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Abstract. This survey explores the application of the partial Legendre transform
in the context of Monge-Ampère equations, based on recent work by the authors
[WZ1, WZ2, Wa]. Specifically, we demonstrate how the partial Legendre trans-
form can be utilized to establish interior estimates and Liouville-type theorems for
Monge-Ampère equations, linearized Monge-Ampère equations, as well as Monge-
Ampère type fourth order equations in two dimensions.

1. Introduction

The Monge-Ampère equation is a fundamental fully nonlinear partial differential
equation with important applications in differential geometry, optimal transport, and
geometric analysis, which draws its name from its initial formulation in two dimen-
sions, by the French mathematicians Monge [Mo] and Ampère [Am], about 200 years
ago. A useful tool for studying Monge-Ampère equations is the Legendre transform
(or Legendre transformation), first introduced by Legendre in 1787 in his study of
minimal surfaces [Leg]. The Legendre transform is an involutive transformation.
Specifically, for an open set Ω ⊂ Rn and a function u : Ω → R, the Legendre trans-
form u∗ : Rn → R ∪ {+∞} of u is defined as

u∗(ξ) = sup
x∈Ω

(x · ξ − u(x)) .

It is easy to see that when u is convex, the supremum is attained at the point x where
ξ = Du(x), assuming u is sufficiently smooth, i.e. u∗(ξ) = x · ξ − u(x), see geometric
interpretation in Figure 1. From this, we deduce that (u∗)∗ = u, confirming that
the Legendre transform is an involutive transformation. Consequently, the following
relations hold:

Du(x) = ξ, and Du∗(ξ) = x.

Differentiating further yields

D2u(x)D2u∗(ξ) = Id.

By taking the determinant of both sides, if detD2u = f , then

detD2u∗ =
1

f ◦Du∗ ,
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xn+1 = x · ξ

xn+1 = u(x)

x

u(x)

x · ξ

u∗(ξ) = x · ξ − u(x)

x

xn+1

Figure 1. The Legendre Transform

This indicates that the Legendre transform exchanges the upper and lower bounds
on the Hessian’s determinant, so typically, finding one bound on the determinant is
sufficient, as the other bound can be derived similarly after applying the Legendre
transform. Furthermore, if f = K(1 + |Du|2)n+2

2 with K > 0, i.e, the constant
Gaussian curvature equation, then u∗ satisfies

detD2u∗ =
(1 + |ξ|2)−n+2

2

K
.

Note the right-hand side term is independent of u∗. Thus, the Legendre transform
can sometimes simplify the equation.

The Legendre transform is widely used in the study of Monge-Ampère equations
(see [Fi, Gu, TW2] and references therein). It should be noted that the transformation
preserves the fully nonlinear nature of these equations, making them somehow still
challenging to analyze. Hence, ideally, one might seek a transformation that simplifies
the Monge-Ampère equation to a linear form, allowing the application of the theory
for linear equations. Such a transformation is only accessible in two dimensions, and
is known as the partial Legendre transform, introduced by Darboux in the early 19th
century, and is the main focus of this survey. Precisely, in this transformation, we
apply the Legendre transform to a single variable, which can transform the Monge-
Ampère equation into a quasilinear equation. In the following, we show this process
explicitly.

Let Ω ⊂ R2, and let u(x, y) be a convex function defined on Ω, with subscripts used
to denote partial derivatives (e.g., ux = ∂u

∂x
, etc.). The partial Legendre transform in

the x-variable is given by

u⋆(ξ, η) = sup (xξ − u(x, η)) ,
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where the supremum is taken with respect to x for fixed η, i.e., for all x such that
(x, η) ∈ Ω. This definition is from [Liu]. When u ∈ C2(Ω) is strictly convex in the
x-variable, the mapping

P : (x, y) 7→ (ux(x, y), y)

is injective, and we denote the image of Ω under P as Ω⋆. In this case, we have

u⋆(ξ, η) = xux(x, y)− u(x, y) in Ω⋆.

