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Notation

Z=1{0.+1.+2,...}, Z,={0.1.2....}.

A = closure of A, assuming 4 is a subset of some topological space X

A CC U means A is a compact subset of U

B\A={xeB:x¢A}

X4 = indicator function of A (= 1 at points of 4 and = 0 at points not in A)
14 = identity map A — A

L" = Lebesgue outer measure in R”

B, (y) = closed ball with center y radius p (more specifically denoted B}, (y) if we wish
to emphasize that we are working in R"). Thus B,(y) = {x e R" : [x—y| < p},
or, more generally, B,(y) = {x € X : d(x,y) < p} in any metric space X.

9

By(y) =openball={x e X :d(x,y) <p};
k/2

A —fork 200w = £4({x e R s x| < 1)) ifk € {1.2....).

I tkl2e=t di
Ny R" — R” (for A > 0, y € R") is defined by 7, 5 (x) = A7 (x — y); thus 1,1 is
translation x > x — y, and 1o 4 is homothety x > A7 1x

C*(U, V) (U, V open subsets of Euclidean spaces R” and R™ respectively) denotes the
space of C*¥ maps from U into V

CkU, V) ={p e C¥(U,V) : ¢ has compact support}

pL, for any linear subspace L of R”, denotes orthogonal projection of R” onto L

Df, for f € C1(U,V), is the derivative matrix with entries D; f; in the i-th row and
Jj-th column, and | Df |> = 377, Y7L, (D; f;)?.

Vf,for f € C1(U,R), denotes the gradient (Dy f,..., D, f) of f.

@ = the empty set.

spt 14, for a Borel measure j1 on a metric space X, is the support of y, ie. {x € X :
w(Bp(x)) >0 Vp > 0} (which is a closed subset of X).

diam A4, for any set A in a metric space X, denotes the diameter of the set 4, i.e. SUPy yea d(x,y),
interpreted to be oo if A4 is not bounded, 0if 4 = @

WP (Q), for @ C R” open, will denote the Sobolev space of functions f : €2 — R such
that f,Vf € LP(Q).
8;j = Kronecker delta (= 1ifi = j,0ifi # j).






Chapter 1

Preliminary Measure Theory

§1  Basic NOTIOMS « . e v vttt ettt et et e e 1
§2 Hausdorff Measure .. .v.vvnernin et ee e eie e eiee e 11
I B 14
§4 Differentiation Theorems ...........ooiuiiiiiiiiiiii i, 19
§5 Radon Measures, Representation Theorem ............................ 28

In this chapter we briefly review the basic theory of outer measure, which is based on
Caratheodory’s definition of measurability. Hausdorff (outer) measure is discussed, in-
cluding the main results concerning n-dimensional densities and the way in which they
relate more general measures to Hausdorfl measures. The final two sections of the chap-
ter give the basic theory of Radon (outer) measures including the Riesz representation
theorem and the standard differentiation theory for Radon measures.

For the first section of the chapter X will denote an abstract space, and later we impose
further restrictions on X as appropriate. For example in the second and third sections X
is a metric space and in the last section of the chapter we shall assume that X is a locally
compact, separable metric space.

1 Basic Notions

Recall that an outer measure (sometimes simply called a measure if no confusion is likely
to arise) on X is a monotone subadditive function p : X — [0, 00] (X = the collection
of all subsets of X') with (@) = 0. Thus (@) = 0, and

1.1 p(A) <3272 1u(A;) whenever A C U3, A,
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with A4, A1, Az, ... any countable collection of subsets of X. Of course this in particular
implies ;t(A) < u(B) whenever A C B C X, because we can take A = Band A; = @
for each j > 2.

We adopt Caratheodory’s notion of measurability:

1.2 Definition: A subset A C X is said to be u-measurable if

w(S) =p(S\A4)+un(SnA)

for each subset S C X. (Thus, roughly speaking, A4 is t-measurable if it “cuts every other
set S additively with respect to 11.”)

Since X \ (X \ A) = A we see that --measurability of A is equivalent to y-measurability
of X \ A foranyset 4 C X.

1.3 Remark: Then the set A4 is jt-measurable if and only if

1(S) = n(S\A4)+u(SnAa

for each subset S C X with () < oo, because this is trivially true when p(S) = oo,
and the reverse inequality also holds in both cases () < oo and p(S) = oo by the
subadditivity 1.1 of p.

Notice that the empty set @ is u-measurable, as is any set of y-measure zero since in these
cases the term (S N A) on the right side of the inequality in Remark 1.3 is zero, and so
the inequality in 1.3 holds trivially.

A key lemma, due to Caratheodory, asserts that such j1-measurable sets form a o-algebra,
where the terminology is as follows:

1.4 Definition: A collection S of subsets of X is a 0-algebra if
1) &0, X eS8
(2) AeS=X\A4¢eS
(3) Ap Az €8 = UR 4 €8.

1.5 Remarks: (1) Observe that then, since N9, 4; = X \ (U2, (X \ 4;))), we also
have ﬂf‘;lAj € S whenever Ay, Ay, ... € S, by (2), (3).

(2) In the context of a fixed space X, it is easily checked that the intersection of any non-
empty family of o-algebras is again a o-algebra, so there is always a smallest o-algebra
which contains a given collection of subsets of X —namely just take the intersection of all
o-algebras which contain the given collection of sets (this collection is non-empty because
the collection of all subsets of X is a o-algebra).
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In view of Remark 1.5(2) above we can make the following definition:

1.6 Definition: If X is a topological space then we define the Borel subsets of X to be the
smallest o-algebra of subsets of X which contains all the open sets (same as the smallest o-
algebra containing all the closed sets since o-algebras are closed under complementation).

As mentioned above, we have the following lemma:

1.7 Lemma. The collection M of all ji-measurable subsets is a o-algebra which includes all
subsets of X of -measure zero.

1.8 Remark: In the course of the proof we shall establish the important additional fact
that for p-measurable sets 4;, j = 1,2,. ..,

A1, Az, ... pairwise disjoint = u(S N (U2, 4;)) = 372, 1u(S N A;)

for each subset S C X.

Proof of Lemma 1.7 and Remark 1.8: We already noted above that Properties 1.4 (1)
and 1.4(2) are trivially checked direct from the definition of measurability.

Checking 1.4(3) involves several steps:
Stepl: A1, 42 € M = Ay U Ay € M. To check this we first use Definition 1.2 with

A = Ay and with S\ A; in place of S and p(S) < oo to give
1(S\ (41U Az)) = n((S\ A1)\ 42)
= 1(S\ A1) —p((S\ A1) N 42)

and then use Definition 1.2 with A = A; on the right side together with the subadditivity
of i to give

B(S\ (A1 U A2)) = p(S) — (S N A1) = p((S\ A1) N 42)
(8) = (SN A1) U((S\41) N4,))

(§) = (SN (41U 4z)),

IA

Il
= =

so Ay U Aj is p-measurable by Remark 1.3. Notice that the first line above gives
R(S) = pn(S\ (A1 UAz) = pu(SNA)+p((S\ A1) N A)

and since we have established p£(S) — (S \ (41 U 42)) = n(S N (A1 U A2) we thus
conclude the important additional fact that if A1, A5 are disjoint and p-measurable then

(1) (SN (A1 UAy)) =pu(SNA)+ p(SNAy) forevery S C X.
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Step2: A1, A € M = A; N A, € M. This is clear from Step1 and 1.4(2) because
A1NA; =X\ ((X\41)U(X\ 42)).

Step3: Foreach N = 1,2,..,, A1, 43,..., Ay € M = UszlAj € M, which fol-
lows from Step2 by induction on N. Using the additional additivity conclusion (f) of
Step 1 we also conclude the additivity u(S N (U§V=1Aj)) = Zj-vzl n(S N Aj) provided
Ay, Az, ..., Ay are pairwise disjoint sets in M.

Step4: If Ay, A, ... are pairwise disjoint sets in M then U_;?‘;IA j € M and furthermore
(S N (U, 4;)) = 352, w(S N 4;) for each S C X. To check this we use the
conclusions of Step 3 to observe

w(S) = p(S N (UN14;)) + u(S\ (UL, 4)))
> (SN (U 45)) + 1(S\ (U2, 4)))
= YN (SN A4;) + u(S\ (U2, 4))).

Since Zszl p(SNA;) = 372, 1u(SNA;) > p(SN(USL 4;)), in view of Remark 1.3
this completes the proof of Step 3, and also establishes the additivity property of Remark
1.8.

Step5: A1, Az,... € M = U2 4; € M (ie. we do indeed have that M has property

1.4(3)). To check this, observe that USZ, 4; = U;";lzzlvj, where A; = A; \ (U{;&Ai),

with A9 = @. Then A; € M by Step2, Step3 and 1.4(2). Since the A; are pairwise
disjoint we can then apply Step4 to complete the proof. O

Observe that by 1.8 we have
1.9 Aj p-measurable, A; C Aj41 Vj =1 = lim u(4;) = n(UiZ, 4;),
because we can write US4, = Us, (Aj \ Aj—1) with Ag = @, and hence, by 1.8,
(U5 45) = 272 (A \ Ajr) = lim 37 u(A; \ A1)
= lim p(Uf= (A5 \ 4j-1)) = lim pu(A4n),
where at the last step we used U7_, (4, \ 4j-1) = 4p.

If Ay D Ay D ... then, for each i, A4; \ N, 4; = U}?‘;I(A,- \ 4;), and hence 1.9
implies lim; 00 it (A; \ A7) = (A4 \ N2, A4;), and if 1(A4;) < oo this gives 11(A4;) —
lim; (A4;) = p(A;) — p(N9L,4;), and hence

1.10 Aj p-measurable and Aj 1 C Aj foreach j =1,2,...
= lim u(4;) = pn(N72,4;), provided u(A4;) < oo for some .
j—00
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An outer measure i on X is said to be regular if for each subset A C X there is a u-
measurable subset B D A with u(B) = u(A).

1.11 Remark: If A; C A; 41 Vi and u is regular, then the identity in 1.9 is valid, i.e.

Jim p(Ai) = (U2, 40),
even if the A; are not assumed to be |1-measurable, because for each i we can select a u-
measurable set 4; O A; with ,u(/T,) = u(A;), and then A; = ﬁj@:l.gj(j) A;) is in-
creasing with (1(4;) = pu(A;) and lim pu(A4;) < (U2, 4;) < pu(U52, 4;) = lim pu(A;)
(by 1.9) = lim p(4;).

We have the following additional corollary of 1.9.

1.12 Corollary (Egoroff’s Theorem.) If A C X is u-measurable with finite measure, if
S 1 A — [—00, 00| are u-measurable for eachk = 1,2, ..., and if lim fi (x) = 0 for each
X € A, then for each & > 0 there is a jL-measurable subset B C A with fi — 0 uniformly on
Band u(A\ B) <e.

Proof: For each x € A and each j = 1,2,... there is an £ such that | f (x)| < 1/j for
allk > €,s0x € Bjy =N {x € A:|fi(x)| <1/j}. Thus A = U B; for each
Jj and of course By C Bj¢4+1, so by 1.9 we have u(A4) = limy_, oo t(Bj ) for each ;.
In particular for each & > 0 and each j = 1.2,... thereis {; with u(A4\ Bjy,) < £277.
Hence, with B = N%2, Bj¢;, w(A\ B) = (U2, (A\ Bjg,)) <e> 72,27/ = eand,
foreach j = 1,2,..., | fi(x)| < 1/j forallx € B(C Bjy,)andallk > ¢;. O

In case X is a topological space, an outer measure p on X is said to be Borel-regular if all
Borel sets (see Remark 1.5(2)) are p-measurable and if for each subset A C X there is a
Borel set B O A such that u(B) = (A). (Notice that this does 7ot imply u(B\ A) =0
unless A is p-measurable and u(A4) < 00.)

1.13 Remark: There is a close relationship between Borel regular outer measures on
a topological space X and abstract Borel measures 1o on X. (Recall that a Borel mea-
sure (o on X is a map o : {all Borel sets} — [0, 00] such that (i) po(@) = 0, and
(1) ;LO(U]?‘;IBj) = Z;’il to(Bj) whenever By, Bs, ... are pairwise disjoint Borel sets
in X.) In fact if po is such a Borel measure on X then
wA) = B Borlerll,fBaA Ho(B)

defines a Borel regular outer measure on X which agrees with 1o on the Borel sets; to
check jp-measurability of any Borel set B we just check the inequality in 1.3 by first
choosing a Borel set C D § with 1(C) = u(S). Conversely, if 11 is a Borel regular outer
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measure on X then the restriction of  to the Borel sets gives us a Borel measure g on
X.

Given any subset Y C X and any outer measure ;2 on X, we can define a new outer
measure (1 LY on X by

1.14 (WLY)(Z)=pn(¥nZ), ZcX.

One readily checks (by using S NY in place of S in Definition 1.2) that all u-measurable
subsets are also (u L Y )-measurable (even if Y is not pu-measurable). It is also easy
to check that wL Y is Borel regular whenever u is, provided Y is p-measurable with
u(Y) < oo. To check this, first use Borel regularity of p to pick a Borel set B; with
By DY and u(B1\Y) = 0and aBorel set B D By \ Y with u(B>) = 0. Then given
an arbitrary set A C X we have

A=(ANY)U(A\Y)C (ANY)U(X\Y)
=(ANY)U(X\B)U(B1\Y)C(ANY)U(X\ By)U B,.
Finally select a Borel set B3 D A NY with u(B3) = u(A NY) and observe that then
A C (X \ B1) U By U B; (which is a Borel set) and (u_Y)((X \ B1) U B, U B;3) =
(kL 7)(A).
The following theorem, due to Caratheodory and applicable in case X is a metric space
with metric d, is particularly useful. In the statement we use the notation
dist(A, B) = inf{d(a,b) :a € A,b € B},
interpreted as 0o if A or B is empty.

1.15 Theorem (Caratheodory’s Criterion.) If X is a metric space with metric d and if 1
is an outer measure on X with the property

w(AU B) = u(A) + w(B) forall sets A, B C X with dist(A4, B) > 0,

then all Borel sets are ju-measurable.

Proof: Since the measurable sets form a o-algebra, it is enough to prove that all closed
sets are ji-measurable (because by definition the Borel sets are the smallest o-algebra con-
taining all the closed sets), so that by Remark 1.3 we have only to check that

(%) w(S) = u(S\C)+u(SncC)

for all sets S € X with u(S) < 0o and for all closed sets C C X.
Let C; = {x € X :dist(x,C) < 1/j}. Thendist(S \ C;, S N C) > 0, hence

u(8) z p((S\NCHU(SNC)) =p(S\Cj) +p(SNC),



§1 oF CHAPTER 1: Basic NoTIONS 7

and we will have (%) if we can show limj_0o (S\ C;) = (S \ C). To check this, note
that since C is closed we can write

S\C={xeX:dist(x,C) >0} =(S\C;) U(UsZ ,Ri), j =1,2,...,

J

where R = {x € § : 47 < dist(x,C) < ¢ }. But then by subadditivity of u we have

p(S\Cj) < u(S\C) = u(S\Cj) + 272 i(Ry),
and hence we will have lim;j_,oo (S \ Cj) = (S \ C) as required, provided only that
Yk m(Ry) < oo.

To check this we note that dist(R;, Rj) > 01if j > i + 2, and hence by the hypothesis of
the theorem and induction on N we have, for each N > 1,

Z/ICV=1M(R2k) = M(U/]Llek) <u(S) <oo
and N
Y= i(Rak—1) = w(U_; Rog—1) < p(S) < 00. O

A key example to which the above is applicable is of course Lebesgue measure £" on
R”. This is defined (as usual) as follows: If K denotes the collection of all n-dimensional
intervals I of the form I = (ay,b1) x (a2,b2) X +++ X (an,by), where a;,b; € R and
b; —a; > 0,and if |I| = volume of I (= (by —ay) - (b, —ay)), then

1.16 L"(A) = inf 3|1

where the inf is taken over all countable (or finite) collections {11, I>,...} C K with
ACU;l;.

Clearly for any I = (ay,b1) % (a2, b2) x -+ X (an, bn) € K, by using “slight fattenings”
of a sufficiently fine subdivision of each edge (a;,b;), for each §, & > 0 we can find open
Ji.....Jy € Kwith I C U}VZIJJ', Zjvzl |Ji| < |I| + ¢ and diam J; < § for each
j =1,...,N,so for each § > 0 we can alternatively (and equivalently) define

1.16/ £"(A) = inf ¥,11/]

where the inf is taken over all countable (or finite) collections {11, I5,...} C K with
AC U I; anddiamlj <.

Evidently £, so defined, has the additivity property needed to apply Theorem 1.15, so
all Borel sets in R” are £"-measurable, and direct from the definition of £" it is also

evident that for each A C R” there is a sequence of open sets Uy, U, with A C N;U; and
L"(A) = L"(N;U;). So L™ is a Borel regular outer measure on R” and

1.17 £r(A)= inf L"(U) YACR"
U open, UDA
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Note also that if U is any bounded open subset of R” we can always find closed balls
BPI (Xl), sz (Xz), ... with

L18 By, (xi) N By, (x;) = @Vi # j. Uj By, (x;) CU. L"(U\ (U2, By, (x;))) = 0.

(See problem 1.5 of Ch.1 problems.) In view of 1.17, 1.18 it then evidently follows that
L"(A) is invariant under application of orthogonal transformations to the set A. Since
L"(A) is also trivially invariant under translation of A we thus have

1.19 L%y + Q(A)) = L"(A) Vy € R", Vorthogonal Q : R” - R", VA C R".

As a corollary of the above invariance property we establish the classical area formula for

linear maps R" — R":
1.20 Corollary. Suppose v : R" — R” is linear and A C R". Then
L'(t(A)) = |dett|L"(A), ACTR".

Proof of 1.20: If det t = 0 then 7(A) is contained in an (n — 1)-dimensional subspace
and the theorem trivially holds (with both sides zero) in this case, so we can assume
without loss of generality that detz # 0. Then the symmetric transformation * o t
has positive eigenvalues A1, ..., Ay, so (det7)? = A -+ A, and by the spectral theorem
there is an orthogonal transformation Q : R* — R” with Q* o t* ot 0 Q = A, where
A is represented by a diagonal matrix with diagonal entries A1,...,,. Hence I'o Q* o
tot0Qol =1, where ' = /A1 (ie. T is represented by a diagonal matrix with
diagonal entries /\1_1/2, A% soToQoT isan orthogonal transformation P. Hence
t(A) = P(I"1(Q*A)) and, by the invariance 1.19, £L"(t(A)) = £L*(T"}(Q*A)), and
since I'™1J = (A}/z(al, b1) x -+ x AY?(ap. by) for each n-dimensional interval J =
(ay,b1)x++-x (an, by), Definition 1.16 implies L" (T~ (Q*A)) = | det t|L"(Q*A)) =
| det 7| £" (A), where we again used the invariance 1.19. O

We next prove some important regularity properties for Borel regular measures which
have an “open o-finiteness property” as in the following definition:

1.21 Definition: We say a Borel regular measure 1 on a topological space X is “open
o-finite” if X = U;V; where V} isopenin X and u(V;) < ocoforeach j =1,2,....

Of course p automatically satisfies such a condition if 1(X) < oo (then we just take
Vi = X for each j) or if X is a separable metric space and u is locally finite (i.e. x €
X = u(Bpy(x)) < oo for some p > 0).

The following theorem tells us that open o-finite Borel regular measures have a property
analogous to the property 1.17 of £”, at least in a large class of topological spaces X,
including all metric spaces:
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1.22 Theorem. Suppose X is a topological space with the property that every closed subset of
X 1s the countable intersection of open sets (this trivially holds e.g. if X is a metric space), and
suppose | is an open o -finite (as in 1.21 above) Borel-regular measure on X. Then

(1) n(A) = Uopj;}fUDAM(U)

for each subset A C X, and

) pA)=  swp w(C)
C closed, CCA

Jor each u-measurable subset A C X.

1.23 Remark: In case X is a Hausdorff space (so compact sets in X are closed) which is
o-compact (i.e. X = U; K; with K; compact for each j), then the conclusion (2) in the
above theorem guarantees that

pw(A)=  sup  p(K)
K compact, KCA

for each p-measurable subset A C X with (A4) < oo, because under the above con-
ditions on X any closed set C can be written as the union of an increasing sequence of
compact sets.

Proof of 1.22: We assume first that £(X) < oo. First note that in this case (2) can
be proved by applying (1) to the complement X \ A. Also, by Borel regularity of the
measure [, it is enough to prove (1) in case A is a Borel set. Then let

A = { Borel sets A C X : (1) holds}.

Trivially A contains all open sets, and we claim that A4 is closed under both countable
unions and intersections, which we check as follows:

If Ay, As. ... € Athen for any given ¢ > 0 there are open Uy, Us, ... with U; D A; and
(U \ 4;) =277 e. Then (U;U;) \ (Ue k) = U; (U; \ (UgAr)) € U; (U; \ 45). Also
(MU N\ (NeAx) = (M;U;) N (Ue(X \ Ak)) = Ue((N;U;) \ Ak) C Ur(Uk \ Ag)-
So by subadditivity we have both y(U22, U; \ (UgAg)) < e and limy 00 ,u(ﬂ;vlej \
(NkAg)) = ,u(ﬂj?";lUj \ (NgAg)) < &, so both U A and Ng Ay are in A as claimed.

