]. Therefore, in the second part of this paper, we will investigate the
interior regularity in terms of (1.1) in higher dimensions with certain assumptions.
As mentioned earlier, directly applying the De Giorgi-Nash-Moser iteration faces
challenges due to the lack of a suitable estimate for |D2ϕ|. Therefore, we need to
introduce further assumptions on F to allow the use of the De Giorgi-Nash-Moser
iteration. These assumptions are specified in the following theorem. Denote

Sϕ(x, h) := {y ∈ Ω |ϕ(y) < ϕ(x) +Dϕ(x) · (y − x) + h}
as the section of ϕ centered at x ∈ Ω with height h > 0.

Theorem 1.5. Let ϕ ∈ C2(Ω) be a convex function satisfying (1.3). For q > n,
let F := (F 1(x), · · · , F n(x)) : Ω → Rn be a vector field satisfying ∥Fϕ∥Lq(Ω) < ∞,

where Fϕ(x) := (D2ϕ(x))
1/2

F and f : Ω → R be a function satisfying ∥f∥Lq∗ (Ω) < ∞,
where q∗ = nq

n+q
. Given a section Sϕ(x0, 2h0) ⊂⊂ Ω, for every solution u to (1.1) in

Sϕ(x0, 2h0) and for all x ∈ Sϕ(x0, h0), there is

|u(x)− u(x0)| ≤ C
(
∥u∥L∞(Sϕ(x0,2h0)) + ∥Fϕ∥Lq(Sϕ(x0,2h0)) + ∥f∥Lq∗ (Sϕ(x0,2h0))

)
|x− x0|γ,

where constant γ > 0 depending only on n, λ and Λ, and constant C > 0 depending
only on n, q, λ, Λ, h0 and diam(Ω).

Remark 1.6. Some remarks in order.

(1) With specific assumptions regarding the integral bound of D2ϕ, one can also
get a result similar to Theorem 1.5 in all dimensions, see details in [Le6,
Theorem 15.6] and [Kim, Corollary 1.2].

(2) It would be interesting to remove the assumption on Fϕ and/or the integral
bound of D2ϕ in Theorem 1.5 and instead simply assume that (1.3) and F is
bounded. But so far we haven’t come up with a way to deal with this when
n ≥ 3.

The framework of the proof of Theorem 1.5 is similar to that of [Le2, Lo]. First,
we need to derive a new weak maximum principle (Theorem 3.1 and Corollary 3.2)
for the solution of (1.1) by De Giorgi’s iteration. Combining the new weak maximum
principle with the Caffarelli-Gutiérrez’s Harnack inequality then gives Theorem 1.5.

Remark 1.7. We can consider a more general class of linearized Monge-Ampère
equations given by:

(1.5) div(ADu) = f,

where A(x) is a symmetric matrix satisfying λΦ ≤ A ≤ ΛΦ. This equation, (1.5),
has a similar divergence structure to the previously studied equation (1.1). Using the
methods outlined in this paper or that in [Le2, Kim], we can obtain interior Hölder
estimates for (1.5) under the same assumptions. One motivation for studying (1.5)
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arises from the singular Abreu equation. Through direct computations (see [KLWZ,
Lemma 2.1]), it is shown that the singular Abreu equation

U ijDij

[
(detD2u)−1

]
= − div(|Du|q−2Du) + f,

is equivalent to

Dj(u
ijDiζ) = −f,

where

ζ = log detD2u− 1

q
|Du|q.

In this case, we can set A = (D2u)−1 in (1.5), illustrating that (1.5) encompasses this
specific case of the singular Abreu equation. This connection allows us to apply our
general results on interior Hölder estimates to the singular Abreu equation, providing
valuable regularity insights. This type of equation, (1.5), has been also studied by
Maldonado in [Ma2].

The rest of the paper is organized as follows. In Section 2, we first apply the partial
Legendre transform to (1.1), then give the proof of Theorem 1.1. The Moser-Trudinger
type inequality is also proved in this section. Next, in Section 3, we present some
estimates for linearized Monge-Ampère equations and then proceed to prove Theorem
1.5.