This follows directly from the strict convexity of u with respect to the x-variable [GP].
A direct calculation yields the following derivatives of the partial Legendre trans-

form:
∂(ξ, η)

∂(x, y)
=

Ç
uxx uxy

0 1

å
,

∂(x, y)

∂(ξ, η)
=

Ç
1

uxx
−uxy

uxx

0 1

å
.

From this, we obtain the relations

(1.1) u⋆
ξ = x, u⋆

η = −uy,

and

(1.2) u⋆
ξξ =

1

uxx

, u⋆
ηη = −detD2u

uxx

, u⋆
ξη = −uxy

uxx

.

Now, if u ∈ C2(Ω) is a strictly convex solution to the equation

detD2u = f(x, y, u, ux, uy),

then u⋆ ∈ C2(Ω⋆) is a solution to the transformed equation

(1.3) f(u⋆
ξ , η, ξu

⋆
ξ − u⋆, ξ,−u⋆

η)u
⋆
ξξ + u⋆

ηη = 0.

This reduction is significant because it allows the application of tools and tech-
niques typically used in the study of quasilinear equations, making the analysis
more manageable in this specific context. The partial Legendre transform has been
employed by many authors to convert the two-dimensional Monge-Ampère equa-
tion into a quasilinear elliptic equation, demonstrating its effectiveness as a pow-
erful tool, especially for some degenerate Monge-Ampère equations (see, for example,
[DS, Fi, Gua, GP, GS, LS, Liu, RSW1, RSW2, SW1, SW2, Sch]). In addition, Rubin
used the partial Legendre transform in [Ru] to study the Monge-Ampère equation
with Guillemin boundary conditions. While there are many applications of the par-
tial Legendre transform, we cannot list all of them here. We refer readers to the
references above and those cited therein.

In this survey, we will demonstrate how the simplification facilitated by the partial
Legendre transform makes it a powerful tool in the study of Monge-Ampère equa-
tions, linearized Monge-Ampère equations, as well as Monge-Ampère type fourth
order equations in two dimensions. The organization is as follows: In Section 2, we
present several Liouville theorems for a class of Monge-Ampère equations. Section 3
is dedicated to deriving interior estimates for Monge-Ampère type fourth order equa-
tions. Finally, in Section 4, we use the partial Legendre transform to obtain interior
Hölder estimates for linearized Monge-Ampère equations.
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2. Liouville theorems for a class of Monge-Ampère equations

In this section, we show how the partial Legendre transform can be used to prove
Liouville type theorems for Monge-Ampère equations in two dimensions.

First, by (1.3), if u(x, y) ∈ C2(R2
+) ∩ C(R2

+) is a convex solution to

detD2u = 1 in R2
+, u =

x2

2
on ∂R2

+,

then its partial Legendre transform u⋆(ξ, η) ∈ C2(R2
+) ∩ C(R2

+) satisfies

∆u⋆ = 0 in R2
+, u⋆ =

ξ2

2
on ∂R2

+.

By the classical Schauder estimates for the Laplace equation, we see that u⋆ ∈
C∞(R2

+). We can then differentiate u⋆ twice with respect to ξ to obtain

(2.1) ∆u⋆
ξξ = 0 in R2

+, u⋆
ξξ = 1 on ∂R2

+,

and u⋆
ξξ ≥ 0 (the partial Legendre transform preserves convexity in the ξ direction).

Using a logarithmic barrier, w(ξ, η) := − ln(
√

ξ2 + (η + 1)2), we find that v := u⋆
ξξ−1

is nonnegative, and thus satisfies

∆v = 0 in R2
+, v = 0 on ∂R2

+, and v ≥ 0 in R2
+.

It is a classical result that solutions to this problem must take the form v(ξ, η) = Aη
for some A ≥ 0 (see, for example, [BB, Theorem 1]). Therefore, u⋆

ξξ = 1+Aη. Solving
the some related ODEs, we obtain

u⋆(ξ, η) = Bη − η2

2
− Aη3

6
+ Cξη +

ξ2

2
(1 + Aη)

for some constants B,C ∈ R. Since the Legendre transform is an involution on
convex functions, we recover u by taking the partial Legendre transform of u⋆ in the
ξ direction, which gives us that

u(x, y) =
y2

2
+

Ay3

6
−By +

(x− Cy)2

2(1 + Ay)
.