In particular A must also contain the closed sets, because we are assuming any closed set
in X can be written as a countable intersection of open sets. Notice however that at this
point it is not clear that A is a o-algebra since it is not clear that A is closed under com-
plementation. For this reason, welet A = {4 € A : X\ A € A}, which we claim isa o-
algebra, since it clearly has properties 1.4 (1),(2) of o-algebra, and if 41, 45, ... € Athen
X\ A1, X\ Az, ... € Aand hence both U2 | Aj and X\ ((USZ,4;) (= NS, (X \4;)) are

in A (because A is closed under countable unions and intersections); thus U2, 4; € A
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and indeed A is a o-algebra as claimed. Thus A is a -algebra containing all the closed
sets, and hence A contains all the Borel sets. Thus A contains all the Borel sets (so actu-
ally we conclude that A is equal to the collection of all Borel subsets of X) and (1),(2) are
both proved in case 1 (X) < oo.

In the case u(X) = oo it still suffices to prove (1) when A is a Borel set. For each
Jj = 1,2,... apply the previous case j1(X) < oo to the measure p LV}, j = 1,2,...,
with V; as in 1.21. Then for each ¢ > 0 we can select an open U; D A4 such that

&
p(U; NV \A) < o

and hence (summing over j)
WU, (U N V) 4) <
Since U2, (U; N V) is open and contains 4, this completes the proof of (1).

(2) for the case when (X)) = oo also follows by applying (2) in the finite measure case
to the measure p LV}, thus giving, foreach ¢ > Oandeach j = 1,2,...,aclosed C; C 4
with (AN V;\ Cj) < 277&. Since (U5, V;) \ (URZ Cr) = U2 (V) \ (UR2 Ck)) C
U2, (V5 \ C}), this gives, by countable subadditivity of u, u(A\ (U2, Ck)) < e. Thus
either j1(A4) = oo and (UM Cj) — oo orelse u(A) < oo and u(A\ (U C;)) <
for sufficiently large N. In either case this completes the proof of (2). O

Using the above theorem, we can now prove Lusin’s Theorem:

1.24 Theorem (Lusin’s Theorem.) Let w be a Borel regular onter measure on a topolog-
ical space X having the property that every closed subset can be expressed as the countable
intersection of open sets (e.g. X is a metric space), let A be any p-measurable subset of X with
w(A) < oo, andlet f : A — R be p-measurable. Then for each ¢ > 0 there is a closed set
CCXwithC CA,n(A\C) <eg and f|C continuous.

1.25 Remark. There are various scenarios which make it possible to drop the hypothesis
that u(A) < oco. For example if X is a metric space with each closed ball compact and
of finite u-measure, then if A is y-measurable we can take any xo € X and apply the
above theorem in annular regions B; (xo) \ Bj—1(x0) (= B1(xo) if j = 1) to the subsets
A;j = AN B;(0)\ Bj_;(0). This gives compact sets C; C A; with (4, \ C;) < &/2/
and f|C; is continuous. Then observe that C = USZ,C; is closed, because for each
R > 0 there are only finitely many j with C; N Br(xo) # @. Also f|C is continuous
(because d(C;,Cj) > 0Vi # j by the compactness of each C;), and (4 \ C) =

Yo (A \C) < Y7L, 8/2) =e.

Proof of Theorem 1.24: Foreachi =1,2,...and j =0, £1, 42, ... let
il
Aij = [T 4)
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so that 4;;,j = 0,1, £2, ..., are pairwise disjoint sets in A and Uf.i—ooAij = A for
eachi = 1,2,.... By the remarks following 1.14, we know that u L 4 is Borel regular,
and since it is finite we can apply Theorem 1.22, so for each given ¢ > 0 there are closed
sets Cj; in X with Ci; C A and ,bL(A,'_/ \C,'_/) = (,bLLA)(A,'j \C,'j) < 2_i_|j|_28,
hence f1(Aj; \ (U2_ Cir)) < 2771172, hence pu(4 \ (U _Cij)) < 27%¢. So for
eachi = 1,2,... there is an integer J (i) with (A \ (U)j|<s)Cij)) < 27"¢. Since
AN (N2, (Uyj125)Ci)) = U2, (AN (Uyji=r (i) Cij)) this implies (A \ C) < &, where
C =N, (Yyji<s(i)Cij), which is a closed set in X.

Finally, define g; : Ujjj<s)Cij — R by setting g;(x) = £ on Cjj, |j| < J(i).
Then, since the Cj1, ..., Ciy(;) are pairwise disjoint closed sets, g; is clearly continuous
and its restriction to C is continuous for each i. Furthermore by construction 0 <
f(x)—gi(x) <1/iforeachx € C andeachi = 1,2,...,s0 g;|C converges uniformly
to f|C on C, and hence f|C is continuous. (I

2 Hausdorff Measure

In this section we suppose X is a metric space with metric d, and we let

nm/2

Om = ——————, m >0,
" fooo tm2e=t 4t

so that in particular w,, is the volume (Lebesgue measure) of the unit ball B}"(0) in R”
in case m happens to be a positive integer.

For any m > 0 we define the m-dimensional Hausdorff (outer) measure

2.1 H"(4) = limHJ'(4). AC X,
0

where, for each § > 0, Hf'(A) (called the “size § approximation to H™”) is defined by
taking Hf' (@) = 0 and, for any non-empty 4 C X,

22 H(A) = an inf 52, (S0 G)"
where the inf is taken over all countable collections Cy, Cs, ... of subsets of X such that
diam C; < § and A C USZ, C;; the right side is to be interpreted as co in case there is no
such collection Cyq, C, . . .. (Of course in a separable metric space X there are always such
collections Cy, C3, ... for each § > 0.) The limit in 2.1 always exists (although it may be
+00) because Hf'(A) is a decreasing function of §; thus H™(A) = sups. , H5' (A) for
each m > 0. It is left as an exercise to check that 75" and H™ are indeed outer measures
on X.
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Notice also that H? is just “counting measure”: H°(®) = 0, H%(A4) = the number of
elements in the set A if A is finite, and #°(A4) = oo if A4 is not finite.

2.3 Remarks: (1) Since diam C; = diam C; we can add the additional requirement in
the identity 2.2 that the C; be closed without changing the value of #™ (A); indeed since
for any & > 0 we can find an open set U; D C; with diamU; < diam C; + /27, we
could also take the C; to be open.

(2) Evidently H§'(A) < oo Vm > 0,8 > 0 in case A is a totally bounded subset of the
metric space X.

One easily checks from the definition of H§' that

H5' (AU B) = Hf (A) + H§' (B) whenever d (A4, B) > 6,
hence
2.4 H"(AUB) =H"(A)+H"(B) whenever d(A,B) >0,

where d (A, B) = infyea,yep d(x,y), and therefore all Borel sets are H™ -measurable by
the Caratheodory Criterion (Theorem 1.15). It then follows from Remark 2.3 (1) (see
problem 1.2 of Ch.1 problems) that

2.5 H™ is Borel-regular for each m > 0.

Note: It is 7ot true in general that the Borel sets are #'-measurable for § > 0; for instance
if n = 2 then one easily checks that the half-space H = {x = (x!,x?) e R" : x? > 0}
is not H -measurable, because for example it does not cut the set S, = ([0,1) x {0}) U
([0,1) x {e}) additively for sufficiently small e. Indeed one can directly use the definition
of H; to check that Hy(Se) | 1ase | 0 (and in particular #;(S.) < 2 for sufficiently
small £), whereas H (S, N H) = Hj (S \ H) = 1 for each ¢ > 0.

We will later show that, for each integer n > 1, H" agrees with the usual definition of
n-dimensional volume measure on an n-dimensional C! submanifold of R"t¥ k > 0.
As a first step we want to prove that H" and £” (n-dimensional Lebesgue measure) agree
on R”,

We claim that, on R”, the outer measures £, 1", Hj all coincide (for each § > 0):
2.6 Theorem.
L"(A) = H"(A) = Hf(A) for every A C R" and every § > 0.
Proof: We first show
(1) 5(A) <L"(A) VE§>0
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as follows: Let I;, i = 1,2,..., be any open intervals with A C U;I;. By problem 1.5
of Ch.1 problems, for each § > 0 and each i = 1,2,... we can choose closed balls
By, (xj), j = 1,2,...asin 1.18 with U = I; and with p; < § for each j. Since
L"(Z) = 0= H§(Z) = 0for each subset Z C X (by Definitions 2.2, 1.16) we then
have

() Hy (1) = Hy (U521 By, (x7)) = 272 0np]

= D o1 L7 (B, (%)) = L(USZ By, (x))) = L™(L;) = |11,
and hence
(3) Hy(A) < H5 (Ui i) < D Hs (1) < 211

The proof of (1) is then completed by taking inf over all such collections {/; } and using
Definition 1.16.

To prove the reverse inequality we first need a geometric result concerning Lebesgue
measure, known as the isodiametric inequality:

2.7 Theorem (Isodiametric Inequality.)
diam 4

n
L(A) < a)n( ) for every set A C R".

Remark: Thus among all sets A C R” with a given diameter p, the ball with diameter p
has the largest £" measure.

Proof of 2.7: Observe that it suffices to prove this for compact sets because £"(4) <
L"(A), while A has the same diameter as A and the isodiametric inequality is trivial if
diam A = oo. For a compact set A we proceed to use Steiner symmetrization: The Steiner
symmetrization S; (A4) of the compact set A with respect to the j-th coordinate plane
x/ = 0is defined as follows: For £ in the coordinate plane x/ = 0let £; (€§) = {& +te; :
¢t € R} and let 7 be the projection & + tej +> ¢ of the line £; (£) onto the real line R, and
let 0j (A, ) denote the closed line segment {§ + te; : |t] < 1L (w(ANL;(£)))}. Then

Sj(A) = Uggang; (6)20) 07 (4,§).
(Thus S;(A) is obtained by replacing A N ¢; (&) with the segment o (A, &) for each &
such that AN¢; (&) # @.) This process gives a new compact set S; (A4) with diameter not
larger than the diameter of the original set A (see Ch.1 problem 1.1) and, by Fubini, the
same Lebesgue measure. Further if i # j and if A4 is already invariant under reflection in
the i-th coordinate plane x' = 0, then by definition S; (A) is invariant under reflection in
both the i-th and the j-th coordinate planes. Thus by applying Steiner symmetrization
successively with respect to coordinate planes x! = 0,x% = 0,...,x" = 0, we get a new
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compact set A with diameter < diam 4, having the same Lebesgue measure as 4, and
being invariant with respect to the transformation x + —x. This means in particular
that 2|x| = |x — (—x)| < diam A < diam A for each x € 4, so 4 is contained in the
closed ball with radius % diam A and center 0, whence

£*(A) = £"(A) < 0n(L diam A)"

as required. O
Completion of the proof of 2.6: We have to prove
(1) L7(A) < HI(A) V6 >0, A CR".

Suppose § > 0, A C R”, and let Cy, C». ... be any countable collection with A C U;C;
and diam C; < §. Then
L"(A) < LM(U;C;) = 3°,L(C)
<) on (3 diam Cj)n by 2.7.

Taking the inf over all such collections {C; } we have (%) as required. O

3 Densities

Throughout this section X will denote a metric space with metric d. We first we want to
introduce the notion of n-dimensional density of a measure p on X, where X continues
to denote a metric space with metric d. For any outer measure 1 on X, any subset
A C X, and any point x € X, we define the n-dimensional upper and lower densities
©*" (1, A, x), ©% (i, A, x) by

ANB

O (u, A,x) = limsupﬂ(—s(x))
31 PO @nlo
AN B

0" (1. A, x) = liminf XA N B(X))

00 wp p"

In case A = X we simply write ®*" (u, x) and ©% (1, x) to denote these quantities so
that ©*"(u, A,x) = O*"(n L A, x), 0% (u, A,x) = O%(ul A, x).

3.2 Remark: If all Borel sets are p-measurable and if (B, (x)) is finite on each ball
By(x) C X, then (A N By(x)) > limsup,_, (AN By(y)) for each fixed p > 0
(t.e. u(A N By(x)) is an upper semi-continuous function of x for each fixed p > 0).
Indeed if xx — x and j € {1,2,...} then Byy1/;(x) D By(xk) for sufficiently large
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k, hence u(Bpt1/7(x)) = limsup, , u(By(y)) for each j = 1,2,..., and B,(x) =
N9, Bp+1/7(x) (because B, (x) is the closed ball of radius p), hence, by 1.10, (B, (x)) =
limj o0 pt(Bpy1/j(x)) = limsup,_, . n(By(xk)), which is the claimed upper semi-
continuity of u(B,(x)). Hence info<p<s(@np™) ' 1t(A N By(x)) is also upper semi-
continuous and hence Borel measurable (because the inf of a family of upper semi-continuous
functions is again upper semi-continuous), and so

OF(u, A, x) = %sii‘l(‘)l 0<i1;£5 (wnp™) ' (AN By(x))

lim inf (w,0") 'u(AN By(x))

Jj—>00 0<p<1/j

is also Borel measurable. Similarly since ;1(4 N B, (x)) is lower semi-continuous (where
B,(x) denotes the open ball of radius p and center x) and evidently
sup (wnp") ™' (AN Bp(x)) = sup (wnp") ™" (AN Bpy(x))
0<p<é 0<p<$8

(and hence it makes no difference whether we use open or closed balls in the definition
of lower density, nor in the definition of upper density for that matter), we see that
®*" (1, A, x) can be written lim; 0 supo_,1/; (@np") ' (AN B,(x)), so we also have
©*"(p, A, x) is Borel measurable. Notice that A need not be u-measurable here.

Subsequently we use the notation that if ©*" (i, 4, x) = ©"(u, A, x) then the common
value will be denoted ®" (i, A4, x).

Appropriate information about the upper density gives connections between p and H".
Specifically, we have the following comparison theorem:

3.3 Theorem. Let p be any outer measure on the metric space X such that all Borel sets are
measurable (e.g. 1 is Borel regular), t > 0, and Ay C Ay C X. Then

O (, Az, x) >t Yx € Ay = tH"(A4y) < n(A4z),

An important special case of this theorem is the case 4; = A,. Notice that we do not
need to assume Aj, A, are -measurable here.

The proof of 3.3 will make use of the following important “5-times covering lemma,” in
which we use the notation that if B is a ball B,(x) C X, then B = Bs,(x).

3.4 Lemma (5-times Covering Lemma). If B is any family of closed balls in X with
R = sup{diam B : B € B} < oo, then there is a pairwise disjoint subcollection B' C B
such that

UpesB C Ugep’B;
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in fact we can arrange the stronger property

) BeB=3B' eB withB'NB # Qand
diam(B’) > 1 diam(B), hence B' > B.

Proof: For j = 1,2,...let B; = {B € B: R/2/ < diam B < R/2/7'}, so that
B = U322 B;, and this is a pairwise disjoint union. Proceed to define B} C B; as follows:

(1) Let Bj be any maximal pairwise disjoint subcollection of ;. Such B] exist by apply-
ing Zorn’s lemma to P = {A : Ais a pairwise disjoint subcollection of B; }, which is
partially ordered by inclusion; notice for any totally ordered subcollection 7 C P we
clearly have A C Uge7B € P for each A € T, so Zorn’s lemma is indeed applicable.
Notice also that in a general metric space the collection B| could be uncountable, but of
course in a separable metric space (i.e. a metric space with a countable dense subset) all
pairwise disjoint collections of balls must be countable.

(i1) Assuming j > 2andthat B C By, ... ,BJ’-_l C Bj— are defined, let Bj’- be a maximal
pairwise disjoint subcollection of {B € B; : BN B’ = @ whenever B’ € U{;IIBI.’}.
Again, Zorn’s lemma guarantees such a maximal collection exists.

Now if j > 1 and B € B; we must have
BN B’ # @ forsome B' € U{ZIB{

(otherwise we contradict maximality of B), and for such a pair B, B’ we have diam B <
R/2/71 = 2R/2/ < 2diam B/, so that () holds; in particular B C B’. O

3.5 Remark: The factor “5” in the above lemma can be improved; indeed by defining
Br = {B eB:R/(1+60)F < diamB < R/(1 4+ 6)¥'} with 0 small enough,
the same argument as that used in the above proof establishes a “(3 + ¢)-times covering
lemma” for any ¢ > 0. However there is no such “3-times covering lemma,” as one
sees by taking B = {B,(—pe1) : p < 1} U {By(pe1) : p < 1}. Then UgepB =
{0} U By (—e1) U B (e1), whereas, since all the balls in B contain 0, a pairwise disjoint
subcollection of B must consist just of a single ball B = B,(£pe;) for some p < 1, and
Br(per) D {0} U By(—e1) U Bi(ey) onlyif R>p+2=3p+2(1—p) (> 3p).

3.6 Definition: In the following corollary of 3.4 we use the terminology that a subset
A C X is covered finely by a collection B of balls, meaning that

inf{diamB : x € B e B} =0 Vx € A.

3.7 Corollary. A C X is covered finely (as in Definition 3.6) by a collection B of closed
balls, then there is a pairwise disjoint subcollection B’ C B such that

~

N .
AN\ U.i=lBJ = UBEB/\{Bl,-n,BN}B
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for each finite subcollection { By, ..., By} C B'.

Proof: Without loss of generality we can assume diam B < 1 for each B in B, because
{B € B :diam B < 1} clearly still covers A finely.

Then we can apply the 5-times covering lemma 3.4 to give a pairwise disjoint collection
B’ C B such that 3.4(}) holds. For any By,..., By € B take any x € A4\ U;VZIB]
and, since X \ UJNZ]BJ- is open and B covers A finely, we can then find B € B with
BN (UszlBj) = @ and x € B. By 3.4(%) thereisa B’ € B’ with BN B # @ and

B’ D B. Evidently B’ # B, \7’j:1,...,N,soxEUB/eB/\{Bl ..... BN}B’. O

Proof of 3.3: We can assume p(A,) < oo and ¢t > 0 otherwise the result is trivial. Take
€ (0,1), so that then
O*"(u, Az, x) > 7 for x € Aj.

For § > 0, let B (depending on §) be defined by
B = {closed balls B,(x) : x € A1, 0 < p < 8/2, 1(A2 N By(x)) = twap”" }.

Evidently B covers A; finely and hence there is a pairwise disjoint subcollection B’ C B
so that 3.4 () holds. Since u(A> N B) > 0 for each B € Bandsince By,...,By € B' =
Zj-vzl u(A2NBj) = u(A,N (U;VZIBJ-)) < 1(Az) < oo it follows that B’ is a countable
collection { By, (x1), By, (x2), ...} and hence 3.7 implies

A\ UJN=IBPJ' (x;) C U;)O=N+IBSpj (x;) VN > 1,

and also, by definition of B,

Since 41 C ( ;V=IBPJ. (7)) U (U241 Bsp; (7)), we have
N
55(A41) < ijla)np;’ + 5nZ}ﬁN+1“’nP7
by Definition 2.2, and hence letting N — oo we deduce

TH3s (A1) < pu(4z).

The required result now follows by letting § | O and 7 1 ¢. O

As a corollary to 3.3 we can prove the following “Upper Density Theorem.”
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3.8 Theorem (Upper Density Theorem.) If u is an outer measure on X such that all
Borel sets are measurable (e.g. | is Borel regular) and if A is a jv-measurable subset of X with
w(A) < oo, then

O (u,A,x) =0 for H"-a.e.x € X \ A.

3.9 Remarks: (1) Of course & = H" is an important special case.
(2) If p is open o-finite (i.e. X = U3, V; with V; open and j1(V;) < oo for each
Jj = 1,2,...), then one can drop the hypothesis that u(A) < oo, because we can apply
the theorem with p L V; in place of i to conclude that

O (u, A, x) =0""(u, ANV;,x) =0for H"-ae.x e V;\ A, j =1.2,...,
and hence ®*"(p, A,x) = 0 for H*-a.e. x € X \ A.

Proof of 3.8: Let C be any closed subset of 4, 1 > 0 and S; = {x e X\ 4:
©*" (1, A,x) = t}.Since X \ C isopenand §; C X \ A C X \ C we have ©*"(u, AN
(X\C),x) = ©*"(u,A,x) > t forx € S;. Thus we can apply 3.3 with uL_ A4, S,
X\ C in place of u, Ay, A, to give tH" (S;) < (A \ C) for each closed set C C A. But
infc cosed cca (A \ C) = 0 by 1.22(2), so H"(S;) = 0. Takingt = 1/i,i = 1,2,...,
we thus conclude H* ({x e X \ 4: @*"(u, A, x) > 0}) =0. O

Notice that we have the following important corollary to the above theorem:

3.10 Corollary. If A C R" is L™ -measurable then the densiry ©" (L", A, x) exists L" -a.e.
X E€R", and O" (L, A, x) =0L" ae. x e R"\ Aand =1 L"-ae x € A

Proof: Indeed (wnp™) 1L (AN B,(x)) + (wnp”) 1L (B,(x)\ A) = 1 for each p > 0,
and, by the Upper Density Theorem 3.8, the first term on the left — 0 as p | 0 for
L"-a.e. x € R" \ A while the second term on the left — 0as p | 0 for L"-a.e. x € A. O

We conclude this section with two important bounds for densities of Hausdorfl measure.