Acknowledgments. The author would like to thank his PhD supervisor, Prof.
Bin Zhou, for his constant encouragement and many helpful suggestions. In addition,
the author also extends appreciation to Prof. Nam Q. Le for his generous guidance
and valuable suggestions.

2. Linearized Monge-Ampère equations in dimension two

In this section, we present a new proof of the interior estimate for (1.1) without
Caffarelli-Gutiérrez’s theory and establish a new Moser-Trudinger type inequality in
dimension two.

2.1. The new equation under partial Legendre transform. In this subsection,
we first derive the new equation under the partial Legendre transform. Let Ω ⊂ R2

and ϕ(x1, x2) be a convex function on Ω. The partial Legendre transform in the
x1-variable is

(2.1) ϕ⋆(ξ, η) = sup{x1ξ − ϕ(x1, η)},
where the supremum is taken with respect to x1 on the slice η is the fixed constant,
namely for all x1 such that (x1, η) ∈ Ω. This definition is taken from [Liu]. Hence,
when ϕ ∈ C2(Ω) is a strictly convex function, we will have a injective mapping P
satisfying

(2.2) (ξ, η) = P(x1, x2) := (ϕx1 , x2) ∈ P(Ω) := Ω⋆,
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where ϕx1 := Dx1ϕ. In this situation, we know that

ϕ⋆(ξ, η) = x1ϕx1(x1, x2)− ϕ(x1, x2).

Indeed, it just needs ϕ to be strictly convex respect to x1-variable [GP]. Then a direct
calculation yields

∂(ξ, η)

∂(x1, x2)
=

(
ϕx1x1 ϕx1x2

0 1

)
, and

∂(x1, x2)

∂(ξ, η)
=

(
1

ϕx1x1
−ϕx1x2

ϕx1x1

0 1

)
.

Hence,

ϕ⋆
ξ = x1, ϕ⋆

η = −ϕx2 ,(2.3)

ϕ⋆
ξξ =

1

ϕx1x1

, ϕ⋆
ηη = −detD2ϕ

ϕx1x1

, ϕ⋆
ξη = −ϕx1x2

ϕx1x1

.(2.4)

Then we know that ϕ⋆ is a solution to

(2.5) (detD2ϕ)ϕ⋆
ξξ + ϕ⋆

ηη = 0.

In order to derive the equation under the partial Legendre transform, we consider the
associated functionals of (1.1)

(2.6) A(u) :=

∫
Ω

ΦijDiuDju− 2F iDiu+ 2fu dx,

where the repeated indices are summed. Denote ũ(ξ, η) := u(ϕ⋆
ξ , η), F̃ (ξ, η) :=

F (ϕ⋆
ξ , η) and f̃(ξ, η) := f(ϕ⋆

ξ , η), then we have the following equation for ũ.

Proposition 2.1. Assume n = 2. Let u be a solution to (1.1), then ũ satisfies

(2.7)

(
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũξ

)
ξ

+ ũηη =
(
F̃ 1 − F̃ 2ϕ⋆

ξη

)
ξ
+
(
F̃ 2ϕ⋆

ξξ

)
η
+ f̃ϕ⋆

ξξ in Ω⋆.

Proof. Note that in dimension two, the cofactor matrix (Φij) is(
ϕx2x2 −ϕx1x2

−ϕx1x2 ϕx1x1

)
,

then (2.6) becomes

A(u) =

∫
Ω

ϕx2x2(ux1)
2 − 2ϕx1x2ux1ux2 + ϕx1x1(ux2)

2 − 2F 1ux1 − 2F 2ux2 + 2fu dx.