To summarize, we have the following theorem:

Theorem 2.1 ([Fi, Page 147-148]). Let u(x, y) ∈ C2(R2
+)∩C(R2

+) be a convex solu-
tion to 

detD2u = 1 in R2
+,

u(x, 0) =
x2

2
on ∂R2

+.

Then there exist constants A,B,C ∈ R with A ≥ 0 such that

u(x, y) =
y2

2
+

Ay3

6
−By +

(x− Cy)2

2(1 + Ay)
.
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Using the partial Legendre transform, we classify the following class of Monge-
Ampère equations in [WZ2]

(2.2) detD2u = (a+ by)α, α > −2

in the half space R2
+, where a ≥ 0 and b > 0. A motivation to consider (2.2) comes

from the study of the Monge-Ampère type fourth order equations (3.1), will also be
discussed in the next section. To study a Liouville type theorem for (3.1) under the
boundary condition

(2.3)

 u =
1

2
|x′|2 on ∂R2

+,

w = 1 on ∂R2
+,

one can easily find that solutions to (2.2) with α = −1
θ
, a = b = 1 give a class of

special solutions to (3.1), (2.3). The classification of all solutions to (2.2) can help us
to study (3.1), (2.3). When a = 0, the higher dimension case for (2.2) were studied
by [Sa1, Sa2, SZ]. Here we only focus on the two dimensional case.

After performing the partial Legendre transform, u∗ satisfies the following Grushin
type equation

(a+ bη)αu⋆
ξξ + u⋆

ηη = 0.

Differentiating twice with respect to ξ, we obtain an equation similar to (2.1):

(2.4) (a+ bη)α(u⋆
ξξ)ξξ + (u⋆

ξξ)ηη = 0.

Thus, to complete the argument, it suffices to use a Liouville theorem, similar to [BB,
Theorem 1], for (2.4) to show that u⋆

ξξ = 1+Aη. However, directly proving a Liouville
theorem for (2.4) is somewhat challenging. Fortunately, we find that by performing
a change of variables

v(x1, x2) = u⋆
ξξ(x1, f(x2)),

where

ξ = x1, η = f(x2) = b
−α
α+2

Å
α + 2

2
x2

ã 2
α+2

− a

b
,

v satisfies the following divergence-type equation:

div
(
x

α
α+2

2 ∇v
)
= 0,

for which the Liouville theorem can be derived using the method of moving spheres.
The details of this method are referred to [WZ2, Theorem 2.1], which gives us the
desired Liouville theorem for v. Hence, we conclude that:

Theorem 2.2 ([WZ2, Theorem 1.1]). Let u(x, y) ∈ C2(R2
+) ∩ C(R2

+) be a convex
solution to 

detD2u = (a+ by)α in R2
+,

u(x, 0) =
1

2
x2 on ∂R2

+,
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where a ≥ 0, b > 0, and α > −2. Then there exist A, B, C ∈ R with A ≥ 0 such that

u(x, y) =



(b− aA)(a+ by)2+α

b3(1 + α)(2 + α)
+

A(a+ by)3+α

b3(2 + α)(3 + α)
−By

− (b− aA)a2+α

b3(1 + α)(2 + α)
− Aa3+α

b3(2 + α)(3 + α)
+

(x− Cy)2

2(1 + Ay)
, α ̸= −1;

b− aA

b3
(a+ by) ln(a+ by) +

A

2b
y2 −By

− (b− aA)a ln a

b3
+

(x− Cy)2

2(1 + Ay)
, α = −1.

Interestingly, the above approach also applies to the case of the Neumann problem.
By using nearly identical arguments, we obtain the following result:

Theorem 2.3 ([WZ2, Theorem 1.3]). Let u(x, y) ∈ C2(R2
+) ∩ C1(R2

+) be a convex
solution to ®

detD2u = yα in R2
+,

uy(x, 0) = 0 on ∂R2
+,

where α > −1. Then there exist a constant A > 0, and a linear function l(x) such
that

u(x, y) =
1

2A
x2 +

A

(2 + α)(1 + α)
y2+α + l(x).