3.11 Theorem. For any H" -measurable subset of A of a metric space X :
(1) IfH"(A) < oo, then ©*" (H", A, x) < 1 for H"-a.e. x € A.
(2) If H5(A) < oo for each § > 0 (note this is automatic if A is a totally bounded subset
of X), then @*" (Ho,, A, x) > 27" for H"-a.e. x € A.

3.12 Remark: Since H" > Hj§ > H5, (by Definitions 2.1, 2.2) this theorem implies
27" < @ (H", A, x) < 1for H -ae. x € A4,
provided A is H"-measurable and H" (A) < oo.
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Proof of 3.11: To prove (1), let &, > 0,let 4, = {x € A: ©*"(H",A,x) =t} and
(using 1.22(1) with & = H" L A), choose an open set U D A; such that
WU N A) < H' (A) +e.

Since U is open and since A; C U we have ®*"(H", AN U,x) > t for each x € 4;.
Hence 3.3 (with H" L 4, A;, AN U in place of i, A1, A2) implies that

tH" (Ar) <H'(ANU) <H"(A;) + &

We thus have H"(A;) = 0 for each > 1. Since {x : ©*"(H", A, x) > 1} = US4y,
for any decreasing sequence {7; } withlim#; = 1, we thus have H" {x : ©*"(H", 4, x) >
1} =0, as required.

To prove (2), suppose for contradiction that @*" (H5, L A, x) < 27" for each x in a set
Bo C A with H"(Bg) > 0. Then for each x € By select §x € (0, 1) such that

Ho (AN By(x)) < Zwpp", 0 < p < 8y

2n

Therefore, since B = U32| {x € By :8x >1/j} andsince H§ (AN B,(x)) = HZ (AN
By(x)) for any p < 8/2 (by Definition 2.2), we can select § > 0 and B C By with
H"(B) > 0and

1-6
(1) Hg’(AﬂBp(x))fz—nwnp", 0<p<§/2, x €B.
Now using Definition 2.2 again, we can choose sets C1, Ca, ... with B C U}";IC/, Cin
B # @,diam C; < § Vj, and

1 .
(2) Yjonp; < 7—5H5(B). pj = diamC;/2
Now take x; € C; N B, so that B C AN (U2, Bay; (x;)), and we conclude from (1),
(2) that #5(B) = 0, hence H" (B) = 0, contradicting our choice of B. [

4 Differentiation Theorems

We begin with discussion of the possibility of extending the Comparison and Upper
Density Theorems 3.3, 3.8 to the situation when, in a metric space X, we consider the
upper density of a Borel regular measure u with respect to another Borel regular measure
to- In this case we always assume po is locally finite, so that

4.1 Vx € X thereis p > 0 with po(B,(x)) < oo.
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We note that this is automatic if yo is open o-finite as in 1.21.

The upper densiry ©*#0 (u, x) of n with respect to jig at the point x € X is defined by

: 1(By(x))
limsup —————5 forx € X \ (Up U V,
w2 e v o By () oot
' (%) = 00 for x € Uy \ Vo
0 for x € Vj,

where Uy is the open set consisting of all points x € X with uo(B,(x)) = 0 for some
p > 0and V} is the open set consisting of all points x € X with u(B,(x)) = 0 for some
p > 0. Notice @*#0 (11, x) = @*"(u, x) in the special case when X = R” and po = L".

To prove a useful analogue to the Upper Density Theorem 3.8 in this situation we need to
assume that o has the “Symmetric Vitali” property according to the following definition:

4.3 Definition (Symmetric Vitali Property): An outer measure /Lo on a metric space
X is said to have the Symmetric Vitali Property if given any A C X with po(A4) < oo
and any collection B of closed balls with centers in A which cover A finely (i.e. inf{p :
By(x) € B} = 0 for each x € A), 3 a countable pairwise disjoint collection B’ =
{Bp; (x7) 1 j =1,2,...} C Bwith uo(4\ (U2, By, (x;))) = 0.

Before proceeding, we make some important notes concerning the open set U in 4.2 and
the Symmetric Vitali Property:

4.4 Remarks: (1) First note that there are various scenarios which guarantee that the
open set Up in the definition 4.2 of the density ®*0(u, x) has po-measure zero. For
example if X is separable (i.e. X has a countable dense subset) then Uy can be written as
a countable union of balls B,(x) C Uy with u(B,(x)) = 0, and hence Uy certainly has
[o-measure zero in this case. Also, if ¢ is o-finite and has the Symmetric Vitali Property,
then, because U is trivially covered finely by the collection B of balls B,(x) C Uy with
to(Bp(x)) = 0, there is a countable subcollection of B covering po-almost all of Up), so
again wo(Up) = 0.

(2) Observe also that in case X is a separable this Symmetric Vitali Property is satisfied
by any Borel regular measure o with po(X) < oo which has the “doubling property”
that there is a fixed constant C such that

(1) 1t0(Bap(x)) < Cpio(B,(x)) V closed ball B,(x) C X.

Indeed in this case, given A C X with (A) < oo and a collection B of closed balls
which cover A finely, by the Corollary 3.7 of the 5-times Covering Lemma we can select
a pairwise disjoint subcollection B’ (which is countable by the separability of X, hence
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expressible B' = {B,, (x;) : j = 1.2,...}) with
ANA{Bp, (x1),.... Bpy (xn)} C U;.;N—FIBSPj (x;)
and hence, since 119(Bs,(x)) < po(Bsp(x)) < C3uo(B,(x)) by (1),
1o(ANA{ By, (x1).... Boy (xn)}) = CP3 572y 41 1t0( By, (%)) > 0as N — o0
because ) po(Bp; (X)) = po(U; Bp; (x;)) < oco. Thus
o(AN (U2, By, (7)) =0,

as claimed.

(3) A very important fact is that any Borel regular measure po on R” which is finite on
each compact subset automatically has the Symmetric Vitali Property. In order to check
this we’ll need the following famous covering lemma due to Besicovitch:

4.5 Lemma (Besicovitch Covering Lemma.) Suppose B is a collection of closed balls in
R", let A be the set of centers, and suppose the set of all radii of balls in B is a bounded set.
Then there are sub-collections By, ..., By C B(N = N (n)) such that each B; is a pairwise
disjoint (or empty) collection, and Uj-vlej still covers A—i.e. A C U;VZI (Upes; B).

We emphasize that N is a certain fixed constant depending only on n. For the proof of
this lemma we refer for example to [EG92] or [Fed69].

Proof of Remark 4.4(3): Let 1 be a Radon measure on R”, 4 C R” with u(4) < o0, B
a collection of closed balls with centers in A covering A finely. By the Besicovitch lemma
we can choose By,...,By C {B € B: diam B < 1} such that U_§V=IBJ- covers A. Then
for at least one j € {1,..., N} we get

w(A\ UBijB) <(1- %),U,(A)

and hence taking a suitable finite subcollection { By, ..., Bg} C Bj,
1

R(ANUE, Bi) < (1= 50 )m(A)

Since B covers A finely, and since UszlBk is closed, the collection B = {B e B:
BN (nglek) =@} covers A \ nglek finely, so with 4 \ Ul?:lBk in place of A the

same argument says that we can select new balls Bot1,..., B, € B such that
1
(1) u(A\UE_ By) < (1—ﬁ)M(A\UkQ=IBk)
1
< (1—=)%u(A).
= (1= 55 )"1(4)

Continuing (inductively) in this way, we conclude that there is a pairwise disjoint se-
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quence By, B;, ... of balls in B such that
n(A\URZ Bi) = 0.
Thus Remark 4.4 (3) is established. O

We now want to prove an analogue of the Comparison Theorem 3.3 in case we use
O@*H0(u, x) of 4.2 in place of the upper density ©*" (u, x).

4.6 Theorem. Suppose [, (o are open 0 -finite (as in 1.21) Borel regular measures on a metric
space X, Lo has the Symmetric Vitali Property, and A C X, t > 0. Then

O (u,x) >t forallx € A= u(A) > tpo(A).
Note: A is not assumed to be measurable.

Proof: The proof is similar to the proof of Theorem 3.3, except that we use the Symmetric
Vitali Property for uo in place of the 5 times Covering Lemma: First let Uy be the open
set of j1o measure zero as in the Definition 4.2. As observed in Remark 4.4 (1) we have
1o(Up) = 0. We can assume without loss of generality that # > 0. Let U D A be
open, € (0,7), and consider the collection B of all closed balls B,(x) C U with
x € AN X \ Uy such that u(B,(x)) > tpo(Bp(x)). Evidently B covers A N (X \
Up) finely, so by the Symmetric Vitali Property for wo there is a countable pairwise
disjoint subcollection By, (x;), j = 1,2,..., of B with jo(A \ (U; By, (x;))) = 0and
u(Bp; (x;)) = tino(By, (x;)) for each j, and hence by summing we obtain

Tuo(A4) = pu(Uj By, (x7)) = pn(U).
Since j(A) = infy open, 54 #(U) by Theorem 1.22, we thus have the stated result by
letting ¢ 1 ¢. O
Observe that in particular the above comparison lemma gives

4.7 Corollary. If u, o are as in Theorem 4.6 above then @* 10 (1, x) < oo for po-a.e.
xeX.

Proof: We are given open V; with X = U;V; and uo(V;) < oo for each j. Let pu; =
uwlV;,j=1.2,.... Theorem 4.6, with 4, = {x € V; \ Up : ®*H0(p,x) >t} in place
of A and u; in place of p, implies

o( A1) = 3 (Af) = (V) V1 >0,
so no({x € V; : ®*Fo(u,x) = oo}) <t 'u(V;) for each t > 0, hence po({x € V; :
O*Ho(u,x) = o00}) =0foreach j O

As a second corollary we state the following general Upper Density Theorem:
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4.8 Theorem (General Upper Density Th.) If u, o are Borel regular measures on a
metric space X, if jLo open o -finite (as in 1.21) and has the Symmetric Vitali Property, and if
A 1s a j-measurable subset of X with (A) < oo, then

O™ (L A,x) =0 for po-a.e. x € X \ A.

Proof: The proof is essentially the same as the proof of Theorem 3.8, except that we use
the general comparison theorem 4.6 in place of 3.3. So let C be an arbitary closed subset
of 4,1 >0,and Sy = {x € X\ 4: ©*"0(ul_A,x) > t}. Since X \ C is an open set
containing X \ A we have S; = {x e X \ 4 : ©**o(u_AN(X\C),x) > t}, and
hence, by the comparison theorem 4.6 with S; in place of 4,

t1o(Se) < pu(S: N (ANC)) < pu(A\C).

However by the regularity property 1.22(2) we have infc osed, cca t(A\ C) = 0, so
1o(S;) =0foreachs > 0. O

Using the above theorem we can now prove the general density theorem:

4.9 Theorem. If i is open o -finite (as in 1.21) Borel regular measure on a metric space X , if
W has the Symmetric Vitali Property, and if A is a ju-measurable subset of X, then

’ w(AN By(x)) 1 p-aexcA

im ——————= =

pbo  w(Bp(x)) 0 p-aexeX\A.

Proof: Since X = U; V; with V; open and i(V;) < oo for each j, we can assume without
loss of generality that u(X) < co. Asin Remark 4.4 (1) we see that the set of x € X such
that (B, (x)) = 0 for some p > 0 is an open set Uy with j1(Uy) = 0. For x € X \ Uy

we have
H(Ame(x)) M(Bp(x>\A)
1(Bp(x)) 1(Bp(x))

and the first term on the left — 0 for p-a.e. x € X \ 4 by the Upper Density Theorem 4.8

=1 foreach p > 0,

with wo = u, whereas the second term on the left — 0 for p-a.e. x € A by the same
theorem with po = wand X \ 4 in place of 4. O

The following Lebesgue differentiation theorem is an easy corollary:

4.10 Corollary. If X, u are as in Theorem 4.9 and if f : X — R is locally p-integrable
on X (i.e f is u-measurable and x € X = pr(x) | f|du < oo for some p > 0), then

lim(ju(B,(x))) " /. S A=) foreae x e X
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Proof: Since /' = max{f,0} — max{—f,0} we can assume without loss of generality
that f > 0. Also, we can without loss of generality assume 11 (X ) < 0o because it suffices
to prove the theorem for pi-a.e. x € V;, where V; are the open sets as in 1.21.

According to Lusin’s Theorem 1.24 there are closed sets 4;, j = 1,2,..., with u(X \
(UjA4;)) = 0and f|A; continuous for each j. Then, forany x € X, j € {1,2,...,}
and p > 0,

(1(Bp(x)))™! pr(x) fdp =
((Bp )™ ([ oy (f ) = £ () i+ £ (DR(A; 0 By(x)) + v(Bp(x) \ 4)))

where v is the Borel regular outer measure on X corresponding, in the sense described
in Remark1.13, to the Borel measure vg defined by vo(A) = [, f du. By continuity
of f|A;, Theorem 4.9, and the Upper Density Theorem 4.8 (with v, i in place of u, fo
respectively), we then have, for -a.e. x € 45, (u(B,(x)))™! pr(x) fdu— 0+ f(x)+
0= f(x)aspl 0. O

Of course we can also take the lower density @4° (1, x) of u with respect to 1o which
we define, analogous to the definition of upper density in 4.2, by

- W(By(x))
hrlﬂhnf 110 (B, (+)) forx € X \ (Up U Vp)

4.11 Oy (p, x) = 00 for x € Up \ Vo

0 for x € Vyp,

with Uy, Vp as in 4.2. Then there is an analogue of the Comparison Theorem 4.6 for the
lower density. Preparatory to that we need the following lemma:

4.12 Lemma. If u, jto is any pair of Borel regular measures on a metric space X with ju
o -finite, then there is a Borel set B C X with uo(B) = 0and wl_ (X \ B) absolutely
continuons with respect to fig (i.e. Lo(S) =0 = u(S\ B) = 0).

Proof: In case u(X) < oo we let A = {Borelsets A C X with uo(A4) = 0} and
o = sup{u(A) : A € A}. Choose a sequence A; € A with limu(A;) = «. Then
B =U;A; € Awith u(B) = a. By Borel regularity of j9, if S C X with p4o(S) =0
we can select A € Awith S C A4, and hence u(S\ B) < u(A\B) = u(BU(A\B)) —
w(B) <a—a = 0,s0 B has the required property.

In the general case we select Borel sets 4; with X = U;A; and u(4;) < ooV, and,
applying Case 1 to L A;, we obtain Borel sets B; with po(B;) =0and L (4; \ B))
absolutely continuous with respect to . So, with B = U;Bj, o(S) = 0 = u(S\
B) fzj'ﬂ(smAJ\B)§ZjM(SHAj\Bj)=O- g
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4.13 Remark: The set B is evidently unique up to a set of j-measure zero, so the Borel
regular measure j1 L (X '\ B) is uniquely determined; it is called the absolutely continuous
part of p relative to fg.

We can now prove an analogue of the Comparison Theorem 4.6 for the lower density:

4.14 Theorem. Suppose i, jLo are open o-finite (as in 1.21) Borel regular measures on the
metric space X, t > 0,and A C X with O° (u,x) <t forall x € A.
(1) If ju has the Symmetric Vitali Property then u(A) < tpo(A).

(11) If 1o has the Symmetric Vitali Property then 1(A \ B) < tjo(A), where B (with
wo(B) = 0)isasin4.12.

Proof: The proof is similar to the proof of Theorem 4.6. In view of the open o-finiteness
property we can suppose without loss of generality that both (X)) < oo and po(X) <
0.

Proof of (i): First observe that A C X \ Uy (because, by Definition 4.11, ©4° (u, x) = oo
on Up). Let T > . By Theorem 1.22(1) we can select an open U D A with p1o(U) <
Ho(A) +1—1.
Define

B={By(x) CU:x€Aand u(By(x)) < tiro(Bp(x))}.

B evidently covers A finely, so by the Symmetric Vitali Property for u there is a pair-
wise disjoint collection B, (x;) with (A \ (U; By, (x;))) = 0 and u(By, (x;)) <
tito(Bp, (x;)) foreach j. By summing on j we then have u(A4) < tpo(U) < t(po(A4)+
T —1),so letting T | ¢ gives the required result.

Proof of (i1): With B be as in Lemma 4.12, f = pL (X \ B) is absolutely continuous
with respect to jig, hence the Symmetric Vitali Property for o implies the Symmetric
Vitali Property for /i, so we can apply part (i) with 4 \ B in place of 4 and & in place of
. This gives the required result. O

We define the density @0 (1, x) to be the common value of ®*#0 (y, x) and ©L° (u, x)
at points where these quantities are equal. Thus if Uy, V are the open sets in 4.2 and 4.11,
then

B
lim H(By(x)) if x € X\ (Up U Vp) and this limit exists
e o P8 0By ()
’ (. x) = 00 at points x € Uy \ Vo
0 at points x € Vp,

and ©#0(u, x) is undefined at points where @4 (i, x) < O*Ho(u, x).
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4.16 Theorem (Differentiation Theorem.) Suppose ., o are open o-finite (as in 1.21)
Borel regular measures on the metric space X.

(1) If 1 has the Symmetric Vitali Property, then there is a Borel set S of -measure zero
such that @10 (u, x) (as in 4.15) exists forall x € X \ S.

(11) If o has the Symmetric Vitali Property, then there is a Borel set S of po-measure zero
such that @0 (u, x) exists and is finite for all x € X \ S.

In either case @M0 (u, x) is a Borel measurable function of x € X \ S.

Proof: First assume po(X), (X ) < oo and let A C X be any Borel set.

To prove (i) first note that by the Comparison Theorems 4.6 and 4.14 (i), for any given
a,b >0,

(1) Ok (p,x) <aand ®0(pu,x) > b forallx € A
= pu(A4) < apo(A4) and buo(A4) < p(4).
In particular if 0 < @ < b and
Eap={xeX\Up: 0O (pu,x)<a<b<O"(ux)}
then a ' w(Eqp) < po(Eap) < b 'u(Eqp), which implies that

(2) /'LO(Ea,b) = /’L(Ea,b) =0.

Since {x : OL(n,x) < O*0(u,x)} = Ugp rational, 0<a<b Eap We deduce from (2)
that ©5°(u, x) = ©**0(u, x) for ue-a.e. x € X \ Uy, so indeed ®H0 (14, x) exists (in
[0, 00]) for p-a.e. x € X \ Up. ®*0(pu, x) is also defined in Uy by Definition 4.15. Thus

OHo(p, x) is well-defined ji-a.e., so by Borel regularity of p there is a Borel set S with
1(S) = 0such that ®#0(p, x) is well-defined for all x € X \ S.

The measurability of ®#0(u, x) as a function of x € X \ S is proved as follows: For
each fixed p > 0, u(B,(x)) and po(By(x)) are positive upper semi-continuous func-
tions of x € X \ (S U Vy U Up), hence are Borel measurable functions on X \ (S U
Vo U Up), and hence so is the quotient j(By(x))/po(By(x)). Hence OH0(pu,x) =
lim; 00 (B1/i(x))/pto(B1i(x)) is Borel measurable on X \ (S U Vo U Uyp). Finally, by
Definition 4.15, ©#0 (1, x) = 0o on Up \ Vy and ®#0 (i, x) = 0 on Vp. Since Uy, Vy are
open we then conclude that indeed @0 (u, x) is Borel measurable in case p, wo are finite
measures. In the general open o-finite case, when there are open sets V; with U; V; = X
and 1 (V;), pno(Vj) < oo, we apply the above with LV}, o L V; in place of w, o
respectively.

To prove (ii), note first that by Corollary 4.7 we have

(3) O*H0(u, x) < oo for po-a.e. x € X.



§4 oF CHAPTER 1: DIFFERENTIATION THEOREMS 27

Asin4.12, let B be a Borel set of po-measure zero such that & = L (X\ B) is absolutely
continuous with respect to po. Then & has the Symmetric Vitali Property, and hence
the argument of (i) above applies with & in place of i to give

(4) HO(Ea,b) = /’L(Ea,b \ B) =0,

in place of (2). Hence ®#0 (1, x) exists for po-a.e. x € X, and by (3) it is also finite for
lo-a.e. x € X, hence there is a Borel set S with 11o(S) = 0 such that ®#0(, x) exists
and is finite forall x € X \ S.

The measurability of ®#0 (., x) follows similarly to case (i) above. O

Next, recall the abstract Radon-Nikodym theorem, which says that if p, po are abstract
o-finite measures on a o-algebra A of subsets of an abstract space X, and if j is absolutely
continuous with respect to pg (i.e. A € A with uo(A4) =0 = pu(A4) = 0), then there is
a non-negative A—measurable function ® on X such that

417 W(A) = /@duo, Ac A
A

In these circumstances the function © is called “the Radon-Nikodym derivative” of u
with respect to o, denoted % or Dy, 1k

We show here that in case [, o are Borel regular open o-finite (as in 1.21) on the met-

ric space X with po having the Symmetric Vitali Property, then the Radon-Nikodym

derivative D, u(x) is just the density @0 (p, x) = lim, o %:

4.18 Theorem (Radon-Nikodym.) Suppose 1, jLo are open o-finite (as in 1.21) Borel regu-
lar measures on X, and |1o has the Symmetric Vitali Property.

(1) If w is absolutely continuous with respect to g (ie. E C X with uo(E) = 0 =
W(E) = 0and hence . also has the Symmetric Vitali Property), then

(%) u(A) = /A®/’“0 (1, x) dpo(x) for every Borel set A C X.