Note that

(2.8) ux1 =
1

ϕ⋆
ξξ

ũξ, ux2 = −
ϕ⋆
ξη

ϕ⋆
ξξ

ũξ + ũη, dx1dx2 = ϕ⋆
ξξdξdη,
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we have

A(u) =

∫
Ω⋆

[
− detD2ϕ⋆

ϕ⋆
ξξ

(
ũξ

ϕ⋆
ξξ

)2

+ 2
ϕ⋆
ξη

ϕ⋆
ξξ

ũξ

ϕ⋆
ξξ

(
−
ϕ⋆
ξη

ϕ⋆
ξξ

ũξ + ũη

)

+
1

ϕ⋆
ξξ

(
−
ϕ⋆
ξη

ϕ⋆
ξξ

ũξ + ũη

)2

− 2F̃ 1 ũξ

ϕ⋆
ξξ

− 2F̃ 2

(
−
ϕ⋆
ξη

ϕ⋆
ξξ

ũξ + ũη

)
+ 2f̃ ũ

]
ϕ⋆
ξξ dξdη

=

∫
Ω⋆

[(
−detD2ϕ⋆

ϕ⋆
ξξ

2 − 2
ϕ⋆
ξη

2

ϕ⋆
ξξ

2 +
ϕ⋆
ξη

2

ϕ⋆
ξξ

2

)
ũ2
ξ + 2

ϕ⋆
ξη

ϕ⋆
ξξ

ũξũη − 2
ϕ⋆
ξη

ϕ⋆
ξξ

ũξũη + ũ2
η

− 2F̃ 1ũξ + 2F̃ 2ϕ⋆
ξηũξ − 2F̃ 2ϕ⋆

ξξũη + 2f̃ϕ⋆
ξξũ

]
dξdη

=

∫
Ω⋆

(
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũ2
ξ + ũ2

η − 2F̃ 1ũξ + 2F̃ 2ϕ⋆
ξηũξ − 2F̃ 2ϕ⋆

ξξũη + 2f̃ϕ⋆
ξξũ

)
dξdη =: A⋆(ũ).

Since u is a critical point of the functional A(u), we know that ũ is a critical point
of the functional A⋆(ũ). Thus, it suffices to derive the Euler-Lagrange equation of
A⋆(ũ). See [WZ] for the similar argument for the Monge-Ampère type fourth order
equation.

For φ ∈ C∞
0 (Ω⋆), by integration by parts, we have

dA⋆(ũ+ tφ)

dt

∣∣∣∣
t=0

=2

∫
Ω⋆

(
−

ϕ⋆
ηη

ϕ⋆
ξξ

ũξφξ + ũηφη − F̃ 1φξ + F̃ 2ϕ⋆
ξηφξ − F̃ 2ϕ⋆

ξξφη + f̃ϕ⋆
ξξφ

)
dξdη

=2

∫
Ω⋆

[
−

(
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũξ

)
ξ

− ũηη +
(
F̃ 1
)
ξ
−
(
F̃ 2ϕ⋆

ξη

)
ξ
+
(
F̃ 2ϕ⋆

ξξ

)
η
+ f̃ϕ⋆

ξξ

]
φ dξdη.

Then we know that the Euler-Lagrange equation of A⋆(ũ) is

−

(
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũξ

)
ξ

− ũηη +
(
F̃ 1
)
ξ
−
(
F̃ 2ϕ⋆

ξη

)
ξ
+
(
F̃ 2ϕ⋆

ξξ

)
η
+ f̃ϕ⋆

ξξ = 0,

which yields (2.7). □

2.2. Proof of Theorem 1.1. In order to use the partial Legendre transform, we
first recall the definition of modulus of convexity. For a convex function ϕ on Rn, the
modulus of convexity, denoted by mϕ, is defined by

(2.9) mϕ(t) := inf{ϕ(x)− ℓz(x) : |x− z| > t},
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where t > 0 and ℓz is a supporting function of ϕ at z. It is clear that mϕ must
be a positive function for a strictly convex function. A result of Heinz [He] implies
that in two dimensions, if detD2ϕ ≥ λ > 0, there exists a positive function C(t) > 0
depending on λ such thatmϕ(t) ≥ C(t) > 0 (for a more specific C(t), see [Liu, Lemma
2.5]). Now for the partial Legendre transform, we consider the mapping

(ξ, η) = P(x1, x2) = (ϕx1 , x2) : BR(0) → R2.