3. Interior estimates for Monge-Ampère type fourth order equations

Using the partial Legendre transform to derive interior estimates for Monge-Ampère
equations in two dimensions is well known, as seen in [DS, Gua, Liu], and other
references therein. However, the first use of the partial Legendre transform to study
Monge-Ampère type fourth order equations appears in [LZ] by Le and the second
author, where it played a crucial role in solving the second boundary value problem for
singular Abreu equations in two dimensions. Motivated by this approach, we consider
a slightly more general class of fourth order equations in [WZ1], which includes affine
mean curvature equations and Abreu’s equation. Let Ω ⊂ R2 be a convex domain,
and we study the regularity of the following fourth order equations of Monge-Ampère
type:

(3.1)
2∑

i,j=1

U ijwij = 0,

in Ω, where {U ij} is the cofactor matrix of D2u of an unknown uniformly convex
function, and

(3.2) w =

{
[detD2u]−(1−θ), θ ∈ [0, 1),

log detD2u, θ = 1.
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When θ = 1
n+2

, it is the affine mean curvature equation in affine geometry [Ch].
When θ = 0, it is Abreu’s equation arise from the problem of extremal metrics on
toric manifolds in Kähler geometry [Ab].

After applying the partial Legendre transform, the Monge-Ampère type fourth
order equation (3.1) reduces to a quasilinear second order equation for the determinant
(3.3). This can be achieved either by directly calculating all order derivatives after the
transform or by deriving the Euler-Lagrange equation for the transformed functional
of (3.1). Specifically, we have:

Proposition 3.1 ([WZ1, Proposition 2.1]). Let u be a uniformly convex solution to
(3.1) in Ω. Then in Ω⋆ = P(Ω), its partial Legendre transform u⋆ satisfies

(3.3) w⋆w⋆
ξξ + w⋆

ηη + (θ − 1)w⋆
ξ
2 +

θ − 2

w⋆
w⋆

η
2 = 0.

Here w⋆ = −u⋆
ηη

u⋆
ξξ
.

This simplification allows us to obtain interior estimates for solutions to the fourth
order equations by deriving interior estimates for solutions to the corresponding quasi-
linear second order equations, where classical techniques for second order elliptic
equations can be applied, and this is also the key ingredient of [WZ1].

Theorem 3.2 ([WZ1, Theorem 2.2]). Assume w⋆ is a solution to (3.3) with θ ∈ [0, 1]
on BR := BR(0) and satisfies 0 < λ ≤ w⋆ ≤ Λ. Then there exist α,C > 0 depending
on λ, Λ, R and θ, such that

(3.4)

∫
BR

|Dw⋆|3(R2 − ξ2 − η2)α dV ≤ C.

The proof of Theorem 3.2 is quite standard. First, we introduce an auxiliary
function z = vϕη, where

v =
»

|Dw⋆|2 + 1, η = (R2 − ξ2 − η2)α with α > 3,

and

ϕ(w⋆) = Aw⋆θ−2 − w⋆

2θ2 − 9θ + 9
with A ≥ Λ3−θ

2θ2 − 9θ + 9
+ 1.

Next, we calculate the equation that z satisfies. Finally, after a complex and technical
calculation, we obtain (3.4). Now, it is enough to obtain interior estimates for fourth
order equations. We proceed as follows:

For any x ∈ Ω, we denote R = dist(x,∂Ω)
2

. Without loss of generality, we assume
P(x) = 0. If we assume u satisfies λ ≤ detD2u ≤ Λ, hence we know that by [Liu,
Lemma 2.1], there exists δ > 0 depending on C(R) such that Bδ(0) ⊂ P(BR(x)).
With Theorem 3.2 in hand, we obtain

∥w⋆∥W 1,3(B7δ/8(0)) ≤ C.
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Note that here n = 2. By the Sobolev theorem, we have the Cα estimate of w⋆. And
by the interior W 2,p-estimate of the uniformly elliptic equation (3.3), we have the
estimate