(11) If we drop the condition that w is absolutely continnous with respect to Lo, then in
place of (%) we can still conclude that there is a Borel set Z with j1o(Z) = 0 and

®) p(A) = [ 00 (pu.x) dpo(x) + (1L 2)(4)
for each Borel set A C X.
(111) Finally, if  also has the Symmetric Vitali Property, then we get (1) with
Z={xeX :0"(yu,x) =00}
(which is a set of Lo-measure zero by 4.16(i1)).
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4.19 Remarks: (1) By Remark 4.4 (3) we always have the conclusion of 4.16 (iii) if X =
R”".

(2) n L Z is called the singular part of u with respect to jio.

Proof of Theorem 4.18: Since ., j1¢ are open o-finite, we can assume (X ) < 0o, it (X) <

00. Let S be a Borel set of pg-measure zero as in Theorem 4.16. For any Borel set
ACX\S let

v(4) = [ 0" (u.x) dpuo(x)

and for any subset A C X \ S let v(A) = infg54,B Borel V(B). By Remark 1.13, v is a
Radon measure and, with0 < a < b, Agp = {x € A1a < ©"°(u,x) < b} and 4 any
Borel set, we have

apo(Aap) = v(Aap) < buo(Aas).
On the other hand the Comparison Theorems 4.6, 4.14 (i) imply
apo(Aap) = 1(Aap) < bpo(Aap),

and so

M(Aa,b> =< V(Aa,b) = /’L(Aa,b)

|

a
b
and it follows that v(A) = u(A). Thus () is proved.

In the general case (when we allow the possibility that there are sets A with po(A4) =0
and u(A) > 0), we can apply the previous argument to the Borel regular measure j1 =
wL (X \ B), where B is the set of jtg-measure zero of Lemma 4.12. This gives

w(A\ B) = /@”‘)(,u,x) dpo V Borel set A C X.
A

Thus 4.16 (1) holds with Z = B.

Finally, in case p also has the Symmetric Vitali Property, Theorem 4.16(i) establishes
that ®#0 (11, x) exists p-almost everywhere (as well as po-almost everywhere) in X. On
the other hand if X = X \ Upand A C {x € X : @0 (p,x) < 0o} (= UL {x € X :
©*0(,x) < n}) then by Theorem 4.14(i)

po(4) =0 = pu(4) =0,

and we can therefore apply (*) with u L (X \ Z), Z = {x : ©*0(u, x) = oo}, in place
of p. Hence (iii) is proved. O
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5 Radon Measures, Representation Theorem

In this section we work mainly in locally compact Hausdorff spaces, and for the reader’s
convenience we recall some basic definitions and preliminary topological results for such
spaces.

Recall that a topological space is said to be Hausdorff if it has the property that for every
pair of distinct points x,y € X there are open sets U,V withx € U, y € V and
UNV = Q. In such a space all compact sets are automatically closed, the proof of which is
as follows: observe that if x ¢ K then for each y € K we can (by definition of Hausdorfl
space) pick open Uy, V,, with x € Uy, y € Vy and Uy, N V,, = @. By compactness of K
there is a finite set yq,...,yy € K with K C Uj.V:lVyj. But then ﬁj.vleyj is an open
set containing x which is disjoint from U; V}, and hence disjoint from K, so that K is
closed as claimed. In fact we proved a bit more: that for each x ¢ K there are disjoint
open sets U, V with x € U and K C V. Then if L is another compact set disjoint from
K we can repeat this for each x € L thus obtaining disjoint open Uy, Vy with x € Uy and
K C Vy, and then compactness of L implies 3x1,...,xp € L such that L C UjM=1ij
and then Ujle Uy, and ﬂjle V, are disjoint open sets containing L and K respectively.
By a simple inductive argument (left as an exercise) we can extend this to finite pairwise
disjoint unions of compact subsets:

5.1 Lemma. Let X be a Hausdorff space and K, ..., Ky be pairwise disjoint compact
subsets of X. Then there are pairwise disjoint open subsets Uy, ..., Uy with K; C U; for
eachj=1,...,N.

Notice in particular that we have the following corollary of Lemma 5.1:

5.2 Corollary. A compact Hausdor(f space is normal: i.e. given closed disjoint subsets Ky, K,
of a compact Hausdor[f space, we can find disjoint open Uy, Uy with K; C Uj for j = 1,2.

Most of the rest of the discussion here takes place in locally compact Hausdorff space: A
space X is said to be locally compact if for each x € X there is a neighborhood Uy of x
such that the closure U of Uy is compact.

An important preliminary lemma in such spaces is:

5.3 Lemma. If X is a locally compact Hausdorff space and V' is a neighborhood of a point
x, then there is a neighborhood Uy of x such that U x is a compact subset of V.

Proof: First pick a neighborhood W of x such that W is compact and define W = Wy N
V. Then W is compact and hence, with the subspace topology, is normal by Corollary 1
above. Hence since W \ W and {x} are disjoint closed sets in this space, and since open
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sets in the subspace W can by definition be expressed as the intersection of open sets
from X with the subset W, we can find open Uy, U, in the space X with x € Uy, W \
W C Uyand Uy N Uy, N W = @. The last identity says Uy N W C W \ U,, whence
x e U NW CW\U, CW CV,andsince W \ U, is a closed set, we then have
xeUiNW cU NW cCW\U, CV,sothelemma is provedwith Uy = Uy nW. O

Remark: In locally compact Hausdorff space, using Lemmas 5.1 and 5.3 it is easy to check
that we can select the U; in Lemma 5.1 above to have compact pairwise disjoint closures.

The following lemma is a version of the Urysohn lemma valid in locally compact Haus-
dorff space:

5.4 Lemma. Ler X be a locally compact Hausdor{f space, K C X compact, and K C V, V
open. Then there is an open U D K withU C V, U compact, and an f : X — [0, 1] with
f = 1inaneighborbood of K and f =0on X \ U.

Proof: By Lemma 5.3 each x € K has a neighborhood Uy with Uy C V. Then by
compactness of K wehave K C U = Uj-vzl Uy, for some finite collection xy, ..., xy € K
and U = Uj.vzlﬁxj C V. Now U is compact, so by Corollary 1 it is a normal space and
the Urysohn lemma can be applied to give fo : U — [0,1] with fo = 1 on K and
and fo = 0on U \ U. Then of course the function f; defined by fi = fo on U and
fi =00n X \ U is continuous (check!) because f|U is continuous and £ is identically
zero (the value of £|X \ U) on the overlap set U \ U = U N (X \ U). Finally we let
f =2min{ f1. 1} and observe that f is then identically 1 in the set where f; > , which
is an open set containing K, and f evidently has all the remaining stated properties. O

The following corollary of Lemma 5.4 is important:

5.5 Corollary (Partition of Unity.) If X is a locally compact Hausdor{f space, K C X is
compact, and if Uy, ..., Uy is any open cover for K, then there exist continuons ¢j : X —
[0, 1] such that support ¢; is a compact subset of U; for each j, and Zj-vzl%' =lina
neighborhood of K.

Proof: By Lemma 5.3, for each x € K thereisa j € {1,..., N} and a neighborhood
Uy of x such that Uy is a compact subset of this U;. By compactness of K we have
finitely many of these neighborhoods, say Uy, ..., Ux,, with K C UN_ U,,. Then for
each j = 1,..., N we define V; to be the union of all Uy, such that U, C U;. Then
the V; is a compact subset of U; for each j, and the V; cover K. So by Lemma 5.4 for
each j = 1,...,N wecan select ; : X — [0,1] withyy; = lonV; and ¥; = O on
X \ W; for some open W; with W ; a compact subset of U; and W; D V. We can also use
Lemma 5.4 to select fo : X — [0, 1] with fo = 1 in the neighborhood U, V; of K and
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fo=0on{x: Zszll/fj (x) = 0}. (This latter set is closed and has (open) complement
which is a neighborhood of the compact set UI_, V; and so we can indeed construct such
Jo by Lemma 5.4.) Then set 9 = 1 — f and observe that by construction vazowi >0
everywhere on X, so we can define continuous functions ¢; by

Vi
Yisovi

Evidently these functions have the required properties. O

0 = j=1,....N.

We now give the definition of Radon measure. Radon measures are typically used only in
locally compact Hausdorff space, but the definition and the first two lemmas following
it are valid in arbitrary HausdorfT space:

5.6 Definition: Given a Hausdorff space X, a “Radon measure” on X is an outer measure
w1 on X having the 3 properties:

w is Borel regular and 1 (K) < 0o V compact K C X (R1)

u(A) = inf  p(U) for each subset A C X (R2)
U open, UDA

w(U) = sup 1(K) for each open U C X. (R3)

K compact, KCU

Such measures automatically have a property like (R3) with an arbitrary u-measurable
subset of finite measure:

5.7 Lemma. Let X be a Hausdorff space and i1 a Radon measure on X. Then j antomatically
has the property

pw(A)= sup  u(K)
KCA, K compact

Jor every pi-measurable set A C X with 1(A) < oo.

Proof: Let ¢ > 0. By definition of Radon measure we can choose an open U containing
Awith u(U\ A) < ¢, and then acompact K C U with u(U \ K) < ¢ and finally an open
W containing U \ A with u(W \ (U \ A)) < e (sothat u(W) <e+ u(U \ A) < 2¢).
Then we have that K \ W is a compact subset of U \ W, which is a subset of 4, and also

u(AN(K\W)) = w(U\(K\W)) = u(U\K) + p(W) = 3e.
which completes the proof. O
The following lemma asserts that the defining property (R1) of Radon measures follows

automatically from the remaining two properties ((R2) and (R3)) in case y is finite and
additive on finite disjoint unions of compact sets.
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5.8 Lemma. Let X be a Hausdorff space and assume that  is an outer measure on X satis-
fying the properties (R2), (R3) above, and in addition assume that

w(Kq1 U Kz) = p(Ky) + n(Kz) < oo whenever Ky, K, are compact and disjoint.
Then (R1) holds and hence u is a Radon measure.

Proof: Note that (R2) implies that for every set A C X we can find open sets U; such
that A € N;U; and u(A) = u(N;U;). So to complete the proof of (R1) we just have to
check that all Borel sets are y-measurable; since the pu-measurable sets form a o-algebra
and the Borel sets form the smallest o-algebra of subsets of X which contains all the open
sets, we thus need only to check that all open sets are u-measurable.

Let ¢ > 0 be arbitrary, Y an arbitrary subset of X with u(Y) < oo and let U be an
arbitrary open subset of X. By (R2) we can pick an open set V O Y with u(V) <
1(Y)+eand by (R3) we can pick acompactset K; C VNU withu(VNU) < u(Ky)+e,
and then a compact set K, C V' \ K with u(V \ K1) < u(Kz) + &. Then

p(V\NU)+p(VNU) < u(V\ K1)+ p(Ki) +e
< w(K2) + (K1) + 2¢
(K2 U Ky) + 2 (by (1))
pw((V\ K1) U K1) +2e = pu(V) +2e < u(Y) + 3e,

=

hence u(Y\U)+u(YNU) < u(V\U)+p(VNU) < u(Y)+3e which by arbitrariness
of egives u(Y \U) + pn(Y NU) < p(Y), which establishes the u-measurability of U.
Thus all open sets are j1-measurable, and hence all Borel sets are t-measurable, and so (R1)
is established. O

The following lemma guarantees the convenient fact that, in a locally compact space such
that all open subsets are o-compact, all locally finite Borel regular outer measures are in
fact Radon measures.

5.9 Lemma. Let X be a locally compact Hausdorff space and suppose that each open set is
the countable union of compact subsets. Then any Borel regular outer measure on X which is
finite on each compact set is automatically a Radon measure.

Proof: First observe that in a Hausdorff space X the statement “each open set is the
countable union of compact subsets” is equivalent to the statement “X is o-compact (i.e.
the countable union of compact sets) and every closed set is the countable intersection
of open sets” as one readily checks by using De Morgan’s laws and the fact that a set is
open if and only if its complement is closed. Thus we have at our disposal the facts that
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X is o-compact and every closed set is a countable intersection of open sets. The latter
fact enables us to apply the Theorem 1.22 on Borel regular outer measures, and we can
therefore assert that

(1 wpA) = v ian Up,(U) whenever A C X has the property
open, AC
3 open V; with A C U;V; and u(V;) < oo Vj
and
(2)  wu(4)= sup pu(C), provided A = U; A; with

C closed, CCA . .
< Aj is p-measurable and 1 (A4;) < oo V j.

Now observe that, in a locally compact Hausdorff space X, for each compact K € X
there is an open set V' D K such that V' (the closure of V) is compact. If X = U, K;
where each K is compact, that we can apply this with K; in place of K, and we deduce
that there are open sets V; in X such that U;V; = X and u(V;) < oo for each j, and so
in this case (when X is 0-compact) the identity in (1) holds for every subset A C X; that
is

w(A) = Uop;rr:fAcU'u(U) forevery A C X,
which is the property (R2). Next we note that if A C X is jt-measurable, then we can
write A = UjAj, where A; = AN K (because X = U; K;) and u(A4;) < u(K;) < oo
for each j, so (2) actually holds for every p-measurable A4 in case X is o-compact (i.e. in
case X = U2, K; with K; compact), and for any closed set C we can write C = U;C;
where C; is the increasing sequence of compact sets given by C; = C N (Ulj _,Ki)and so
p(C) = lim; u(C;) and hence u(C) = supgcc, k compace #(K)- Thus in the o-compact
case (2) actually tells us that 4(4) = SUPg 4 K compace 4(K) for any p-measurable set A.
This in particular holds for A = an open set, which is the remaining property (R3) we
needed. O

Next we have the following important density result:

5.10 Theorem. Let X be a locally compact Hausdorff space, i a Radon measure on X and
1 < p <oo. Then C.(X) is dense in LP (); that is, for each ¢ > 0 and each f € L? there
isag € Co(X)suchthat||g — flp <e.

In view of Remark 1.13 and Lemma 5.9 we see that Theorem 5.10 directly implies the
following:

5.11 Corollary. If X is a locally compact Hausdorff space such that every open set in X is
the countable union of compact sets, and if . is any Borel regular outer measure on X which
is finite on each compact set, then the space C. (X ) is dense in L' ().
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Proof of Theorem 5.10: Let f : X — R be u-measurable with || |, < oo and let
& > 0. Observe that the simple functions are dense in L? (1) (which one can check using
the dominated convergence theorem and the fact that both f4 and f_ can be expressed
as the pointwise limits of increasing sequences of non-negative simple functions), so we
can pick a simple function ¢ = ZjN:l
and A; are pairwise disjoint j-measurable subsets of X, such that || f — ¢|, < . Since
lell, < lle — flp + | fll, < oo we must then have u(A4;) < oo for each j. Pick
M > max{l|ai],...,|an|} and use Lemma 5.7 to select compact K; C A; with p(A4; \
K;) < &?/(2PTIMPN). Also, using the definition of Radon measure, we can find open
U; D K; with u(U;\K;) < &? /(2P M P N)) and by Lemma 5.7 we can assume without

loss of generality that these open sets Uy, . .., Uy are pairwise disjoint (otherwise replace

ajXa;, where the a; are distinct non-zero reals

Uj by Uy N UP, where UP, ..., Uy are pairwise disjoint open sets with K; C U?). By
Lemma 5.4 we have g; € C.(X) with g; = a; on K, {x : gj(x) # 0} contained in a
compact subset of U}, and sup |g;| < |a;|, and hence by the pairwise disjointness of the
U; we have that g = Zjvzlgj agrees with ¢ on each K; and sup |g| = sup |¢| < M.
Then ¢ — g vanishes off the set U; ((U; \ K;) U (A4, \ K;)) and we have [ [¢ —g|? dp <
Y Sk ua—k,) |0 =817 d < 2M)P37; (u(A; \ Kj) + u(U; \ Kj)) < &, and
hence [ £ gllp = 11/ = ¢llp + 9 — gllp < 26, as required. O

We now state the Riesz representation theorem for non-negative functionals on the space
K+, where, here and subsequently, K denotes the set of non-negative C. (X, R) func-
tions, i.e. the set of continuous functions f : X — [0, c0) with compact support.

5.12 Theorem (Riesz for non-negative functionals.) Suppose X is a locally compact
Haunsdorff space, A : K+ — [0, 00) with A(cf) = cA(f), A(f +g) = A(f) + A(g)
whenever c > 0and f, g € K4, where K 4 is the set of all non-negative continuous functions
f on X with compact support. Then there is a Radon measure u on X such that A(f) =

Jx fduforal feKy.

Before we begin the proof of 5.12 we observe the following 2 facts about the functional
A

5.13 Remarks (1): Observe that if f, g € K4+ with f < g then g — f € K4 and hence
Ag) =A(f + (&= /) =A(f) + (g = S) = A(f).

(2) If K is compact, if support f C K and if g € K4 with g = 1 on K, then we have
f < (sup f)g and f g = f, so by Remark (1) above we have

(%) A(f) = (sup f)A(g). f €Ky, support f C K.

Notice in particular that if U is an arbitrary neighborhood of K then we can by Lemma 5.4
select neighborhood W of K with W a compact subset of U and a g € K4 with g = 1
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in a neighborhood of W, g < 1 everywhere, and support g C U, whence the above
inequality with W in place of K implies

() sup A(S) < inf Ag).
feKy, f<1,support fCW g€K4,g<1,g=1inanhd. of W, support gCU

Proof of Theorem 5.12: For U C X open, we define

(1) n(U) = sup ACS),

feK4, f<1,supportfCU

and for arbitrary A C X we define

2 A) = inf U).
@ pA) =, ik u(©)
Notice that these definitions are consistent when A is itself open. Notice also that by
() we have u(K) < oo for each compact K; indeed (*x*) and the definitions (1), (2)
evidently imply

(3) w(K) = A(g) for each compact K C X,

in

g€k 4,g<l,g=linanhd.of K
Next we prove that i is an outer measure. To see this, first let Uy, Ua, . .. be open and
U = U;Uj, then for any f € K4 with sup f < 1 and support f C U we have, by
compactness of support f, that support f C U ]N=1 U; for some integer N, and by using a
partition of unity ¢, ..., ¢ for support f subordinateto Uy, ..., Uy (see the Corollary
to Lemma 5.4 above), we have A(f) = Zjvzlk(goj f) < Z;VZIM(UJ-). Taking sup over
all such f* we then have u(U) < 3 °;u(U;). It then easily follows that u(U;4;) <
> ;1(Ay) for each j. Since we trivially also have (@) = 0and A C B = pu(4) <
1(B) we thus have that u is an outer measure on X.

Finally we want to show that p is a Radon measure. For this we are going to use
Lemma 5.8, so we have to check (R2), (R3) and the additivity property u(K; U K3) =
1(K1) + (K2) whenever K1, K, are disjoint compact sets. But hypothesis (R2), (R3)
are true by the definitions (1), (2), so we only have to check the the additivity on dis-
joint compact sets. In fact if Ky and K3 are disjoint compact subsets then for ¢ > 0
we can use (3) to find g € K4 with g < 1, g = 1 in a neighborhood W of K; U K,
and with A(g) < u(K; U K3) + &. By Lemma 5.1 we can then select disjoint open
Uy, U, with K1 C Uy and K, C Us, and by Lemma 5.4 we can select fi, f> € K4 with
/i = 1in a neighborhood of K such that support f; is a compact subset of U; and
fi < leverywhere, j = 1,2. Thenby (3) u(Ki) + u(Kz) <A(fi-g) +A(f2-g) =
A(fi+ f2)-g) = Ag) < n(K1 U Ksz) +e. Thus u(Ky) + pn(K2) < u(Ki U K»),
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and of course the reverse inequality holds by subadditivity of i, hence the hypotheses of
Lemma 5.8 are all established and j is a Radon measure.

Next observe that by (%) we have A(h) < u(supporth) suph, h € K4, and hence
(observing that A is the uniform limit of max{4 — 1/n,0} in X') we have

(4) A(h) < u({x :h(x)>0}) suph, h e K.
For f € Ky and e > 0, we can select points 0 = #9 <11 <t < ... <ty—_1 <sup f <
ty with#; —t;_; < eforeach j =1,...,N and with u({f~'{t;}}) = O foreach j =

1,...,N. Notice that the latter requirement is no problem because w({f~1{t}}) = 0
for all but a countable set of 7 > 0, by virtue of the fact that u{x € X : f(x) > 0} < oo.

Now let U; = f~Y{(tj-1,¢)}, j = 1,...,N. (Notice that then the U; are pair-
wise disjoint and each U; C K, where K, compact, is the support of f.) Now by
the definition (1) we can find g; € K4 such that g; < 1, supportg; C Uj, and
A(gj) = n(U;) —e/N. Also for any compact K; C U; we can construct a function
hj € K4+ with h; = 1 in a neighborhood of K; U support g, support h; C Uj, and
hj < 1 everywhere. Then h; > g;, hj < | everywhere and support /; is a compact
subset of U; and so

(5) w(Uj) —e/N < A(g;) = AMhj) = u(Uj). j=1.....N.