The following important property is revealed in [Liu].

Lemma 2.2 ([Liu, Lemma 2.1]). There exists a constant δ > 0 depending on the
modulus of convexity mϕ defined in (2.9), such that Bδ(0) ⊂ P(BR(0)).

Remark 2.3. Indeed, from the proof of [Liu, Lemma 2.1], we can see that the depen-
dence on δ only requires the lower bound of mϕ.

Proof of Theorem 1.1. For any x ∈ Ω, we denote R = dist(x,∂Ω)
2

. Without loss of
generality, we assume P(x) = 0. Note that ϕ satisfies (1.3), i.e. λ ≤ detD2ϕ ≤ Λ,
hence we know that mϕ(R) ≥ C(R) > 0. By Lemma 2.2, there exists δ > 0 depending
on C(R) such that Bδ(0) ⊂ P(BR(x)). According to Proposition 2.1, (1.3) and (2.5),
we know that ũ satisfies (2.7) in Bδ(0) with

0 < λ ≤ detD2ϕ = −
ϕ⋆
ηη

ϕ⋆
ξξ

≤ Λ.

This means that (2.7) is a uniformly elliptic equation in divergence form.
By the W 2,1+ε-estimate of Monge-Ampère equations [DFS, Sc], there exist ε0 > 0

depending on λ, Λ, and C0 > 0 depending on R, λ and Λ such that

∥D2ϕ∥L1+ε0 (BR(x)) ≤ C0.

Hence, we have∫
Bδ(0)

(ϕ⋆
ξξ)

2+ε0 dξdη =

∫
P−1(Bδ(0))

(ϕx1x1)
−(2+ε0)ϕx1x1 dx1dx2

=

∫
P−1(Bδ(0))

(ϕx1x1)
−(1+ε0) dx1dx2

=

∫
P−1(Bδ(0))

(
ϕx2x2

ϕx1x1ϕx2x2

)1+ε0

dx1dx2

≤ λ−(1+ε0)

∫
BR(x)

(ϕx2x2)
1+ε0 dx1dx2

≤ Cλ−(1+ε0).
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Then by (2.5), we have∫
Bδ(0)

(−ϕ⋆
ηη)

2+ε0 dξdη ≤ Λ1+ε0

∫
Bδ(0)

(ϕ⋆
ξξ)

2+ε0 dξdη ≤ CΛ1+ε0λ−(1+ε0).

Finally, the standard W 2,p theory of uniformly elliptic equations yields

∥ϕ⋆
ξη∥L2+ε0 (Bδ(0)) ≤ C.

With the assumptions on F and f , we know that the right-hand sides of (2.7) satisfy

∥F̃ 1 − F̃ 2ϕ⋆
ξη∥L2+ε0 (Bδ(0)) ≤ C, ∥F̃ 2ϕ⋆

ξξ∥L2+ε0 (Bδ(0)) ≤ C,

and ∫
Bδ(0)

∣∣∣f̃ϕ⋆
ξξ

∣∣∣ r(2+ε0)
1+ε0+r

dξdη ≤ C

∫
P−1(Bδ(0))

|f |
r(2+ε0)
1+ε0+r (ϕx2x2)

(1+ε0)(r−1)
1+ε0+r dx1dx2

≤ C

(∫
BR(x)

|f |rdx1dx2

) 2+ε0
1+ε0+r

(∫
BR(x)

(ϕx2x2)
1+ε0 dx1dx2

) r−1
1+ε0+r

≤ C∥f∥
r(2+ε0)
1+ε0+r

Lr(BR(x)).