∥w⋆∥W 2,3/2(B3δ/4(0))
≤ C,

which implies the W 1,6-estimate of w⋆. Again by the interior W 2,p-estimate of the
uniformly elliptic equation (3.3), we have the

∥w⋆∥W 2,3(Bδ/2(0)) ≤ C,

which implies the C1,α estimate of w⋆. Then by the Schauder estimate of (3.3), we
have

∥w⋆∥C2,α(Bδ/4(0)) ≤ C

and all the higher order estimates of u⋆. Transforming back by the partial Legendre
transform, we obtain the lower bound of ux1x1 by (1.2). Since we can do partial
Legendre transforms of u in any direction, we can obtain the lower bound for the
smallest eigenvalue of D2u, which implies the boundedness of D2u by (3.5). Then we
have all the higher order estimates of u. Hence, we have shown:

Theorem 3.3 ([WZ1, Theorem 1.1]). Assume n = 2 and θ ∈ [0, 1]. Let Ω ⊂ R2 be a
convex domain and let u be a smooth convex solution to equation (3.1) on Ω satisfying

(3.5) 0 < λ ≤ detD2u ≤ Λ.

Then for any Ω′ ⊂⊂ Ω, there exists a constant C > 0 depending on supΩ |u|, λ, Λ, θ
and dist(Ω′, ∂Ω), such that

∥u∥C4,α(Ω′) ≤ C.

By Theorem 3.3 and a rescaling argument as in [TW1, Theorem 2.1], we obtain a
new proof of the following Bernstein theorem [TW1, LJ, Zh] without using Caffarelli-
Gutiérrez’s theory.

Theorem 3.4. Assume n = 2 and 0 ≤ θ ≤ 1
4
. Let u be an entire smooth uniformly

convex solution to (3.1) on R2. Then u is a quadratic polynomial.

4. Interior Hölder estimates for linearized Monge-Ampère equations

The partial Legendre transform, though commonly applied to nonlinear elliptic
equations, can also be effective for certain linear equations. In the context of Monge-
Ampère equations, the linearized Monge-Ampère equation holds significant impor-
tance. It arises in several fundamental problems across various fields, including the
Monge-Ampère type fourth order equations in the last section, the semigeostrophic
equations in fluid mechanics, and the approximation of minimizers of convex func-
tionals with convexity constraints in the calculus of variations, among others. For
specific examples, see [Le, Section 1.2.1].
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The linearized Monge-Ampère equation associated with a C2 strictly convex po-
tential ϕ, defined on a convex domain in Rn, is expressed as

n∑
i,j=1

ΦijDiju ≡ trace(ΦD2u) = g,

where Φ = (Φij) denotes the cofactor matrix of the Hessian of ϕ. The term “lin-
earized” arises from linearizing the Monge-Ampère operator, as seen in

detD2(ϕ+ tu) = detD2ϕ+ t trace(ΦD2u) + · · ·+ tn detD2u.

This shows that the equation is a type of linear second order equation, which can
be degenerate or singular because its coefficient matrix is the cofactor matrix of the
Hessian of a convex function. As a result, classical estimates for uniformly elliptic
equations are not directly applicable.

To the best of the authors’ knowledge, there are few references addressing the use
of the partial Legendre transform for linearized Monge–Ampère equations. In an
initial attempt in this direction, the first author [Wa] derives the Hölder estimates
for solutions to linearized Monge-Ampère equations with possibly singular right-hand
sides by applying the partial Legendre transform.

Consider the inhomogeneous linearized Monge-Ampère equation

(4.1)
2∑

i,j=1

Dj

(
ΦijDiu

)
= divF + f

in a bounded convex domain Ω ⊂ R2, where Φ = (Φij) is the cofactor matrix of the
Hessian matrix of a convex function ϕ ∈ C2(Ω), F = (F 1, F 2) : Ω → R2 is a vector
field, and f : Ω → R is a function. We know that the associated functionals of (4.1)
is

(4.2) A(u) :=

∫
Ω

ϕx2x2(ux1)
2−2ϕx1x2ux1ux2+ϕx1x1(ux2)

2−2F 1ux1−2F 2ux2+2fu dx.