Since p is a Radon measure, we can in fact choose the compact K; C U; such that
w(Uj \ Kj) < ¢/N. Then, because {x : (f — ij-vzlhj)(x) > 0} C U(U; \ Kj),
by (4) we have

(6) MS = fXihi) s e sup f

Then by using (5), (6) and the linearity of A (together with the fact t;_1h; < fh; <
tjhj) foreach j = 1,..., N), we see that

Yiniti—in(Up) —esup f < A(fX;h) < A(f) < A(f X ki) +esup f
< 3 m(U;) + esup f.
Since trivially
Y tan(U)) < /Xf dp < Y0 t1(U)),
we then have

—e(u(K) +sup f) < =31y (tj — tj—1)u(U;) —esup f

= [ fdu=2(s)

= Zjl'\;l(tj —tj—1)u(U;) + esup f < e(u(K) + sup f),
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where K = support f. This completes the proof of 5.12. [

We can now state the Riesz Representation Theorem. In the statement, C. (X, H) will
denote the set of vector functions f : X — H which are continuous and which have
compact support, where H is a given finite dimensional real Hilbert space with inner
product (, ) and inner product norm ||.

5.14 Theorem (Riesz Representation Theorem.) Suppose X is a locally compact Haus-
dorff space,and L : C.(X, H) — R is linear with
sup L(f) < oo whenever K C X is compact.
feCe(X,H),| fI<1,support fCK

Then there is a Radon measure |1 on X and Borel measurable v : X — H with |v] = 1
n-a.e.on X, and

L(f) :/X<f,v>dufonmyf e C.(X,H).

Proof: By using an orthonormal basis for H,, it suffices to prove the theorem with H =
R”. We first define

Af) = sup L(w)
weCe(X,R"),|o|< f

for any f € K4. We claim that A has the linearity properties of the lemma. Indeed
it is clear that A(¢f) = cA(f) for any constant ¢ > 0 and any f € K. Now let
f, & € K4, and notice that if 1, w2 € C.(X,R") with |o;| < f and |wz| < g, then
w1 + w2| < f + g and hence A(f + g) > L(w1) + L(wz). Taking sup over all such
w1, wp we then have A(f 4+ g) > A(f) + A(g). To prove the reverse inequality we let
w € C.(X,R") with |o| < f + g, and define

. - & i
o) = yerie ff+g>0 0, — yerad ff+g>0
0 ff+g=0, 0 if f+g=0.

Then w1 + w2 = o, |w1| < f, |w2] < g and it is readily checked that w1, w, €
C:(X,R"). Then L(w) = L(w1)+L(w2) < A(f)+A(g), and hence taking sup over all
suchw we have A(f +¢g) < A(f) + A(g). Therefore we have A(f +g) = A(f) +A(g)
as claimed. Thus A satisfies the conditions of the lemma, hence there is a Radon measure
u on X such that

)L(f):/de,u, feks, j=1.....n.

That is, we have

(%) sup L(w) = /Xf du, feky.

weCc(X,R"), lw|<f
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Thus if j € {1,...,n} we have in particular (since |fe;| = |f| € K4 forany f €
C:(X,R)) that

IL(fe;)| < /leldu = £l Vf € Ce(X,R).

Thus L;(f) = L(fe;) extends to a bounded linear functional on L' (1), and hence
by the Riesz representation theorem for L!(u) we know that there is a bounded -
measurable function v; such that

L(fe)) = [ fodu. [ €CeX.R).

Since any f = (f1...., fa) can be expressed as f = Y_7_, fje;, we thus deduce

(%) L(f)= [ f-vdu. feCaX.R),

where v = (v1,...,v,). Then it only remains to check that |[v| = 1 p-a.e. To see this,
first note that by using the Cauchy-Schwarz inequality in the integral on the right of ()
we have for any f € K4 that

Q) sup |L(g)| = [ fIvldp.

lgl<f.geCc(X,R")

On the other hand, we know (since C. (X, R") is dense in L (1)), we can find a sequence
gk € Cc(X,R") such that lim [y |gx — V| = 0, where D is [v|~!v at points where v # 0
and D = 0 at all other points. Then of course lim [ |gx —V| = 0 with |g¢| < 1, provided
we define gx = R(gx), with R(y) = |y|~tyif |y| > land R(y) = y if |y| < 1, because
IR(y) —v| < |y —v|forany y,v € R* with |[v| = 1. Thus we deduce that actually
equality holds in (i). On the other hand by (%) for any f € K we have that the left side
of (i) is [y f du. Thus finally [y fdu = [y f|v|du, and this evidently implies [v| = 1
p-a.e., again using the density of C.(X,R) in L!(x). O

Using the Riesz Theorem 5.12 we can deduce the following compactness theorem for
Radon measures:

5.15 Theorem (Compactness Theorem for Radon Measures.) Suppose {jr} is a se-
quence of Radon measures on the locally compact, o-compact Hausdorff space X with the
property supy i (K) < oo for each compact K C X. Then there is a subsequence { jux+}
which converges to a Radon measure . on X in the sense that

lim pir(f) = p(f) for each f € K(X).
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where K(X ) denotes the set of continuous functions f : X — R with compact support on X
and where we use the notation

()= [ fdu feK(x).

Proof: Let K, K. ... be an increasing sequence of compact sets with X = U; K; and
let Fjx : C(K;j) — R be defined by Fji(f) = ij fdue, k = 1,2,.... By the
Banach-Alaoglu theorem (which guarantees weak™ compactness of the closed unit ball in
the Banach space of bounded linear functionals on C (K} )) there is a subsequence Fj x/
and a non-negative bounded functional F; : C(K;) — R with Fj/(f) — F;i(f)
for each f € C(K;). By choosing the subsequences successively and taking a diagonal
sequence, we then get a subsequence jts and a non-negative linear F : K(X) — R
with [y fduxr — F(f) for each f € K(X), where F(f) = F;j(f|K;) whenever
spt f C K;. (Notice that this is unambiguous because if spt f C K; and £ > j then
Fi(f|K¢) = Fj(f|K;) by construction.) Then by applying Theorem 5.12 we have
a Radon measure y on X such that F(f) = [y fdu for each f € K(X), and so
Jx fdper — [y fdpforeach f e K(X). O



CHAPTER 1 PROBLEMS

1.1 (1) If Ay, A, are non-empty compact subsets of R, prove Jdaj € A;, j = 1,2, such
that |as —ay| = (L' (A1) + £'(A2)). (L' denotes Lebesgue measure on R.)

(11) Let the notation be as in the proof of Theorem 2.7 and j € {1,...,n}. By applying
the result of (i) above to the sets A1 = 7 (€;(§1) N A), A2 = n(£;(&) N A), prove that
if A C R”" is compact then diam(S;(A4)) < diam(A4).

(iii) If A is compact, prove that £ (7 (AN ¢;(£))) (where £; (£), 7 are as in the proof of
Theorem 2.7) is an upper semi-continuous function of & if £ is restricted to lie in the j-th

coordinate hyperplane x/ = 0.
Hint: For & > 0 we can select open U C R with w(ANE; (£)) C U and L1 (U) < LY (m(ANL; (§))) +e.

(iv) Using the result of (iii) prove that A compact = S;(A) is compact (where S;(A) is
the Steiner symmetrization of A as in the proof of Theorem 2.7).

1.2 (Borel regularity of Hausdorfl measure.) Let H" be m-dimensional Hausdorfl (outer)

measure on a metric space X, d. Prove that H™ is Borel regular.
Note: As mentioned in lecture, H" evidently has the property that H"”* (4 U B) = H"(A) + H"(B)
whenever d (A, B) > 0, so all Borel sets are H""-measurable by the Caratheodory theorem 1.15 of the text;

thus for this question you merely need to check (directly from the definition of #”") that for every set A C X
there is a Borel set B D A with H"" (B) = H"" (A).

1.3 Let X, d be a metric space and let ¢ be a Borel-regular outer measure on X which

is finite on each ball B,(x) C X. In §3 we proved that the lower density ©%(u, x)(=
(Bp(x))

liminf, o Ma)np” ) is Borel measurable on X.

With a similar argument, prove that ®*" (i, x) = limsup, , M(%p(,)f)) is also Borel mea-
surable.
Hint: Start by proving that limsup,, M(ai"p(,),()) = limsup, o %, where B, (x) denotes the open

ball of radius p and center x.

1.4 Suppose X is any metric space and u is an open o-finite (as in 1.21) Borel regular outer
measure with the Symmetric Vitali property. (For example this is true by Corollary 3.7
f X =R"and u = L".) f issaid to be approximately continuous at x € X with respect
to p if u(Bp(x)) > 0 for each p > 0 and

lpjig(u(Bp(X)))_‘M{({y € Bp(x) : |/ (y) = f(x)| z ¢}) =0 Ve > 0.

Prove that if f is u-measurable on X then f is approximately continuous at -a.e. x € X.

Hint: Use Lusin’s Theorem 1.24 and the Upper Density Theorem 4.8.

1.5 If U isany bounded open set in R” and § > 0, prove there is are closed balls B, (x;) C
U with p; <8V, By, (xi) N Bp; (x;) = DVi # j,and L" (U \ (U2 B, (x;))) = 0.
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Hint: Using the cubes 274 ([j1, j1 + 1] X -+ X [Jins jn + 1]), f1s+++sJn € Z,i € Z+, decompose U as a
union U52 | C; of closed cubes C; of diameter < § and with pairwise disjoint interiors, and for each ; select
aball B; C interior C; with diam B; > edge-length of C; /2. Then £"(C; \ Bj) < (1 —6,)L"(C;),
On = w, /4", and hence L (U\ (U2 B;)) < (1—6,)L" (U),s0 En(U\(UjN=l Bj)) < (1—9,1}\,£n(U)
for suitably large N. Since U \ (U;_| B, ) is open, we can repeat this process, starting with U \ (U;_, B;)
in place of U. '
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Here we develop the necessary further analytical background material needed for later
developments. In particular we prove some basic results about Lipschitz and BV func-
tions, and we also present the basic facts concerning C* submanifolds of Euclidean space.
We also discuss the area and co-area formulae and first and second variation formulae for
C? submanifolds of Euclidean space. These latter topics will be discussed in a much more
general context later.

1 Lipschitz Functions

If X is a metric space with metric d, recall that a function f : X — R is said to be
Lipschitz if there is L < oo such that

1.1 |f(x)— f(y)l < Ld(x.y) ¥x,y € X.

Lip f denotes the least such constant L.
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First we have the following basic extension theorem.

1.2 Theorem. If A is a non-empty subset of X and f : A — R is Lipschitz, then3 f : X —
R with Lip f = Lip f, and f = f|A. Also, f can be chosen so that supy | f| = sup, | f|.

Proof: With L = Lip f, we claim that
f(x) = inf (f(2) + Ld (x,2)), x € X,
z

has the required properties, except possibly the requirement supy | f| = sup, |f|. To
check this, first note that f(x) > —oo for each x € X, because if xo € A then f(z) +
Ld(x,z) = f(x0) + f(2) = f(x0) + Ld(x,2) = f(x0) + L(d(x,2) — d(x0.2))
f(x0) — Ld(x,x¢) by the triangle inequality. Also, if x € A then f(x) — f(x)
infrea(f(z) = f(x) + Ld(x,2)) = infzea(=Ld (x,2) + Ld(x,2)) = 0,50 f(x) =
£ (x), and of course the reverse inequality holds trivially. Hence f(x) = f(x) for
x € A. So f is well-defined as a map X — R and it agrees with f on A.

v

For any x1,x, € X

f(x1) = f(x2) = sup inf (f(z1) + Ld(x1,21) — f(22) — Ld (x2,22))

z,€A4 21€4

=< sup (Ld(x1,12) — Ld(X2,Z2)) < Ld(xl,X2)

Vé) €A

and the reverse inequality holds by interchanging x1, x.

Finally, observe that we can replace f by its truncation y (f ), where

y(t) = max{min{t,x},—k}, «k =sup|f]. O
A

1.3 Remark: Observe that the above proof has a geometric interpretation: the graph
of the extension f is obtained by taking the “lower envelope” (inf) of all the half-cones
C,={(x,y) e X xR:y= f(z) + Ld(x,z)}; notice that C; is a half-cone of slope
L with vertex on the graph of the original function f.

Next we need the theorem of Rademacher concerning differentiability of Lipschitz func-
tions on R”. (The proof given here is due to C.B. Morrey.)

1.4 Theorem (Rademacher’s theorem.) If f is Lipschitz on R", then f is differentiable
L"-almost everywhere; that is, the gradient V f (x) = (D1 f(x), ..., Dy f(x)) exists and

" L FO) = f ) =V () (=)

=0
y=x |y — x|

Jor L"-a.e. x € R™.
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Proof: Let v € S"~!, and whenever it exists let D, f (x) denote the directional derivative
%f(x +tv)|t=0. Since |%| < Lip f for y # x (so | Dy f| < Lip f whenever it
exists) and we see that D, f (x) exists precisely when the bounded functions

fOt) = f() L f(x0)— ()

I
L i P i
coincide. Now limsup,_,, M = limj o0 SUPy | < -1 M which is

t —_ . . .
M 1s lower semi-continuous, and hence

S (x+tv)—f(x)
t

Borel measurable because sup, _ ;< ;-1

Borel measurable, for each j. Similarly liminf,_¢ is Borel measurable,
so the set 4, = {x € R" : D, f does not exist} is Borel measurable and hence £"-
measurable. However ¢(¢) = f(x 4 tv) is an absolutely continuous function of t € R
for any fixed x and v, and hence is differentiable for almost all z. Thus A, intersects every
line L which is parallel to v in a set of H' measure zero and hence by Fubini’s theorem
the Borel set A, has £"-measure zero for each v. That is, for each v € "1,

(1) D, f(x) exists L"-a.e. x € R".
Now take any C2°(R") function ¢ and note that for any 7 > 0

f(x+hv)_f(x)§(x>d£n<x)=_ (x)_é—(x_hv)

2
( ) R” h R” h

f(x)dL"(x)

(by the change of variable z = x + hv in the first part of the integral on the left). Using
the dominated convergence theorem and (1) we then have

3) [pure== Dt == [fv-vs
=Yy [1Die =+ [eDif = [eo-v1,

where V f is the gradient of f (i.e. V.f = (D1 f,..., Dy f), all integrals are with respect
to Lebesgue measure on R", and we have used Fubini’s theorem and the absolute conti-
nuity of f on lines to justify the integration by parts. Since { is arbitrary in (3) we then
have, for each v € S,

(4) Vf(x), Dyf(x)existand Dy, f(x) =v-Vf(x) for L"-ae. x € R".
Of course at such points x we also have
(5) V() = L.

Now let v1, v2, . .. be a countable dense subset of S*~!, and let

Ax = {x : Vf(x), Dy, f(x) existand Dy, f(x) = vg - Vf(x)}.
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Then 4 = NP2, Ax we have by (4) that
(6) L'(R"\A)=0,Dy, f(x)=v-Vf(x)VxeAd k=12,....

Using this, we are now going to prove that f is differentiable at each point x of 4. To
see this, for any x € A, v € "1 and h > 0 define

f(x+hv) = f(x)

) 0.y = LEXMIZT) ),
so by (6)
(8) %imQ(x,vj,h)zo,xeA,j=1,2,....
—0
Now for any given ¢ > 0, select P large enough so that
(9) S"1 c U Be (i),
and foreachi =1,..., P use (8) to choose §; > 0 so that
(10) 0<hl <68 =10(x,vi,h)| <e.
By (9), for any v € S"7! we can select i € {1,..., P} with |[v — v;| < &, and hence
by (10)
(11)

10 (x.h,v)| < |Q(x,v.h) = Q(x,vi. h)| + |Q(x, vi. h)|
< A7 S (x +ho) = f(x + hv) | + o = w [V f (x)] + 0 (x, v )]
< (2L + 1)eforall 0 < |h| < § = min{6y,....8p}

by (5). Thusv € S" ! and 0 < || < § = |Q(x,h,v)| < (2L + 1)g, hence f is
differentiable at x. O

We shall need the following C! approximation theorem for Lipschitz functions in our
discussion of rectifiable sets in the next chapter.

1.5 Theorem. (C! Approximation Theorem.) Suppose f : R"* — R is Lipschitz. Then
for each & > 0 there is a C1(R") function g with

L'({x: £(6) # 8(x)} U {x: VF (x) # Ve()}) <.

Before we begin the proof of 1.5 we need to recall Whitney’s extension theorem for C'!
functions:

1.6 Theorem (Whitney Extension Theorem.) If C C R” is closed and if h : C — R
and v : C — R" are continunous, and if for each compact K C C

(1) lim  R(x,y) =0 uniformly forx € K,
y—>x,yeK
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where

h(y) —h(x) —v(x)-(y —x)
lx =yl

then thereisa C' function g : R" — Rsuchthat g = hand Vg = v onC.

R(x,y) =

’

(For the proof see for example [EG92] or [Fed69]; for the case n = 1, see Remark 1.7(2)
below.)

1.7 Remarks: (1) The hypothesis 1.6 (}) above cannot be weakened to the requirement
that

lim R(x,y)=0, xeC.
y—x,yeC

For instance we have the example (forn = 1) when C = {0}U(Ug2,{1/k})and 2(0) =
0,h(1/k) = (=1)%/k3/2,v = 0. Evidently in this case we do have limy_,» yec R(x,y) =
0 Vx € C, but there is no C! extension because
|h(1/k) —h(1/(k +1))|
(1/k —1/(k + 1))

In fact the condition 1.6 (%) is equivalent to the existence of a C! extension g of & with

— 00 as k — oo.

Vg = vonC. Indeedif g is such an extension and if K C C is compact thenfor x, y € K
we have

R(x.y) =y —=x|7"(h(y) = h(x) —v(x)- (y —x) = g(y) —g(x) = Vg(x) - (y — x))
= [ el 410 ) di ~Vg() - (v = )/ly

1
= [ (Ve +1(y=x)) = Vg(x)) - (v = x)/ly = x| ds
and, since Vg is uniformly continuous on the convex hull of K, we do indeed have 1.6

().

(2) In the case n = 1, the Whitney Extension Theorem 1.6 above has a simple direct
proof. Namely in this case define

h(y) — h(x)
y—X

R(x,y) =

—v(x)

and note that the hypothesis 1.6 (1) guarantees that for each compact subset K of C we
have a function ex with ex(¢) | Oas¢ | 0, and

|IR(x.y)| <ek(lx —yl|) Vx,y € K,

and of course since v is uniformly continuous on K we can suppose that ¢k is chosen so
that

(1) [v(x) —v(y)| <ex(]x—y]) Vx,y € K.
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Also R\ C is a countable disjoint union of open intervals I, I5,.... If I; = (a,b), we
then select g; € C1([a,b]) as follows

gj(a) =h(a). gj(b) = h(b). gj(a) =v(a). gj(b) = v(b)

and

sup |g/(x) —v(a)| <2ex(b—a), K=[a—1,b+1]NC.

xel;
This is possible by (%), with (x,y) = (a,b). One now defines g(x) = g;(x) Vx € I,
j=12,..,and g(x) = h(x) Vx € C. It is then easy to check g € C!(R) and g’ = v
onC.

Proof of Theorem 1.5: By Rademacher’s Theorem V f exists and f is differentiable
L"-ae.onR”. Thuswith R(x,y) = |y —x|7f(y)— f(x)=Vf(x)-(y—x)| we have

ne(x) = sup |R(x,y)| | 0for L"-a.e. x € R".
o<|y—x|<1/k

Hence by Egoroff’s Theorem (1.12 of Ch. 1), applied to the finite measure annular regions
B;(0)\B;j—1(0), j = 1,2,..., thereisan £L"-measurable set E; C B;(0)\ B;—;(0) such
that £"((B;(0) \ B;—1(0)) \ E;) < &/2/*! and nx converges uniformly to zero E;.
By Lusin’s Theorem 1.24 of Ch.1 there is a compact set C; C E; such that V f|C; is
continuous and £"(E; \ C;) < ¢/2/*!'. Thus with C = U2, C; we have C closed,
V f|C continuous, L"(R"\ C) <272, 27/7lg = ¢, and n; converges uniformly to
zero on each bounded subset of C. Hence we can apply Whitney’s Theorem 1.6 with
h = fandv =V f(x) in order to give the required C! function g. O

Next we establish some basic facts about Hausdorff measure of Lipschitz images. In this
direction we first observe that if X, Y are metric spaces, if A C X andif f : 4 - Y is
Lipschitz then, for each m > 0 (m need not be an integer),

1.8 H™(f(A4)) = (Lip /)" H™ (A4).
Of course this is trivial if m = 0, while if §,m > 0 and if C1, C», ... are chosen with
A C U;Cj and diam C; < § for each j, then f(A) C U; f(C;) and diam(f(C;)) <
(Lipf)§ < (1 + Lip f)8. Hence

(11Lip 115 (S (A)) = 3 0m(diam f(C;)/2)™ < (Lip f)" ) om(diam C;/2)™,
and taking inf over all such collections {C;} and then letting § | 0 we obtain 1.8 as
claimed.

The following theorem refines 1.8 in case H™(A) < oo and X is o-compact (i.e. in case
there are compact K1, K5, ... with X = U; K;).
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1.9 Theorem. Suppose X,Y are metric spaces, X is o-compact, A C X is H™measurable,
H™(A) < coand f : A — Y is Lipschitz, and let N'(f,y) = H°(f~'y) (i.e. N(f.y) is
the multiplicity function, counting the number of points, possibly oo, in the preimage f~'y).
Then

(1) f(A) is H™ -measurable.
(1) N(f.y) is an H™-measurable function of y € Y with

[N y)anr < (Lip £y 1" (4),

Proof: Since A is H™-measurable and H™(A4) < oo we can use the regularity property
1.22(2) of Ch. 1 together with the o-compactness of X to find a sequence K1, K3, . .. of
compact sets in X with K; C A for each j and H™ (A \ (U;K;)) = 0. Then H™ (f (A \
(UjK;))) = 0by 1.8,s0 f(A) = f(A\ (U;K;)) U (Uj f(K;)) is the union of a set
of H™-measure zero and countably many compact (hence Borel) sets f (K ), so f(A) is
H™-measurable as claimed. This completes the proof of (i).