Note that n = 2 and 2+ε0 > 2, r(2+ε0)
1+ε0+r

> 1 whenever r > 1, then the De Giorgi-Nash-

Moser’s theory [GT, Theorem 8.24] (The original estimate in Theorem 8.24 of [GT]
holds in terms of |ũ|Lq(Bδ(0)) for all q > 1. However, by using analogous arguments as
in [HL, Page 75], we can extend the validity of this estimate to all q > 0) yields

∥ũ∥Cα(Bδ/2(0)) ≤ C

(
∥ũ∥

L
pε0
1+ε0 (Bδ(0))

+ k

)
,

where

k = ∥F̃ 1 − F̃ 2ϕ⋆
ξη∥L2+ε0 (Bδ(0)) + ∥F̃ 2ϕ⋆

ξξ∥L2+ε0 (Bδ(0)) + ∥f̃ϕ⋆
ξξ∥

L
r(2+ε0)
1+ε0+r (Bδ(0))

.

Note that by Hölder’s inequality there is(∫
Bδ(0)

ũ
pε0
1+ε0 dξdη

) 1+ε0
pε0

=

(∫
P−1(Bδ(0))

u
pε0
1+ε0 ϕx1x1dx1dx2

) 1+ε0
pε0

≤ ∥u∥Lp(BR(x)) · ∥ϕx1x1∥
1+ε0
pε0

L1+ε0 (BR(x))

≤ C∥u∥Lp(BR(x)).

Hence, for the original function u, combining with the C1,α estimate of Monge-
Ampèpre equation [Ca] we know that there exists a γ ∈ (0, 1) such that

∥u∥Cγ(P−1(Bδ/2(0))) ≤ C
(
∥u∥Lp(BR(x)) + ∥F∥L∞(BR(x)) + ∥f∥Lr(BR(x))

)
.

By a standard covering argument (see for instance [FR, Remark 2.15]), we know that
the estimate is true for any Ω′ ⊂⊂ Ω, which completes the proof. □
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2.3. Proof of Moser-Trudinger type inequality. In this subsection, we provide
the proof of Theorem 1.3.

Moser-Trudinger type inequalities find broad applications in the study of partial
differential equations and geometric problems. The classical Moser-Trudinger in-
equality was initially derived by Trudinger [Tr1], using the power series expansion of
the exponential function and Sobolev estimates for individual terms, while carefully
examining the dependence on the exponent of the expansions. Subsequently, Moser
[Mo2] presented a more direct proof of this inequality and also determined the op-
timal exponent. Before giving the proof of Theorem 1.3, we first recall the classical
Moser-Trudinger inequality.

Theorem 2.4 ([Mo2, Theorem 1]). Let u ∈ W 1,n
0 (Ω) for n ≥ 2, and∫

Ω

|Du|n dx ≤ 1.

Then there exists a constant C which depends only on n such that∫
Ω

eαu
p

dx ≤ C|Ω|,

where

p =
n

n− 1
, α ≤ αn := nω

1
n−1

n−1 ,

and ωn−1 is (n− 1)-dimensional surface measure of the unit sphere.

Proof of Theorem 1.3. By the global W 2,1+ε-estimate of Monge-Ampère equations
[DFS, Sc, Sa] (with a detailed exposition available in [Le6, Theorem 10.1]), we know
that there exist ε0 > 0 depending on λ and Λ, and C0 > 0 depending only on λ, Λ
∥ϕ∥C3(∂Ω), the uniform convexity radius of ∂Ω and the C3 regularity of ∂Ω such that

∥D2ϕ∥L1+ε0 (Ω) ≤ C0.

Then as the proof of Theorem 1.1, we have∫
Ω⋆

(ϕ⋆
ξξ)

2+ε0 dξdη ≤ C.

By (1.3) there is

0 < λ ≤ detD2ϕ = −
ϕ⋆
ηη

ϕ⋆
ξξ

≤ Λ.