Since ϕ ∈ C2(Ω) is a convex function, we can perform the partial Legendre transform

to ϕ. Denote ϕ⋆ as the partial Legendre transform of ϕ, ũ(ξ, η) := u(ϕ⋆
ξ , η), F̃ (ξ, η) :=

F (ϕ⋆
ξ , η) and f̃(ξ, η) := f(ϕ⋆

ξ , η), then by (1.2) we know (4.2) becomes

A⋆(ũ) :=

∫
Ω⋆

Ç
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũ2
ξ + ũ2

η − 2F̃ 1ũξ + 2F̃ 2ϕ⋆
ξηũξ − 2F̃ 2ϕ⋆

ξξũη + 2f̃ϕ⋆
ξξũ

å
dξdη.

Since u is a critical point of the functional A(u), it follows that ũ is a critical point
of the functional A⋆(ũ), which means that ũ satisfies the Euler-Lagrange equation of
A⋆(ũ). Hence, we obtain:

Proposition 4.1 ([Wa, Proposition 2.1]). Let u be a solution to (4.1), then ũ satisfies

(4.3)

Ç
−
ϕ⋆
ηη

ϕ⋆
ξξ

ũξ

å
ξ

+ ũηη =
Ä
F̃ 1 − F̃ 2ϕ⋆

ξη

ä
ξ
+
Ä
F̃ 2ϕ⋆

ξξ

ä
η
+ f̃ϕ⋆

ξξ in Ω⋆.



10 LING WANG AND BIN ZHOU

Similar to the approach for obtaining interior estimates for fourth order equations,
we can derive interior estimates for linearized Monge-Ampère equations by estimating
(4.3). We provide a sketch of the procedure here:

For any x ∈ Ω, we denote R = dist(x,∂Ω)
2

. Without loss of generality, we assume
P(x) = 0. Assuming that ϕ satisfies λ ≤ detD2ϕ ≤ Λ, hence we know that by [Liu,
Lemma 2.1], there exists δ > 0 depending on C(R) such that Bδ(0) ⊂ P(BR(x)).
According to Proposition 4.1, we know that ũ satisfies (4.3) in Bδ(0) with

0 < λ ≤ detD2ϕ = −
ϕ⋆
ηη

ϕ⋆
ξξ

≤ Λ.

This means that (4.3) is a uniformly elliptic equation in divergence form.
By the W 2,1+ε-estimate of Monge-Ampère equations [DFS, Sc], there exist ε0 > 0

depending on λ, Λ, and C0 > 0 depending on R, λ and Λ such that

∥D2ϕ∥L1+ε0 (BR(x)) ≤ C0.

Hence, we have∫
Bδ(0)

(ϕ⋆
ξξ)

2+ε0 dξdη =

∫
P−1(Bδ(0))

(ϕx1x1)
−(2+ε0)ϕx1x1 dx1dx2

=

∫
P−1(Bδ(0))

(ϕx1x1)
−(1+ε0) dx1dx2

=

∫
P−1(Bδ(0))

Å
ϕx2x2

ϕx1x1ϕx2x2

ã1+ε0

dx1dx2

≤ λ−(1+ε0)

∫
BR(x)

(ϕx2x2)
1+ε0 dx1dx2

≤ Cλ−(1+ε0).

Then ∫
Bδ(0)

(−ϕ⋆
ηη)

2+ε0 dξdη ≤ Λ1+ε0

∫
Bδ(0)

(ϕ⋆
ξξ)

2+ε0 dξdη ≤ CΛ1+ε0λ−(1+ε0).

Finally, the standard W 2,p theory of uniformly elliptic equations yields

∥ϕ⋆
ξη∥L2+ε0 (Bδ(0)) ≤ C.