To prove (i) observe that, by the o-compactness of X, foreachi = 1,2, ... we can parti-
tion 4 into a disjoint union U2 | A;; where each A;; is 7" -measurable and diam(4;;) <
1/i; furthermore we can do this inductively, partitioning each A;j to give the new sets
Aj 41, so that each of the sets A; 11 is contained in one of the A;;. Observe that then
> X7 (4;;) 1s a non-negative function which is "'-measurable by (i) above and which
increases pointwise (at every point y € Y)to N(f, y),and so N'( f, y) is H™-measurable.
Also, by the monotone convergence theorem,
SNy aHm () = fim 57050 dHT = Jim 3 (4)).
Y i—>00 JY i—00

and
>R (f(A4i)) = (Lip )", H™(Aij) = (Lip £)"H™(4)
by 1.8. O

Next, in the case when m € {1,2,...}, we want to extend the inequality of Theo-
rem 1.9(ii) to the case when the k-dimensional Hausdorff measure of 'y (instead
of H°(f~'y)) appears on the left. For this we assume for convenience that ¥ = R”
(more general cases, e.g. when Y is a metric space such that each closed ball is compact,
are discussed in [Fed69, 10.2.25], but the case ¥ = R™ is adequate for the subsequent
development here, and furthermore the proof is relatively elementary in this case).

1.10 Theorem. Suppose X is a o-compact metric space, m € {1,2,...},k > 0 (k need not
be an integer), A C X is H" K -measurable and H"*(A) < oo, and f : A — R™ is
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Lipschitz. Then H* (f~'y) is an L™ -measurable function of y € R™ and

Wy W

[ A a £m(y) = 22 (Lip £ymum e (4),

Om+k
In particular, for each R > 0, H*(f~'y) < R except possibly for an L™-measurable set E
with L™ (E) < 222k (Lip £)"H™+*(A4)/R.

Wm+k

1.11 Remark: At one step in the proof below we are going to use the upper Lebesgue
integral [om f d L™ of a not necessarily measurable function f : R — [0, oc]. This is

defined by
fdcn = inf vdLm.
Rm

¥ > f,¥ measurable J R"

Observe that then there is always a measurable function /¢ which attains the inf; that is,

Vr > f and
/ rdcm :/ VrdLm,
R JRM

and if [pm fdL™ < oo the function ¥ is unique up to change on a set of measure
zero. Notice also that if { f;} is an increasing sequence of maps R” — [0, oo] and if

f =limisoo f;, then limj o0 fom fi dL™ = [om f dL™.

Proof of 1.10: f is Lipschitz, hence uniformly continuous on A, and also R” is complete.
Soif x;x € A — x € A then the sequence { f (xx) }x=1.2...
a limit which we denote f(x), and evidently f : 4 — R™ so defined is a Lipschitz
extension of f to A with Lip f = Lip f.

For eachi = 1,2,... pick closed subsets Ci1, Ci2, ... of X with diamC;; < 1/i, A C
Uj Cl'j and

(1) > Ok (diam Gy /2)" g%’{’/jk(A) +1/i.

is Cauchy in R™, hence has

Next, observe that

) ’Hllc/i(fily) < X jif-1ync;, £o @k (diam Cij/2)*
= Zj:yef(AﬁCij)wk (diam Cij/Z)k
< j:yef(gmcij)wk(diamC,-,-/Z)k
= ijk(diamCij/2)k)(f(1§mcl_j)(y).

Notice that the right side here is a Borel measurable function of y (because f is con-
tinuous and A N C;; can be written as a countable union of compact sets for each j by
o-compactness of X), but the left side need not be measurable. Nevertheless (see the
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discussion in Remark 1.11 above) (2) implies

o)

HE(fT ) dem(y)
< Yo (diam Cj; /2)K L™ (f (AN Cij)) < X0k om(Lip £)™ (diam C;j/2)"
= (2 (Wip £y (e (a) + 1/0).

Om+k

JR™

where we used £ (f (A N Cj;)) < wm(w)m (by the isodiametric inequal-

ity 2.7) < om(Lip f )m(d’am%)m Letting i — oo (and noting the discussion in Re-
mark 1.11), we conclude

4) Lo aem ) = (225 Lip £y (a),

mn Om+k

It remains to check that #*(f~'y) is an H™-measurable function of y € R” (which
will enable us to replace the upper integral on the left of (4) with the standard integral).
This is left as an exercise (Problem 2.8 in Ch.2 problems). O

We conclude this section with a discussion of Lipschitz domains in R”.
1.12 Definition: A bounded open set  C RR” is said to be a Lipschitz domain if there
are constants 0 < o < 7 such that V y € 9Q thereisa v € S"~! and a Lipschitz function
u: By(0) N vt — (=7, 1) such that

UNQ={y+x+tv:xe B, (0)nvt r<u(x)}

Uy NdQ ={y+x+rtv:xeB,(0)Nvt, r=u(x)}

where Uy, is the open neighborhood of y given by

U ={y+x+tv:xeB,(0)nvt, —t <t <1}
Thus, roughly speaking, €2 is Lipschitz means that locally, near each of its points, 92 can

be expressed as the graph of a Lipschitz function.

Of course the bounded open convex subsets of R” are automatically Lipschitz domains;
more precisely, we have the following lemma:

1.13 Lemma. Suppose that @ C R”" is an open, bounded and convex. Then Q2 is Lipschitz.
Infactif 0 € Q,and R > 0,8 € (0, 1) are such that Bsg(0) C Q C Bgr(0), then for each
y € 02 there is a Lipschitz function
u : Bspy2(0) Nyt — (0,00) withu(0) € (§R, R], Lipu < 2/8,
and 5
USNQ={x+1y:x e Bsg2(0) Nyt 0<r<u(x)}
U NI = {x+1ty:x € Bsgs2(0)N yh o =u(x)},
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where U} is the open neighborhood of y defined by

UyJr ={x+ty:xe é(;R/2(O) Nny+ ¢t >0}
Proof: By scaling we can assume without loss of generality that R = 1,50 Bs(0) C Q C
B1(0). Let y € 992. By applying a suitable rotation we can also assume that y = pe,
with p € (§,1]. If p : R* = R"! x R — R""! is the projection (x,7) + x and if
U = Bgﬁl(O) x (0, 00) then evidently
(1) p(U N3%) = Bjj,'(0).

Let (x1,t1),(x2,22) € U N 0 be arbitrary with 7, > #;, and let 7 be a supporting
hyperplane for Q at (x1,1;), so that there is an open half space H with

7 =0H, Bs(0) CQ C H, (x1,11) € 7.
Then 7 N Bs(0) = @, so 7 is not a vertical hyperplane and we can write
r={(x,t):t=t1+a-(x—x1)}and H ={(x,0):t <ty +a-(x—x1)},

where a € R"~!. We must also then have |a| < 2/8, since otherwise there is a point x €
E’g’_l (0) witha - (x — x;) = —; which would imply (x,0) € 7 N B;(0), contradicting
7w N Bs (0) = Q.

Finally (x2,1,) € H,500 <t —t; < a-(x2 — x1) and hence
(2) 0<t,—t 528_1|X2—X1|.

The existence of u : Bg’/zl (0) = (0,00) withLipu < 2/8 and Bg’/zl( )% (0,00)NIN =

graph u is now a direct consequence of (1),(2). O

2 BV Functions

In this section we gather together the basic facts about locally BV (i.e. bounded variation)
functions which will be needed later.

First recall that if U is open in R” and if u € L} (U), then u is said to be in BVjo.(U) if
for each W CC U there is a constant ¢ (W) < oo such that

2.1 / udivgdl" < c¢(W)suplg|
14

for all vector functions g = (g!,...,g"), g/ € C®(W). Notice that this means that

the functional / u divg extends uniquely to give a (real-valued) linear functional on
U
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K(U,R") = {continuous g = (g',...,g") : U — R" with spt |g| compact} which is

bounded on
Kw(UR") = {g € K(UR") : sptig| C W}

for every W CC U. Then, by the Riesz Representation Theorem 5.14 of Ch. 1, there isa

Radon measure i on U and a Borel measurable function v = (v!,...,v"), |v] = 1 aee,,
such that
2.2 /udivgdﬁ”:/g-vdu.

U U

Thus, in the language of distribution theory, the generalized derivatives Dju of u are
represented by the signed measures v; du, j = 1,...,n. For this reason we often denote
the total variation measure p of Ch.1) by |Du|. In fact if u € Wl;CI (U) we evidently do
have du = |Du|dL" and

Dju .
2.3 = {D/ul if | Duf # 0

0  if|Dul=0.

Thus for u € BVjo.(U), | Du| will henceforth denote the Radon measure on U which is
uniquely characterized by

2.4 |Dul|(W) = sup /udivgdﬁ", W open C U.
|g|<1,spt|g|CCW, g Lipschitz

The left side here is more usually denoted [y, |[Du|. Indeed if f is any non-negative
Borel measurable function function on U, then [ f d | Du| is more usually denoted simply
by [ f|Du| (= [ f|Du|dL" in case u € Wlicl(U)) We shall henceforth adopt this
notation.

There are a number of important results about BV functions which can be obtained
by mollification. We let ¢5(x) = 07"¢(x/0), where ¢ is a symmetric mollifier (so
that ¢ € CX(R"), ¢ > 0, spto C B1(0), [gn¢ = 1, and p(x) = ¢(—x)), and for
u € LL (U) let u'®) = @5 * i be the mollified functions, where we set # = u on
Us, i = 0 outside Uy, Uy = {x € U : dist(x,dU) > o }. A key result concerning
mollification is then as follows:

2.5 Lemma. Ifu € BVioc(U), then u'®) — win L} (U) and |Du'®)| — |Du| in the
sense of Radon measures in U (see 5.15 of Ch.1)aso | 0.

The convergence of u'®) tou in L] (U) is standard. Thus it remains to prove

(1) lim [£|Du)| = [f1Du



54 CHAPTER 2: SOME FURTHER PRELIMINARIES FROM ANALYSIS

for each f € C2(U), f > 0. In fact by definition of | Du| it is rather easy to prove that

2) /f|Du| < lim¢inf/f|Du(")
a0
so we only have to check
(3) lim sup f|Du(")| < /f|Du|
al0 E

foreach f € CO2(U), f > 0.

This is achieved as follows: First note that

(4) /f|Du(”)| = sup /g-Vu<0)d£".

|g|<f, g smooth

On the other hand for fixed g with g smooth and |g| < f, and for o < dist{spt f, U },
we have

/g-Vu(”)dE" = —/u(o) divgd/l"
—/}pg sudivgdl"
= —/u(cp(, xdivg)dL"

= —/udiv((po xg)dL".

On the other hand by definition of | Du|, the right side here is

5/ (f +¢(0))|Du
W,

where Wy = {x € U : dist(x,spt ) < 0}, because
|<pg*g}z|((po*g1 ..... @U*g")|
S¢ox I8l =@ * f

and because 95 * f — f uniformly in Wy, as o | 0, where o9 < dist(spt £, 90U ). Thus
(3) follows from (4). O

2.6 Theorem (Compactness Theorem for BV Functions.) If {uy} is a sequence of
BViee(U) functions satisfying

sup(lhuells ) + [ [Dui]) <
k>1
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foreach W CC U, then there is a subsequence {uy,} C {uy} and a BVioc(U) function u
such that g, — w in L, (U) and

/ |Dul| §liminf/ \Duk/
w w

Proof: By virtue of the previous lemma, in order to prove ux — u in L] (U for some

YW cc U.

subsequence {ug}, it is enough to prove that the sets
[uec®U) :/ (Ju| + [Dul)dL" < (W)}, W cc U,
w

(for given constants ¢ (W) < 00) are precompact in L{ (U ). For the simple proof of this
(involving mollification and Arzela’s theorem) see for example [GT01, Theorem 7.22].

Finally the fact that [y, |Du| < liminf f;;, | Duy/
of |Dul|, . O

is a direct consequence of the definition

Duy/

Next we have the Poincaré inequality for BV functions.

2.7 Lemma. Suppose U is bounded, open and convex, let § € (0, 1) be such that there is
R > 0and & € U with Bsg(§) C U C Bgr(§), and letu € BV (U). Then for any
6 € (0,1) and any B € R with

(1) min{L"{x e U :u(x) = B}, L"{x e U :u(x) <B}} =6L"(V).
we have

[ u=pracr < cr [ |pul

U U
where C = C(0,8,n).

Proof: By rescaling x > R™!(x — &) we can without loss of generality assume R = 1
and § = 0.

Let 8, 6 be as in 2.7 (f) and choose convex W C U such that
(1) [ —plac =4[ pu-plac
w U
and such that 2.7 (f) holds with W in place of U and 6/2 in place 8. (For example we

may take W = {x € U : dist(x, U ) > n} with 7 small.)

Letting u, denote the mollified functions corresponding to u, note that for sufficiently
small o we must have 2.7 () with us in place of u, 6/4 in place of 6, and W in place of
U. Hence by the usual Poincaré inequality for smooth functions (see e.g. [GT01]) we
have, with suitable 8(°) — B in place of 8,

[ Jug=p@aLr <c [ |Dug|acr,
w w
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¢ =c(n,0,8), for all sufficiently small 0. The required inequality now follows by letting
o |} 0 and using (1) above together with 2.5. O

2.8 Lemma. Suppose U, 8. &, R areasin2.7,u € BV (R") with sptu C U. Then

/]R”|Du| (=/U|DM|) SC(/U|DM|+R—1/U|u|d£n),

where C = C(8,n).

2.9 Remark: Note that by combining this with the Poincaré inequality in 2.7, we con-
clude

R_I/IRJ“_WU’ +/IR,1|D(“—ﬂXU)| < C/U|Du|,
C = C(0,8), whenever 8 is as in 2.7 ().

Proof of 2.8: As in the proof of 2.7, we can assume without loss of generality that R = 1
and § = 0.

Let d (x) = dist(x,dU), x € R". Observe x,z € U withd (x) < d(z) = d(x +t(z —
x)) = d(x)Vt € [0,1] (otherwise mineo,1)d (x + t(z — x)) < min{d(x).d(z)},
which evidently contradicts the convexity of U). Thus d (x + ¢(z — x))|[0, 1] attains its
minimum value d (x) at t = 0, and hence

1) (c=x)- Dd(x) = d(x 1z =),y =0

for all pairs x,z € U such that d is differentiable at x and d (x) < d(z). In particular
since Bs(0) C U (recall we assume Bsg(§) C U C Br(§) with R = 1 and § = 0), for
any 0 > 0 such that Bs;,(0) C U and any x € U with d (x) < o and d differentiable at
x we can take z = —8Dd (x) in (1) (because then z € Bs(0) andso d(z) > 0 > d (x)).
Hence (—x —8Dd (x)) - Dd(x) > 0, and so

(2) —x-Dd(x)>38, ae.x € U withd(x) <o.

Then we let Y5 : R — [0, 1] be an increasing C! function with y, (1) = 0fort < /2
and y(¢) = 1fort > o, and set

(3) Yo =Yood
Then by (2) and (3) we have, for o < dist(Bs(0), U ),
(4) 8|Dgg(x)| < —x-Doy(x), xeU.

Now by definition of | Dw| for BV, (IR") functions w, we have

(5) 1P| < [ [Des|lulac” + [ golDu
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and by (4)
(6) 8/]Rn|Dgoo||u|d£”5—/x-D<pU|u|d£”
= —/|u|div(x<pg)d/$” —i—nﬁul(pg dcr

§/U|D|u||+n/ u|d 2" (by definition of | Dul])
Rn

< [1pul+n [ acr
U ]Rn

(because |D|ul| < |Du| by virtue of 2.5 and the fact that |D|u|| < liminfqo|D|us||).

Finally, to complete the proof of 2.8, we note that (using the definition of | Dw| for the
BVioo(R") functions w = u, @su, together with the fact that g;u — u in L'(R") as

ol0)
/]Rn|Du| < l1r;1¢hnf/]Rn|D(<pgu)

Then 2.8 follows from (5), (6). O

3 The Area Formula

The area formula, which we establish in this section, generalizes the classical formula
3.1 L7 (t(A)) = |dett|L"(A)

established in Corollary 1.20 of Ch.1, valid for any linear transformation 7 : R* — R”
and any subset A C R”.

In the statement below we assume f : U — R™ (U C R" open) is locally Lipschitz (i.e.
Lispchitz on each ball B,(y) C U), with n < m, and we define

3.2 ) = \Jdet((di f)*(dx f)) = y/det(Di £ (x) - Dy f (x))

at all points where this exists (which is for £"-a.e. x € U by virtue of Rademacher’s
Theorem 1.4).

3.3 Theorem (Area Formula.) Suppose U is open in R" and f : U — R™ is locally
Lipschitz, withn < m, and Jy is as in 3.2. Then

/AJf dc' = | HO(ANfNy)dH(y)

R
for each Lebesgue measurable A C U. In particular

/AJF dL" = H"(f(A)) provided f|A s 1:1.
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3.4 Remarks: (1) Observe that H°(A N f~'y) is by definition just the “multiplicity
function of f|A”—i.e. the number of points (possibly co) in {x € 4 : f(x) = y}.
Part of the conclusion of the above theorem is that H°(4 N f~1y) is an H"-measurable
function of y.

(2) If & is a non-negative L"-measurable function on U then we have the more general

/thdE” /W/f1 x)dH(x) dH" (y)
= [ (S, h () a7 ().

This clearly follows from the above theorem by writing / as the pointwise limit (every-

formula

where) of an increasing sequence of non-negative (real-valued) simple functions.

Proof of Theorem 3.3: Since both sides of the identity are additive with respect to pair-
wise disjoint unions, it suffices to give the proof for the case when f is Lipschitz (rather
than merely locally Lipschitz) and £" (4) < oo.

We first consider Case (i):
A C {x €U : f isdifferentiable at x and Jr(x) > 0}.

Thenforeachx € Aandeache € (0,1),dy f exists, ||dx f|| < Lip f and min,egn—1 |dx f (V)| >
0, and there is §x = 8x(¢) > Osuchthat | f(z)— f(x) —dy f (z—x)| < 3eldx f (z—x)|
for all z € Bs, (x), hence in particular

(1) (1=3e)ldxf(z=x)| <1/ (x) = f(2)| = (1 + 3e)ldx f (2 = x)| Yz € By, (x).

Observe also the general fact that if A : R” — R™ is a rank 7 linear map, then A* o X is a
positive definite symmetric linear map R" — RR” so by the Spectral Theorem there is an
orthogonal transformation ¢ : R” — R” with

(2) qg*ol*odlog=A,

where A is the diagonal transformation Ae; = pje;, j =1,...,n, with0 < 1 < pp <
-+ < fun the eigenvalues of A* o A. Thus

(3) Aol =12

where 7 : R” — R” is the symmetric linear transformation given by
(4) t=govAog*

and hence by (3)

(5) |z(v)] = |A(v)] Yv € R” and | det | = y/det(A* o 1).
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Let {A; : j = 1,2,...} be a dense set of rank n linear maps R” — R™. Then, since
min, e gn—1 |d f(v)| > 0for x € A, (1) implies that for each x € A there is some j with

(I=e)lAj(z = x)| = |f(x) = (@) = (1 + )| (z = x)| Yz € Bs, ().

where 8 1s as in (1), and

(1-&) Jdet(3F 0 2j) < \Jdet(def)* o (def)) = Jp(x) < (1+ ) [det(Af o A7),

and, by (3) and (5), for each j there is a symmetric rank n linear map 7; with sz = Ajol;,
and hence
Izj (v)] = 14; (v)| Yv € R" and |det 7j| = |/det(A] o A;).

Thus, with such t;, for each x € A there is j with
©)  (A=glylz—x)=1f(x)— f(2)l = (1 +e)lyj(z—x)| Yz € B, (x) and
7) (I—¢)|detzj| < Jr(x) < (1 +¢)|dett;].

Thus we can decompose A into a disjoint union U; 4; of H"-measurable sets A; such
that (6), (7) hold for each x € A}, and for each j we let A], ={xed;: 8> l/l}, i=
1,2,.... Observe that then, by (6),

(1 =e)lg(x1 —x2)| < | f(x1) = f(x2)] = (1 + )]z (%1 — x2))|
for each x1, x, € Aj; such that [x; — x2| < 1/i, so we can select pairwise disjoint H"-
measurable sets Aj;; C Aj; with diam A;;y < 1/i for each £ and UgA;;y = Aj;, giving

Lip(fot; i ( Ajie)) = (1+e). Lip((for Mz ( /ll))_l) <1/(1-¢), t=12,....
Since f (Ajie) = (f o 7;7')(7j(4jir)), we can then use 1.8 to yield
(8) (1—¢)"[dett;|L"(Ajie) = (1 —&)"H" (z; (4ic))

< H'(f(4jie)) = (1 +8)"H"(7j(4)i)) = (1 +)"| et 7 |L" (4jir).