Hence, by (2.4) and (2.8), we obtain

∥Du∥2Φ =

∫
Ω

ΦijDiuDju dx

=

∫
Ω

ϕx2x2ux1

2 − 2ϕx1x2ux1ux2 + ϕx1x1ux2

2 dx1dx2
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=

∫
Ω⋆

(
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũ2
ξ + ũ2

η

)
dξdη

≥ min{λ, 1}
∫
Ω⋆

(
ũ2
ξ + ũ2

η

)
dξdη

= min{λ, 1}∥Dũ∥2L2(Ω⋆).

Then there is∫
Ω

e
β u2

∥Du∥2
Φ dx ≤

∫
Ω⋆

e
βmin{λ,1}−1 ũ2

∥Dũ∥2
L2(Ω⋆) ϕ⋆

ξξ dξdη

≤

(∫
Ω⋆

e
βmin{λ,1}−1 2+ε0

1+ε0

ũ2

∥Dũ∥2
L2(Ω⋆) dξdη

) 1+ε0
2+ε0

(∫
Ω⋆

(ϕ⋆
ξξ)

2+ε0 dξdη

) 1
2+ε0

.

For any β ≤ 4π 1+ε0
2+ε0

min{λ, 1}, by Theorem 2.4 with n = 2, we have∫
Ω⋆

e
βmin{λ,1}−1 2+ε0

1+ε0

ũ2

∥Dũ∥2
L2(Ω⋆) dξdη ≤ C|Ω⋆|.

Then by Hölder’s inequality,∫
Ω

e
β u2

∥Du∥2
Φ dx ≤ C|Ω⋆|

1+ε0
2+ε0

= C

(∫
Ω

ϕx1x1 dx1dx2

) 1+ε0
2+ε0

≤ C

[
|Ω|

ε0
1+ε0

(∫
Ω

(ϕx1x1)
1+ε0 dx1dx2

) 1
1+ε0

] 1+ε0
2+ε0

≤ C|Ω|
ε0

2+ε0 ,

which completes the proof. □

3. Linearized Monge-Ampère equations in higher dimensions

In this section, we establish the proof of Theorem 1.5 in two steps.

3.1. Estimates for linearized Monge-Ampère equations. In this subsection, we
prove a weak maximum principle for linearized Monge-Ampère equations, which will
be used in the proof of Theorem 1.5.
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Theorem 3.1 (Weak maximum principle). Let ϕ ∈ C2(Ω) be a convex function
satisfying (1.3). For q > n, let F : Ω → Rn be a vector field satisfying ∥Fϕ∥Lq(Ω) < ∞,

where Fϕ(x) := (D2ϕ(x))
1/2

F and f : Ω → R be a function satisfying ∥f∥Lq∗ (Ω) < ∞,
where q∗ =

nq
n+q

. For every solution u to

(3.1) Dj

(
ΦijDiu

)
≥ divF + f in Ω,

we have

sup
Ω

u ≤ sup
∂Ω

u+ + C (n, q, λ,Λ, diam(Ω))
(
∥Fϕ∥Lq(Ω) + ∥f∥Lq∗ (Ω)

)
|Ω|

1
n
− 1

q ,

where u+ := max{u, 0}.

As a corollary, we have

Corollary 3.2 (Global estimate for solutions to the Dirichlet problem). Let ϕ ∈
C2(Ω) be a convex function satisfying (1.3). For q > n, let F : Ω → Rn be a vector

field satisfying ∥Fϕ∥Lq(Ω) < ∞, where Fϕ(x) := (D2ϕ(x))
1/2

F and f : Ω → R be a
function satisfying ∥f∥Lq∗ (Ω) < ∞, where q∗ =

nq
n+q

. For every section Sϕ(x0, h) with

Sϕ(x0, h0) ⊂⊂ Ω for h0 ≥ h and every solution u to{
Dj

(
ΦijDiu

)
= divF + f in Sϕ(x0, h),

u = 0 on ∂Sϕ(x0, h),

we have

sup
Sϕ(x0,h)

|u| ≤ C (n, q, λ,Λ, diam(Ω), h0)
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .

We will use De Giorgi’s iteration to prove Theorem 3.1 and Corollary 3.2, and
De Giorgi’s iteration is a very powerful tool for dealing with elliptic equations in
divergence form. It is usually reduced to the following iteration lemma, the proof of
which can be found in [CW].

Lemma 3.3 ([CW, Lemma 4.1]). Let ω(t) be a nonnegative and nonincreasing func-
tion in an interval [k0,+∞). Suppose that there holds for all h > k ≥ k0,

ω(h) ≤ C

(h− k)α
[ω(k)]β,

where α > 0 and β > 1. Then we have

ω(k0 + d) = 0,

where

d = C
1
α [ω(k0)]

β−1
α 2

β
β−1 .

First, we give the proof of Theorem 3.1, and it follows the same idea as the proof
of [CW, Theorem 4.2].
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Proof of Theorem 3.1. Denote l = sup
∂Ω

u+. Consider v = (u − k)+ for k ≥ l. Note

that v = u− k, Dv = Du a.e. in {u > k} and v = 0, Dv = 0 a.e. in {u ≤ k}. Taking
v as test function in (3.1), we have

−
∫
Ω

ΦijDiuDjv dx ≥ −
∫
Ω

FiDiv dx+

∫
Ω

fv dx.

Then∫
Ω

ΦijDivDjv dx ≤
∫
Ω

FiDiv dx−
∫
Ω

fv dx

=

∫
Ω

(
D2ϕ

)1/2
F ·
(
D2ϕ

)−1/2
Dv dx−

∫
Ω

fv dx

≤
(
∥Fϕ∥Lq(Ω)∥Dϕv∥L2(Ω) + ∥f∥Lq∗ (Ω)∥v∥L2∗ (Ω)

)
|A(k)|

1
2
− 1

q ,

where q∗ =
nq
n+q

, 2∗ = 2n
n−2

( we only consider n ≥ 3 here, and n = 2 is similar),

Dϕv :=
(
D2ϕ

)−1/2
Dv and A(k) = {x ∈ Ω |u(x) > k}.

Note that by (1.3) and Φ = (detD2ϕ)(D2ϕ)−1, there is

∥Dϕv∥L2(Ω) =

(∫
Ω

[
(D2ϕ)−1

]ij
DivDjv dx

) 1
2

≤ λ−1/2

(∫
Ω

ΦijDivDjv dx

) 1
2

.

Denote
F0 = λ−1/2∥Fϕ∥Lq(Ω) + CSob∥f∥Lq∗ (Ω),

where CSob is the Sobolev constant in Theorem 1.2. Hence, we know by Cauchy-
Schwarz’s inequality and Theorem 1.2 that∫

Ω

ΦijDivDjv dx ≤
(
∥Fϕ∥Lq(Ω)∥Dϕv∥L2(Ω) + ∥f∥Lq∗ (Ω)∥v∥L2∗ (Ω)

)
|A(k)|

1
2
− 1

q

≤ F0

(∫
Ω

ΦijDivDjv dx

) 1
2

|A(k)|
1
2
− 1

q

≤ 1

2

∫
Ω

ΦijDivDjv dx+
F 2
0

2
|A(k)|1−

2
q ,

which implies ∫
Ω

ΦijDivDjv dx ≤ F 2
0 |A(k)|

1− 2
q ,

i.e. (∫
Ω

ΦijDivDjv dx

) 1
2

≤ F0|A(k)|
1
2
− 1

q .

By Theorem 1.2, there is

∥v∥L2∗ (Ω) ≤ CSobF0|A(k)|
1
2
− 1

q ,



14 LING WANG

Note that v = (u− k)+. Thus, when h > k, there is

∥v∥L2∗ (Ω) ≥ (h− k)|A(h)|
1
2∗ .

Hence, we have

|A(h)| ≤ (CSobF0)
2∗

(h− k)2∗
|A(k)|

n(q−2)
q(n−2) , ∀h > k ≥ l.

Applying Lemma 3.3 with α = 2∗ and β = n(q−2)
q(n−2)

> 1 yields

A(l + d) = 0,

where

d = CSobF0|A(0)|
1
n
− 1

q · 2
n(q−2)
2(q−n) .