With the assumptions on F and f , we know that the right-hand sides of (4.3) satisfy

∥F̃ 1 − F̃ 2ϕ⋆
ξη∥L2+ε0 (Bδ(0)) ≤ C, ∥F̃ 2ϕ⋆

ξξ∥L2+ε0 (Bδ(0)) ≤ C,

and ∫
Bδ(0)

∣∣∣f̃ϕ⋆
ξξ

∣∣∣ r(2+ε0)
1+ε0+r

dξdη ≤ C

∫
P−1(Bδ(0))

|f |
r(2+ε0)
1+ε0+r (ϕx2x2)

(1+ε0)(r−1)
1+ε0+r dx1dx2

≤ C

Ç∫
BR(x)

|f |rdx1dx2

å 2+ε0
1+ε0+r

Ç∫
BR(x)

(ϕx2x2)
1+ε0 dx1dx2

å r−1
1+ε0+r
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≤ C∥f∥
r(2+ε0)
1+ε0+r

Lr(BR(x)).

Note that n = 2 and 2 + ε0 > 2, r(2+ε0)
1+ε0+r

> 1 whenever r > 1, then the De Giorgi-

Nash-Moser’s theory [GT, Theorem 8.24] yields

∥ũ∥Cα(Bδ/2(0)) ≤ C

Å
∥ũ∥

L
pε0
1+ε0 (Bδ(0))

+ k

ã
,

where

k = ∥F̃ 1 − F̃ 2ϕ⋆
ξη∥L2+ε0 (Bδ(0)) + ∥F̃ 2ϕ⋆

ξξ∥L2+ε0 (Bδ(0)) + ∥f̃ϕ⋆
ξξ∥

L
r(2+ε0)
1+ε0+r (Bδ(0))

.

Note that by Hölder’s inequality there isÇ∫
Bδ(0)

ũ
pε0
1+ε0 dξdη

å 1+ε0
pε0

=

Ç∫
P−1(Bδ(0))

u
pε0
1+ε0 ϕx1x1dx1dx2

å 1+ε0
pε0

≤ ∥u∥Lp(BR(x)) · ∥ϕx1x1∥
1+ε0
pε0

L1+ε0 (BR(x))

≤ C∥u∥Lp(BR(x)).

Hence, for the original function u, combining with the C1,α estimate of Monge-
Ampèpre equation we know that there exists a γ ∈ (0, 1) such that

∥u∥Cγ(P−1(Bδ/2(0))) ≤ C
(
∥u∥Lp(BR(x)) + ∥F∥L∞(BR(x)) + ∥f∥Lr(BR(x))

)
.

By a standard covering argument, we know that the estimate is true for any Ω′ ⊂⊂ Ω,
which is

Theorem 4.2 ([Wa, Theorem 1.1]). Let ϕ ∈ C2(Ω) be a convex function satisfying
λ ≤ detD2ϕ ≤ Λ. Let F := (F 1(x), F 2(x)) : Ω → R2 be a bounded vector field and
f ∈ Lr(Ω) for r > 1. Given Ω′ ⊂⊂ Ω and p ∈ (0,+∞), then for every solution u to
(4.1) in Ω, there is

∥u∥Cγ(Ω′) ≤ C
(
∥u∥Lp(Ω) + ∥F∥L∞(Ω) + ∥f∥Lr(Ω)

)
,

where constant γ > 0 depending only on λ and Λ, and constant C > 0 depending only
on p, r, λ, Λ, and dist(Ω′, ∂Ω).

Using a similar argument, we can also establish a new Moser-Trudinger type in-
equality in two dimensions. To simplify the notation, we write

∥Du∥2Φ :=

∫
Ω

ΦijDiuDju dx.

Theorem 4.3 ([Wa, Theorem 1.3]). Let Ω be a uniformly convex domain in R2 and
ϕ ∈ C2(Ω) be a convex function satisfying λ ≤ detD2ϕ ≤ Λ. Assume that ϕ|∂Ω and
∂Ω are of class C3. For any u ∈ C∞

0 (Ω), there exists a constant C > 0 depending
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only on λ, Λ, ∥ϕ∥C3(∂Ω), the uniform convexity radius of ∂Ω and the C3 regularity of
∂Ω such that ∫

Ω

e
β u2

∥Du∥2
Φ dx1dx2 ≤ C|Ω|

ε0
2+ε0 ,

where β ≤ 4π 1+ε0
2+ε0

min{λ, 1}, and ε0 depending only on λ and Λ is obtained by the

global W 2,1+ε-estimate for Monge-Ampère equations.
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