Hence, by (7),

(1™ [ (L) =1 () = (14" [ gy () dr (),
and, since
Yoxran(y) =H(A40 fTy). vy R,

by summing on £ we obtain

(1 —é‘)n—HX11 JrdLl" < / HO(AJ',' N f_ly) dH"(y) < (1 +8)n+1/A JrdLl".
ji R™ Ji
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Then we get the Area Formula in Case (i) by letting i — oo (using 4;; C A4j;+1 and
Aj = U;Aj;), then summing over j, and finally letting & | 0.

Case (i1): A C {x e U : f is differentiable at x and J¢(x) = 0}.

In this case we define F : R” — R™*" by

F is then a 1:1 rank n map, so by Case (i)

(9) HFA) = [ Te()di (x).

Now p o F = f where p is the projection (x,y) € R" x R"  x € R", and |p(z1) —
p(z2)| < |z1 — z2l, so, using 1.8 with f = p,

(10) H'(f(A)) =H"(p(F(A))) = H"(F(A)).

Also by direct computation we have

Jr(x) = \/det(Dif(x) D; f(x)+€2;;) = Jr(x)+ E(x). 0<E(x)<Cé,

where C = C(n,m,Lip f). But for x € A we have Js(x) = 0, so using (9), (10) and
letting & | 0 we obtain the Area Formula (with both sides 0) in Case (ii).

Case (iii): A C {x €U : f isnot differentiable at x }.
By Rademacher’s Theorem 1.4, H" (A) = 0 and, since f is Lipschitz, in this case we can

apply 1.8 to conclude H" (f (A4)) = 0, hence the Area Formula trivially holds, with both
sides 0, in Case (iii). O

3.5 Examples: (1) Space curves: Using the above area formula we first check that #H'-
measure agrees with the usual arc-length measure for C! curves in R”. In fact if y :
[a,b] = R is a 1:1 C' map then the Jacobian J, is just v/|y|2 = |y, so that the Area
Formula 3.3 gives

H(y(4) = [Iplac!
as required.

(2) Submanifolds of R"+k: If M is any n-dimensional embedded C'!' submanifold of R ¥
(see next section for a systematic discussion of such submanifolds), we want to check that
H" L M (where H" is n-dimensional Hausdorff measure in R”*+¥) agrees with the usual
n-dimensional volume measure on M, i.e. that if vol denotes the volume measure (in the
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usual sense of Riemannian geometry) on the submanifold M, and if #" is Hausdorff
measure on the ambient space R"*¥, then for Borel sets A C M (or more generally for
‘H"-measurable sets A C M) we have

() vol(4) = #H"(4).

It is enough to check this in a region where a local coordinate representation (see the dis-
cussion in §4 below) applies, because we can decompose the Borel set 4 into a countable
pairwise disjoint union of Borel sets A4, each of which is contained in the image of a local

coordinate representation. Thus we suppose U is open in R**¥ and that there is a local
representation ¥ for M such that

YV >RTRiSCL y(V)=MNWandACcMNW,

where W is open in R" ¥ and let 49 = ¥ ~'(A4) C V be the preimage (of course Ay is
then also Borel). By the Area Formula 3.3

= [ JydL[",
IRE

where Jy, = /det(D; ¥ - D;¥). Now notice on the other hand that g;; = D;y-D; is
the metric for M (relative to the local coordinates in V) in the usual sense of Riemannian
geometry, so this says H"(4) = [, /gdL", where g = det(g;;), and the right side
here is indeed the usual deﬁmtlon of vol(A) in the sense of Riemannian geometry, so (%)

1s established.

(3) n-dimensional graphs in R"*1: If Q is a domain in R” and if M = graph u, where
u € C1(Q), then M is globally represented by the “graph map” ¥ : x > (x,u(x)); in

this case
= \/det(D,-l// . DJ-W) = \/det(S,-j + DjuDju) = /1 + |Du|?,
so the Area Formula 3.3 in this case gives H" (M / V14 |Dul?>dx.

4 Submanifolds of R*t*

Let M denote an n-dimensional embedded C¥ submanifold of R**%, 0 < k, r > 1. By
this we mean M is a subset of R"** such that for each x € M there are open sets V C R”",
W C R"™* anda 1:1 C? map ¥ : V — W with

4.1 xey(V)=WwWnM,

where DY (§)(= (D (€))i=1,..n, j=1....n+k) has rank n at each point £ € V, and the
inversemap g : Y (E) e WNM £ € V is continuous. Such a map ¥ will be referred
to as “a local coordinate representation of M near x.”
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4.2 Remarks: (1) The condition in the above definition that the inverse map ¢ is contin-
uous allows examples like M = {(x,sin1/x : x > 0)} C R? as C* submanifolds, but
eliminates examples such as M = ({0} x (=1,1)) U {(x,sin1/x : x > 0)}. In fact the
above definition (which requires that the local representation ¥ is a homeomorphism of
V onto the image M N W) ensures that ¥ is an open map onto its image; that is

Vo C V, Vo open = Jan open Wy C W with ¢ (Vo) = M N Wp.

(2) If the notation is as in the 4.1 and yo € M N W, xo € V with yo = ¥ (xo),

then since ¥ has rank n we can select 1 < £y < € < -+ < 4, < n + k with
det(D;y% (x0)) # 0, and so, by the inverse function theorem, there is 8y, > 0 such
that, with 7 : (y',...,y"T%) > (y*1,..., y%), the map 7 o Wé% (x0) isa 1:1 C14

map onto an open set Uy C R” such that the inverse (7 o ¢)™! : Uy — BSXO (x0)
is also C7. Observe that then ¢y, = (r o) om : 77Uy — Bs,(xo) is also a
C? map and it agrees with ¢ (the inverse of ¥) on ¥ (Bs, (xo)), because gy, (¥ (x)) =
(moy)Lo(woy)(x) = x for x € Bs,(xo). So @y, isa C? extension of(pW(E’gXO (x0))
to the open set 71 (Up).

(3) Local graphical representations for M': Using the notation of Remark (2) above, in the
special case when ¢; = j, j = 1,...,n,som isjust the projectionof y = (y!,..., y"+k)
onto the first n coordinates (y!,..., "), we have ¥ o (7 o )1 (x) = (x,u(x)), with
u= ', .. k) u =y"o(moy) Uy >R, j=1,....k, and

w(égxo (x0)) = graphu = {(x,u(x)) : x € Up}.

Also, by Remark (1) above, I//(éng (x0)) = M N W, for some open Wy, so then the
“graph map” G : x — (x,u(x)), x € Uy, defines an alternate local representation for
M near yog. Without the assumption £; = j, j = 1,...,n, this of course remains true

modulo composition with a permutation map (permuting the coordinates x!, ..., x" ¥

in R"** 5o that the coordinates x*1, ..., x% are moved to the first n slots), so for each

Yo € M there is an open Wy with yo € Wy and
(1) M N Wy = QO (graphu)

for some orthogonal transformation Q (where Q is in fact just a permutation of coordi-
nates in IR”'H‘) and for some C? vector function u = (u!,..., uk) defined on an open
set Up C R”. Thus M is a C4 embedded submanifold of R**¥ if and only if M is locally
representable, near each of its points, as the graph of a C? function u; i.e. each yo € M
lies on some open Wy such that (%) holds, with u = (u!,...,u*) a C? vector function

on some open Uy C R”.

Ify:V — Wisasin4.1above,if AC M NW andh: A — [0,00) are H"-measurable,
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then we have the formula
43 /hd?—l":/ hoy JydL",
A ¥=1(4)

where Jy, = (/det(D;y - D;y), which is checked using approximation of & by simple
functions and using the special case of the area formula in Example 3.5(2) above.

Then if, for j = 1,2, M; is a C4 submanifold of dimension 7; in R **/ with local
representation ¥; : V; — R" 7%/ such that (asin 4.1) ¥; (V;) = M; N W;, then My x M,
is a C? submanifold of dimension n = ny + n, in R"*F (k = k; + k,) with local
representation

W (x,y) e Vi x Vo (Y1(x). ¥2(y)) € (My x My) N (Wy x Wy) € Rk,

and evidently

4.4 Ju(x,y) = Jy (x)Jy, (y),  (x.y) € Vi x V2,
so by 4.3 and Fubini’s theorem we see that
4.5 Hn(Al X Az) = Hnl (Al)an(Az)

for any H"/-measurable subsets A; C M;, j = 1,2. In particular
4.6 H' (M x My) = H" (M)H"2(M>).

4.7 Definition: The tangent space Ty M of M at x € M is the subspace of R" ¥ consisting
of those 7 € R**¥ such that ¢ = y(0) for some C' curve y : (—¢, &) — R*** (for some
e>0)withy((—e,¢)) € M, y(0) = x.

Note that
4.3 T M is a linear subspace of R"*¥ with basis Dy (£).... D,y (£),
where ¥ is any local representation as in 4.1 above with ¥ (§) = x. Indeed if y :

(—e,8) — R"* is C! with y((—e,£)) € M and y(0) = x then for all sufficiently

small # we have y (1) = ¥ (¢(y(t))), where ¢ is the inverse of ¥ on M N W. With ¢y

the C? extension of ¢ to a neighborhood of x defined in Remark 4.2(2) above, we thus

have y(t) = ¥ (¢x(y(t))) for sufficiently small 7 and hence by the chain rule y’(0) =

Yo/ Djy(§), where (c!,....c") = %gox(y(t))h:o. SoTxM C span{D1¥(&),..., Dy (
and of course the reverse inclusion is trivial because ) 7 _, c/Djy(§) = %w (§+1c) =0
forany ¢ = (c!,...,c") € R".

4.9 Definition: A function f : M — R"*¥ (k > 0) is said to be C4 on M if f is the
restriction to M of a C4 function f : U — R"**, where U is an open set in R"**
containing M.

We next want to discuss some differentiability properties for locally Lipschitz maps f* :
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M — R? with P > 1. Thus for each x € M we assume there are p, L > 0 with
4.10 lf(»)=f@I<Lly—zl y,ze€MnBy(x).

First we discuss directional derivatives of such an f: For given t € T M the directional
derivative D, f € R¥ is defined by

411 D.f =4%f(y(),_

for any C! curve y : (—1,1) = M with y(0) = x, y(0) = 7, whenever this derivative
exists. Of course it is easy to see that existence and the actual value is independent of the
particular curve y we use to represent T because if ¥ is another such curve then, by 4.10,

4.12 ltiigt_llf(J/(l)) - f@)l = thiﬁ}t‘lly(f) —7()[=0

because y(0) = y(0)(= x) and y'(0) = 7'(0)(= 7).

We claim that in fact there is a set E of H"-measure zero such that Vx € M \ E
4.13 D. f (x) exists and the map 7 > D, f(x) is a linear map Tx M — R?,
so we can define the induced linear map d™ f : TyM — R? by

4.14 dM f(v) = Dy f(x), veTxM.

Indeed 4.13 is a consequence of the Rademacher theorem in R” proved in 1.4, as follows:
Let x € M andlet ¢ : V — R"** be C! withx € ¥(V) = M N W asin 4.1. Then
according to 1.4 there is Eg C V with H"(Eo) = 0 such that f o ¥ is differentiable
at every point of V' \ Ey and in particular for every n € R"” and x € V \ Ey we have
Dy(foy)(x) =% f(y(x +1tn))|i=o exists and is linear in 1. But y (1) = ¥ (x + t7)
isacurve asin 4.11 with T = >7_, n; D;¥/(x), so in fact this says that the directional

J
derivatives

4.15 Dyn_ .0,y f (x) existand = Dy (f o ¥)(§)

and that furthermore this is linear in n forall§ € V\ Egand x = ¢ (§) e W N M \
¥ (Eo). Hence, since D1y (§), ..., Dan(§) is a basis for Ty 5y M by 4.8, this says that
indeed 4.13 does hold at points of W N M \ ¥ (Ep), and of course ¥ (Ey) is a set of
H"-measure zero by 1.8 because ¥ is locally Lipschitz in V.

Notice also that if in fact f is the restriction of a locally Lipschitz function f defined in
an open set U D M then (by the same argument as in 4.12 with y(¢) = x + ¢7) we have
(for each given x € M and v € Ty M)

4.16 D. f(x) exists <= %f(x +17)];=0 exists,
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and in that case the two quantities are equal; furthermore (by 4.13) for H"-a.e. x € M,
D f(x) does exist for each € Ty M and it is a linear function of t € Tx M.

Taking the particular choice n = ¢;, x = ¥ (§) € W N M \ ¥(Ey) in 4.15, and letting
71, ..., Ty be an orthonormal basis for Ty M, so that

Diyr(x) = Yy Diy(x) -t e,

we then have

Di(foy)(x)=4-1Div(§) D f(x)., i=1....n

Thus

Di(foy)(x)-D;(fov)(x) = 14 e (Dit¥ (%)) (D (x)-Tm) Dey f (x)- Dy f(X).

Since det AB = det A det B for square matrices 4, B, we thus have

4.17 Jroy (x) = |det(Dey(x) \/det (Dz, f(x) - Dq,, f(x))
= 1y () (%)

with x = ¢ (§), where Jy, = /det(D;y - D;j ) (in accordance with 3.2) and

4.18 JM(x) = \/det(Drzf(x) + Dy, f (%)),

with 11, ..., 7, any orthonormal basis for TxM; J fM is the “Jacobian of f : M — R™”
(which is consistent with the terminology introduced in § 3 in the special case when k = 0
and M is an open subset of R”).

Using 4.17 we now want to discuss the natural extension of the area formula 3.3 to the

case when f : M — R™ is locally Lipschitz and m > n. We claim that in this case we
have the general area formula

4.19 /f( )HO(Anf y)ydH" (y /Jf dH".

Since both sides here are additive with respect to disjoint unions, it is evidently enough
to check this under the assumption that 4 = ¥ (A4) with ¢ : V — R"** a local
representation for M as in 4.1 and Ag C V an H"-measurable set. Since f o ¥ is locally
Lipschitz on V we can use the Area Formula 3.3 with f o in place of f and A¢ in place
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of A to give
“(Ao Ny~ fTly) dH ()

Jaransinano = [ w
— [ Jropx)an ()
Ao
- /A Rl

x))Jy(x)dH" (x) (by4.17)

_ M n
_fAJf (y)dH" (y).

where at the last step we used Remark 3.4(2) with ¢ in place of f and withh = J fM o.
Thus 4.19 is proved.

More generally (by approximating / by an increasing sequence of non-negative simple
functions and using 4.19),

4.20 /}((M)(erf_lmh(x))dHn(y) — /Mh(x)J;W(x)dHn(x)

for any non-negative H" measurable function & on M.

We can also (for any m > 1) define the induced linear map dfM : TyM — R™ just as
we did in R” by

4.21 dfM(t) = D. f(x), teTM.

In case f is real-valued (i.e. m = 1) then we define the gradient VM f of f by

4.22 VM (x) =)o (De, f(x))T, x € M,

where 11, . . ., Ty is any orthonormal basis for Tx M. If we let VjMf =e;-VM f(e; = j-
th standard basis vector in R"**, j = 1,...,n + k) then

4.23 VM f(x) = SIEVM £ (x)es

If £ is the restriction to M of a C! function f on U, where U is an open subset of R ¥
containing M, then

VM f(x) = prom (Vgnt f(x)), x €M,

where Vgntk f is the usual R"* gradient (Dy f,..., Dyik ]7) on U. Indeed, with
)

T1,..., Tp any orthonormal basis for Tx M, pr, p (Vgn+x 7( )=S0t Ve f(x) T

Z?:lDr,-JT(x)fi = Z?=1Dfif(x)fi = VMf( )-
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Now given a vector function (“vector field”) X = (X1!,..., X"t%) : M — R"** with
each component X/ a Lipschitz function on M, we define

4.24 divag X = Y 1A vMx/
on M. (Notice that we do not require Xy € Tx M.) Then, at x € M, we have
425 divar X = Y03 e - (VM X7)
= Yilie; - (Xii (e X )w),
so that (since X = Z"+kX/ ej)
4.26 divig X = Y 5 - Dy, X,

where 11, ..., 7, is any orthonormal basis for 7, M .

Recall that the classical Divergence Theorem of Riemannian geometry states that if M is an
n-dimensional C2 submanifold of R”** and if X isa C! tangent vector field on M with
compact support in M (i.e. X(y) € TyM foreachy € M and {y e M : X(y) # 0} is
contained in a compact subset K of M), then

427 / divag X dH" = 0
M

This can be proved using local coordinates and a partition of unity, but to better motivate
our later discussion of first variation of varifolds we give a more intrinsic proof as follows:

Proof of 4.27: Let K be a compact subset of M containing {y € M : X(y) # 0} and
let (2, x), (t,x) € (—&,&) X M, be the geometric flow on M generated by the tangent

vector field X. Thus
dp(t,x)/0t = X (¢(t,x))
9(0.x) =x

By ODE theory (see e.g. [HL]) ¢ and its velocity d¢(z,x)/0t exist and are C! on
(—e,&) x M for small enough e. Furthermore if ¢;(x) = ¢(¢,x), then, for || < 4,
§ > 0 sufficiently small, ¢; is a C! diffcomorphism of M onto M and ¢, the identity on
M \ K. So in particular ¢, (M N K) = M N K for all sufficiently small |¢|, and hence
trivially

() L3 (9 (M N K))|=o = 0.

But on the other hand the area formula gives

H" (p:(M NK)) Z/MnKJ“” dM",
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where Jy, (v) = \/det(Dy, ¢i(v) - Do, @i(v)), and, since @(1.y) = y +1(X(y) +
E(t,y)) withsup (|1 E(2,y)| + SUPcer, M, |z|=1 |DLE(t,y)|]) > 0ast — 0, we have
Dyo(y) =1 +t(D; X(y) + Ei(t,y)), where sup e |Ei(t,y)| — Oast | 0. Hence

Joo = \Jdet(8ij + 1t Dy X (v) + 17 Dey X () + Eig (1, 3)),

where sup, g | Eij (¢, y)| — Oast — 0. Using the formuladet(7 +1A) = 147 trace A+
O(t?) ast — 0, we thus conclude

%sz(J’)h:O =Yio1Ti - Dy X(y) = divy X (y).
Hence by (1) we have 4.27 as claimed. O

4.28 Remarks: (1) M need not be orientable in the above discussion.

(2) If we drop the condition that {y € M : X (y) # 0} is contained in a compact subset
of M, and instead assume M (the closure of M in R"**) is a compact manifold with
C' boundary 0M = M \ M and if we let X be any C! vector field on M, still with
X(y) € TyM for each y € M, then in place of 4.27 we get

: n __ _ . n—1
(1) /deMXd”H = /{)MX ndH" 1,

where 7 is the inward pointing unit co-normal of dM; that is, || = 1, 1 is normal to
dM , tangent to M, and points into M at each point of M.

(3) In general the closure M of M will not be a nice manifold with boundary; indeed it
can certainly happen that H" (M \ M) > 0. (For example consider M = {(x,y) € R? :
x >0,y =sin(1/x)}, in which case M is a C*® 1-dimensional embedded submanifold
of R? in the sense of the above definitions, but M \ M is the interval {0} x [~1, 1] on
the y-coordinate axis.) Nevertheless, as we have shown above, 4.27 does hold provided
{y e M : X(y) # 0} is contained in a compact subset of M and X, € T,M Vy € M.

In case M is at least C? we define the second fundamental form of M at y to be the
bilinear form

4.29 By : TyM x TyM — (T,M)*

such that

4.30 By(t,n) = —Zf‘:l (n+ Dov* ) , TNE Ty M,

where v!, ..., v¥ are (locally defined, near y) vector fields with v*(z) - v#(z) = 845 and

v%(z) € (T;M )t for every z in some neighborhood of y. Of course such v* exist in a
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neighborhood of any given yo € M, because we can use a local representation ¢ : V. —
R” for M with yo = ¥ (xo) for some xo € V, and then choose vectors 11, ...,n; €
R"t* such that D1y (x0), ..., Du¥n(x0), M1, ...,k are linearly independent. Then,
for § > 0 small enough, D1y (x), ..., Dp¥y(x),n1, ..., ng are still linearly independent
vectors in R"*¥ forall x € Bs(xo), so the Gram-Schmidt orthogonalization process gives
orthonormal C! vector fields 71 (¥). . . ., Ty4x (¥) on M Ny (Bs(x0)) (where y = v (x))
such that 71 (y), ..., 74 () is an orthonormal basis for T,y M and v/ (y) = t,4;(y), j =
..k, is an orthonormal basis for (T, M )* for each y € ¥ (Bs(xo)).

The geometric significance of B is as follows: If t € Ty M with |t| = land y : (—¢,¢) —
R"+* (for some & > 0) is a C2 curve with y(0) = y, y(—¢,&) C M, and 7(0) = t, then

431 By(r.7) = (7(0))*,

which is just the normal component (relative to M) of the curvature of y at 0, y being
considered as an ordinary space-curve in R"*%. (Thus By (7, 7) measures the “normal
curvature” of M in the direction 7.) To check this, simply note that v¥(y (7)) -y (z) = 0,
|t| < 1, because y (1) € Ty ()M and v*(y (1)) € (T, )M )*. Differentiating this relation
with respect to ¢, we get (after setting t = 0)

v () - 7(0) = (D) - 7
)

and hence (multiplying by v*(y) and summing over &) we have

(7(0)F = =k (z- Dev®)v®(y)
= By(z.7)

as required. (Note that the parameter 7 here need not be arc-length for y; it suffices
that y(0) = 7, |t| = 1.) More generally, by a similar argument, if t,n € T, M and if
:U > ]R”*k isaC? mapping of a neighborhood U of 0 in R? with ¢(U) C M,
©(0,0) = y, as £(0,0) =1, at £(0,0) = n, then

%p L
4.32 By(t.n) = —(@(0, o)) :
Of course such maps ¢ do exist for any given 7,7 € T, M—for example we can let ¢ :
V — W be a C? local representation for M, y = v(x), and select z = (z!,...,2")
w = (w',...,w") € R” such that T = }7_, 2/ D;¥(x) and n = Y7_, w/ D;y(x),
and then ¢(s,7) = ¥ (x+sz+tw) isasuitable choice for ¢. Since 0%¢/dsdt = d*¢ /0t s,
4.32 implies in particular that By, (t,7) = By (1, 7); that is By is asymmetric bilinear form
with values in (7, M ).