Therefore, we obtain that

sup
Ω

u ≤ l + d ≤ sup
∂Ω

u+ + C
(
∥Fϕ∥Lq(Ω) + ∥f∥Lq∗ (Ω)

)
|Ω|

1
n
− 1

q .

□

Next, we prove Corollary 3.2.

Proof of Corollary 3.2. Using (1.3) and the volume estimates for sections (see, for
example, [Fi, Lemma 4.6]), we obtain:

c1(n, λ,Λ)h
n/2 ≤ |Sϕ(x0, h)| ≤ C1(n, λ,Λ)h

n/2

Hence, applying Theorem 3.1 with Ω = Sϕ(x0, h) and u = 0 on ∂Sϕ(x0, h), we have

sup
Sϕ(x0,h)

u ≤ C
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .

For −u we can similarly show

sup
Sϕ(x0,h)

(−u) ≤ C
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .

Combining the two inequalities gives

sup
Sϕ(x0,h)

|u| ≤ C (n, q, λ,Λ, diam(Ω), h0)
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .

□
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3.2. Proof of Theorem 1.5. The proof of Theorem 1.5 is followed by the combi-
nation of Corollary 3.2 with Caffarelli-Gutiérrez’s Harnack inequality. For reader’s
convenient, we recall the Harnack inequality here.

Theorem 3.4 ([CG, Theorem 5]). Assume n ≥ 2. Let ϕ ∈ C2(Ω) be a convex func-
tion satisfying (1.3). Let u ∈ W 2,n

loc (Ω) be a nonnegative solution of the homogeneous
linearized Monge-Ampère equation

ΦijDiju = 0

in a section Sϕ(x0, 2h) ⊂⊂ Ω. Then there is

sup
Sϕ(x0,h)

u ≤ C(n, λ,Λ) inf
Sϕ(x0,h)

u.

The proof of Theorem 1.5 mirrors that of Theorem 1.3 in [Le2, P284-P285]. For
the sake of completeness, we outline it briefly here.

Sketch of the proof of Theorem 1.5. By noticing the C1,α of standard Monge-Ampère
equations provided (1.3), we know it suffices to show for h ≤ h0, there is

(3.2) osc
Sϕ(x0,h)

u ≤ C
(
∥u∥L∞(Sϕ(x0,h)) + ∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
hγ0 ,

where γ0 ∈ (0, 1) depending only on n, q, λ and Λ. To prove (3.2), we split u = v+w
where {

ΦijDijv = divF + f in Sϕ(x0, h),

v = 0 on ∂Sϕ(x0, h),

and {
ΦijDijw = 0 in Sϕ(x0, h),

w = u on ∂Sϕ(x0, h).

Then, by Corollary 3.2,

sup
Sϕ(x0,h)

|v| ≤ C
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .

By Caffarelli-Gutiérrez’s Harnack inequality (Theorem 3.4),

osc
Sϕ(x0,h/2)

w ≤ β osc
Sϕ(x0,h)

w.

Therefore, we have

osc
Sϕ(x0,h/2)

u ≤ osc
Sϕ(x0,h/2)

w + osc
Sϕ(x0,h/2)

v

≤ β osc
Sϕ(x0,h)

w + 2∥v∥L∞(Sϕ(x0,h))

≤ β osc
Sϕ(x0,h)

u+ C
(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q .
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Finally, by a standard iteration, there is

osc
Sϕ(x0,h)

u ≤ C

(
h

h0

)γ0 (
∥u∥L∞(Sϕ(x0,h)) +

(
∥Fϕ∥Lq(Sϕ(x0,h)) + ∥f∥Lq∗ (Sϕ(x0,h))

)
h

1
2
− n

2q

0

)
for some γ0 ∈ (0, 1) and some constant C > 0 depending only on n, q, λ, Λ, h0 and
diam(Ω), which yields (3.2). □
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