We define the mean curvature vector H of M at y to be trace By; thus

433 H(y)=Y7_By(ti.m) € (TyM)",
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k

where 71,..., 17, is an orthonormal basis for T, M. Notice that then (if v!,...,v* €

(Ty M)+ are as in 4.30)

H(y) = =4 X0y (5 - Dy v*)v*(v),
so that
4.34 H(y) = =Yg, (diva v*)v®

near y.

5 First Variation of a Submanifold

Let M be an n-dimensional C2 submanifold embedded in R”* as in the previous section.
We want to compute the initial rate of change (“first variation”) of H" (M) when M is
undergoes a compactly supported perturbation via a 1-parameter family of maps ¢; :
M — R""* with ¢g equal to the identity on M. So let K C M be compact and let
¢ (—&,8) x M — R"* (where & > 0) be a map such that

s {go(O,x):x, VxeM
’ o(t,x)=x, V(t,x)e(—ee)x(M\K),

and such that the velocity d¢(z,x)/dt is C! on (g,¢) x M. Then the initial velocity
vector X (y) = d¢(t,y)/0t|=0 is a C! vector field on M and we can write

52 p(t.y) =y +t(X(y)+ E(t.y)).

where sup,c g (|E (2, )| + sUp,er, ar. o<1 1P E(t, y)]) = 0ast — 0.

For example given any C! vector function X : M — R"™* with {y € M : X(y) # 0}
contained in a compact set K of M, we can construct such a ¢ simply by taking ¢ (7, y) =
y+1tX(y). |t| <1

We want to compute the first variation
d
SH" (o (M N K))|i=o0.

where ¢;(y) = ¢(t,y) with ¢, K as in 5.1. To do this we first note that, by the area
formula,

5.3 H' (g (M N K)) = /MnKJ“” dH",
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and, by 5.2, Dy, ¢(y) = © +t(Dg; X (y) + Ei(t.y)), where sup, g | Ei (£, )| — O as
t | 0, and hence

Joo = \Jdet(8i; +1(5i - Do, X (y) + 17+ Do, X (3) + Exs (1.7)).

where sup, g |Eij (¢, y)| — Oast — 0. Using the formuladet(7 +1A) = 1+ trace A+
O(t?) as t — 0, we thus conclude

L Ty, (Vim0 = X0y 71 - Doy X () = divar X ().
Hence, by 5.3,
5.4 L (g (M O K)o = /M divar X,
where X is the initial velocity vector of ¢;: X (y) = a%go(t, ) li=o0-
If we now decompose X into its tangent and normal parts:
X=x"+x*
where (at least locally, in the notation introduced in 4.30 above)
Xt = Zgzl(va - X e,
and X T = pr_p(X). Then we have (near y)
divar X1 = YK (v X) divv,
so that by 4.34
55 divy X+ =—-X-H

at each point of M. On the other hand [, divas XT = 0by4.27. Hence, since divps X =
divar X7 + divys X+, we obtain

5.6 /divMXdH"z—/X-ﬂdH"
M M

for any C! vector function X : M — R"** with {y € M : X(y) # 0} contained in
a compact subset K of M this identity is sometimes referred to as “the first variation
formula” for the submanifold M.

5.7 Remarks: (1) Observe then that M is “stationary,” i.e. has first variation zero, i.e.
Jas divar X dH" = 0 whenever X has compact support in M (which by 5.4 is equivalent
to %H" (¢ (M N K))|t=0 = 0 whenever ¢ is as in 5.1) if an only if the mean curvature
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of M is identically zero. Such C? submanifolds are usually referred to as “minimal sub-
manifolds.”

(2) We should explain the appropriateness (or otherwise) of the terminology “minimal
submanifold” introduced in the above remark: Observe that if M is area minimizing
in the sense that H"(M N K) < H"(¢:(M N K)) whenever ¢ and K are as in 5.1,
then H"(¢;(M N K)) has a minimum at 7 = 0 and hence we do have stationarity
%'H" (: (M NK))|t=0 = 0. The converse is false though (as the example of the catenoid
shows), so one could perhaps criticize the terminology “minimal” on this basis; never-
theless the converse is true (in the present context when M is C2) at least locally, i.e.
provided we stipulate that the compact set K = B,(yo) in 5.1 above is a ball of suffi-
ciently small radius p (depending on M and yo € M). See problem 7 of Ch.2 problems.

(3) In case the situation is as in Remark 4.28(2), so that we drop the condition that
{y € M : X(y) # 0} is contained in a compact subset of M and instead assume M (the
closure of M in R"*¥) is a compact manifold with C! boundary 9M = M \ M and X is
any C! vector field on M, still with X (y) € T, M for each y € M, then in place of 5.7
we get

/divMXdH":—/X.gdH"—/ X ndH".
M M oM

So far we have only discussed submanifolds of R”*¥, and the concept of first variation
using ambient space R"**. For some applications it is important to allow the ambient
space to be a complete (n + k)-dimensional Riemannian submanifold N rather than
R"*+*. By the Nash embedding theorem there is no loss of generality in assuming that
N is (isometrically) embedded in R**Z for some L > k. So suppose N isa C2 (n + k)-
dimensional embedded submanifold of R*TZ,0 < k < L, let K be any compact subset
of Nyand let ¢ : (—¢,6) x N — N (for some & > 0) be a C! map with velocity vector
d¢(t,y)/0t also C! on (—¢,&) x M, and

58 @(0,y)=yforally e N, ¢(t,y) =yforall (z,y) € (—e,6) x N\ K.

Then we have the following definition for a C? submanifold M of N:

5.9 Definition: M C N is a stationary in N (or “a minimal submanifold of N”) if
%’H" (9¢(M N K)|t=0 = 0 whenever K, ¢ are asin 5.8 and ¢;(y) = (¢, y).

5.10 Remark: In view of the fact that for each given compact K C M and each C'!
vector field X on N with compact support K such that X, € Ty N ateach x € N (i.e. X
is a tangent vector field on N with support in K), there is (cf. the discussion in the proof
of 4.27) a 1-parameter family ¢, as in 5.8 above with %(p(y, t)|t=0 = Xy at each point
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y € N, we see that M is stationary in N as in 5.9 above if and only if

(i) / diviy X =0
M
whenever X isa C! on N with compact support K and X}, € TyN Vy € N.
If we let v!, ..., vE be an orthonormal family (defined locally near a point y € M) of
vector fields normal to M, such that v!,..., v¥ are tangent to N and pRtL o pLare

normal to N, then for any vector field X on M we can write X = X' 4+ X, where
X, € TN and X+ = Z,‘L=k+1(‘)j - X)v/ (= the part of X normal to N). Then if
T1,..., Ty is any orthonormal basis for 7}, M, we have, at the point y,

5.11 divar X = divar X7+ 3741 (v - X) divag v/
=divy X7 + ZjL=k+1(Vj X)X Dri‘)j
=divie X" =" X - BY (5. w).
where BJI,V is the second fundamental form of N at y and where we used the definition

of second fundamental form as in 4.30 (with N in place of M) and hence by virtue
of Remark5.10 (with X T in place of X) we conclude:

5.12 Lemma. If N is an (n + k)-dimensional embedded C? submanifold of R"*L and if
M C N is an n-dimensional embedded C?* submanifold of N, then M is stationary in N
(i.e. %M((p,(M N K))|r=0 = 0 whenever the o, and M N K are as in 5.8) if and only if

div X:—/HN-X
/M M M_M

or each C! vector field X with{y e M : X 0} contained in a compact subset of M.
ly /2
Here

HY(y) =1 1BY (ni.t). yeM,
where BY denotes the second fundamental form of N at y and 7y, . .., T, is any orthonormal
basis of TyM (C TyN C R"*E),

6 Second Variation

We continue to suppose that M is an n-dimensional C? embedded submanifold of R"*¥.
Also, let K C M be compact and ¢ : (—¢,&) x M — R"** as in 5.1 except that now
we require also that 82¢(z, y)/0t? exists and is C! on (—&,&) x M, so both the initial
velocity X (y) = d¢(t,y)/0t|;=0 and the initial acceleration Z (x) = 8%¢(t, y)/d1?|;=0
will be C! vector fields on M. Clearly then

6.1 9i(x) = x + 11Xy + 31°(Zx + E(t,x)) where E(1,x) > Oast — 0
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in the sense that sup, g (|1 E (. X)| + sup ez a7 )= |D<E (2, x)|) = 0ast — 0.

Thus {¢;(M N K)}j|<¢ is a 1-parameter family of submanifolds, each with finite H"-
measure, which agrees with M NK at¢ = 0. We computed the first variation 74, (¢, (M N
K))|¢=o in the previous section: by 5.4 we have

6.2 %H”((p,(MﬂK))h:O =/MdivM X.

Here we want to compute m?—["(pt(M N K)|;=o (i.e. the “second variation” of M),

which, as for the first variation, involves using the area formula
W (g (M N K)) = [ gy .
M

This time we need to compute the terms up of second order in the Taylor series expansion
(in the variable t) of J,,. With 71, ..., 7, any orthonormal basis for T M, we have by 6.1

Dygi(x) = 1 + 1D X + 5(Dyy Z + Ei(1,x)))

fori =1,....n,wheresup, gy |Ei(t,x)] = Oast — 0,50 J2 (x) = det(Dy; ¢ (x) -
Dy;¢;(x)) has the form
(Jg, (x))2 =68 +1t(u Dy X + 75 D X)
+12(3(ti D, Z + 7 - D Z) + (D X) - (D, X) + Ejj (1, x)),

where sup, g |Eij(t, x)| = 0 as t — 0. By the general formula
det(I + A) = 1 + trace A + 3 (trace A)> — 1 trace(4?) + O(|A]?),
we then have
(Jor (X)) =1+ 2t divay X + t3(divy Z + X7, |Drl.X|2
+2(divar X)? = 337 oy (1i - Dy, X 4+ 17 - Dy X )? 4 F(1.x))
= 1+ 2t divar X + 2 (divar Z + Y0, [(Dg X1
+2(divar X)? =7 ;o (ti - D X)(7j - D X)) + 12 F (2. x),
where (DTiX)J‘ (= the normal part of Dy, X) = D,l.X—Z;':l (tj - Dr; X )17, and where
sup,cx |F(t.x)] = 0ast — 0. Using /T +x =1+ 2x — 2x2 + O(x?), we thus get
Jy, =1 +td1vMX+ (leMZ + (dlvMX) + 3 1| Dy X) J‘|
=20 j=1(ti - Dy X)(7j - Dy X) + F(1.x)).
where again sup g | F (¢, x)| = 0. Thus

6.3 dtan ((Pt(M N K))|,=0 = /M(diVMZ + (divas X)2 +Z?=1|<Dr,-X)J'|2
— >0 i=1(ti D X)(zj - Dy X)) dH".
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Finally, we shall need later the following important fact about the second variation for-
mula 6.3.

6.4 Lemma. If M is a C? minimal submanifold (as in Definition 5.9) and if {y € M :
X|y # 0} is contained in a compact subset of M with X, € (TyM )X Yy € M (thus X|M
is a compactly supported tangent vector field on M), then 6.3 says

d2
YTk (¢:(M N K))

2
o = /A/[(Z?=l|(DTiX)J_| - Z?,j:l(X : B(fi»fj))z) dH".
6.5 Remark: In case k = 1 and M is orientable, with continuous unit normal v, then
X = ¢v for some scalar function ¢ with compact support on M, and the above identity
has the simple form
d2

(*) LH (o (M 0 K))

= [, e ~cmp) an

1=0 M

where |B|?> = Z?’j=1|B(r,-,rj)|2 = Y7 iov- B(r,-,tj)}z. This is clear, because
(Dy, (v8))t = vDy, ¢ by virtue of the fact that D,iviy eTyMVyeM.

Proof of 6.4: First we note that [,, divas ZdH" = 0 by virtue of the fact that M is
stationary, and divay X = —X - H = 0 by virtue of 5.5. The proof is then completed
by noting that 7; - D;; X = —X - B(7;, 7;) by virtue of the fact that X is normal to M
together with 4.30. O

7 Co-Area Formula and C! Sard Theorem

Let M be a C! submanifold of a Euclidean space R"*¢, where £ € {0,1,...} (note the
case £ = 0 is included, which is the case when M is an open subset U of R"), and let
f=0f"....f™): M — R"™ be locally Lipschitz, withm < n,sothatn = m+k, k €
{0,1,...}.

From 1.10 in case X = R+, H* (M 0 f~'2) is an H™-measurable function of z and
7.1 / HE(AN f712)dLm(z) < CH'(A). C = C(n.0),
]Rm

for each " -measurable set A C M. The coarea formula, which we now present, enables
us to replace this inequality with an exact identity. In the statement, we use the notation

T (x) = \Jdet((dfi) o (dfi)*) = \Jdet (VM f1(x) - VM f1(x)).
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when these quantities exist (which is H"-a.e. in M by 4.13); in terms of an orthonormal
basis 71, ..., T, for Ty M we thus have, by 4.22,

72 TP () = \Jdet (s Dey /() Dey S ()i j=1,m) -

7.3 Theorem (Coarea Formula.) As above, let M be an n-dimensional C' submanifold of
R**tt and let f : M — R™ be locally Lipschitz withm = n — k, wherek € {0,1,2,...}
(som < n in contrast to the Area Formula 4.19, where we assumed m > n). Then

/ HE(AN f1y) dem(y /Jf dH"
for any H"-measurable set A C M, where JM isasin7.2.

7.4 Remarks: (1) We then have the general formula

/th dH" = /]Rn/ X)dH<(x) dLm(y).

for any non-negative H"-measurable function & : M — R™, which follows directly from
the above theorem by approximating i pointwise (everywhere) by an increasing sequence
of non-negative simple functions.

(2) Observe that if £ = 0 (so that M is an open subset U of R") and if f = p, where
p:x = (x,....x") — (x',...,x™) is the projection onto the first m coordinates,
then J fM = 1 and the above is just Fubini’s Theorem. Thus the coarea formula can be
viewed as a generalization of Fubini’s Theorem. It is then not surprising that the proof
given below depends in part of Fubini’s Theorem.

Proof of Theorem 7.3: If n = m the result of the theorem is covered by the Area
Formula 4.19, so we assume k = n—m > 1. Using the additivity of the relevant integrals
on each side of the identity with respect to decompositions of A into pairwise disjoint
unions, we can also assume without loss of generality that f is Lipschitz (rather than
merely locally Lipschitz) and H" (A) < oo.

The proof will be based on the Area Formula 4.19 and Fubini’s Theorem.

Let M be the set of points x € M such that Ty M and the directional derivatives D f (x)
exist for all T € Ty M and are linear in 7 € Ty M, and recall that (by 4.13)

(1) H' (M \ M) =0.
We claim that for each ¢ > 0 and each x € M, there is §, > 0 such that

(2) z € MNBs, (x)\{x} with f(z) = f(x) = |px,(s)(z—x)—(z2—x)| < elz—x],
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which follows from the fact that if x; € M \ {x} withx; — x,if f(x;) = f(x)VJ
and if |x; — x|7!(x; — x) — v, then v € TyM and D, f(x) = 0. (See problem 2.6 of
Ch.2 problems.)

Since A ={x e ANM; : Jr(x)>0}U{x e ANMy : Jp(x) =0}U(AN(M\My)),
it suffices to consider just Case 1: A C {x € AN My : Jr(x) > 0}, Case 2: A C {x €
ANMy :Jr(x) =0}, Case3: AC M\ My.

In Case 1 dM f has rank m and K (f) has dimension k at each point of A. Let L be

any k-dimensional subspace of R"*+¢ with orthonormal basis 7. ..., 7z, let & € (0, %),
define

(3) Ape={x € A:|pk.r)—pLl <&}

Then for each x € Ay . there is an orthonormal basis 71, . . ., 7, for Ty M with

(4) Kx(f) =span{tm+1,.-.,tn} and |9, — tmi| < Ce, i = 1,...,k,

with C = C(m, k), and we can define g : M — R" by

(5) gx)=(f(x),x-n,....,x-m), x€M.

Now JM (x) = (det(Dx,g(x) - D, g(x)))/? and, by (4), for x € AL,

(Do f(x) Dy [ (X)) ;1 Omxk

L,j=
Ok xm Lixk

(Dr,-g(x)'D‘E_/g(x)) = (

>+E, |E| < Ce,

where Ogxp, is the k X m zero matrix, Ixxx is the k x k identity matrix and C =
C(m,k,Lip f). Also, by 7.2 and (4), J;”f(x) = (det((Drif(x)-ijf(X))i,j:l ..... m))l/z,
so, for each x € Ap g,

(6) JgM(x) = JjM(x) +e, le] <Ce, C=C(m,k,Lipf).
Now, with 8, as in (2), we write
AL’s’jZ{XEAL,SS(ngl/j}, j=1,2,....

Since [(n1 -y, - ¥)| = lpe(¥)] = |y + (Pro(r)Yy —¥) + (PL — Pk (1)) Y] for
y € R"*, we then have, by (2), (3) and (5),

(7)  x1.xp2 € AL with f(x1) = f(x2) and |x; —x2| < 1/j =
(1=2¢)lx1 —x2| < lg(x1) —g(x2)] < (14 2¢)|x1 — x2.
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Next, for any H"-measurable subset B C Ay , choose pairwise disjoint H"-measurable
subsets By, Bs, ... of Ar . ; with diameter B; < 1/j for eachi and U; B; = BN A ;.
Then, by the Area Formula 4.19 and Fubini’s Theorem,

®) | = (e(8)
= [ M (e(B) N ({y} xRY)) dy

R

= /}RmH"(g(Bi N f71y))dy.

and, since Lip g|B; N f 'y < (1 4+ 2¢) and Lip(g|B; N f~1y)™! < (1 —2¢)~1 by (7),
we use 1.8 to conclude

(1=2e)HE (B f7hy) < HF(g(Bin f71y)) < (1 +2e)"H5 (B 0 f71y).

Hence, in view of (6), (8) gives
)fB JM A" —/Rm HE (BN fy) dy‘ < CeH"(B;), C = C(m,k,Lip f).

Hence, by first summing on i and then letting j — 00, we obtain, for any H"-measurable
BCA L,es

(9) ‘/B Mgy - /I;{mHk(B N7 dy| < cem(B)

Now, still with ¢ € (0, %) arbitrary, let Lq,..., Ly (N = N(n,¢, ¢)) be k-dimensional
subspaces of R"*¢ such that for every k-dimensional subspace L of R"*¢ there is j €
{1,....N} with |pL — pr;| < & Then we can decompose 4 into a disjoint union
UJI.V=1A j of H"-measurable subsets such that A; C A, . for each j, and hence, using (9)
with L; in place of L and A; in place of B, we have

‘/A M d’;’-l"—/]RmHk(Aj ﬂf’ly)dy) < CeHM(A;),
J

and the required identity follows by first summing over j and then letting ¢ | 0. The
completes the proof of Case 1.

In Case 2 we are assuming A C {x € M : JfM (x) = 0}, and we can apply Case 1 with
M =M x(0,1)", A= Ax(0,1)" and m + k in place of M, A and k respectively, and
F: M — R" in place of f, where

F(x,z)=f(x)+ez, xeM, ze(0,1)" (¢€(0,1)).
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Notice that d,” M . F evidently has rank m at each point (x,z) € M, so Case 1 is indeed
applicable and gives

(10) /Rm’H’”H‘(A NEYy)dLm(y /JF A",

\/det "D, JF1(0.2) Dy F(x.2) (CL 72,

Using the formula JM (x,z) =
where 1, = (74.0) for g =1,...,n and NMt+q = (0.eq) for g = 1,...,m, with

T1,..., T, an orthonormal basis for TxM and ey, ..., e, the standard basis for R™, we
see that

TH (x.2) = \Jdet((Thay Dey 1 (x) Dey £7(x) + €2617)1 j=1....m)
=Jf (x)+ E(x,z) by7.2,

where |E(x,z)] < Ce, C = C(n,£,Lip f). Since J]M|A =0, (10) then implies

(11) H" K (AN F~'y)dLm™(y) < CeH™(A)

Rm
With p is the projection p : (x,z) € R"*¢ x R > z € R™ we have
(ANF'y)npH(z) = {(x.2) s x € A, f(x) = y—ez} = (AN [T (y—ez)) x {z}

for z € (0,1)™, so, by 7.1 with A N F~'y in place of 4 and p in place of f,
/ HA(AN [Ty —e2))dLm(z) < CH™F(ANF'y), yeR™
(0,1)m

Integrating this inequality with respect to y € R™, using Fubini’s Theorem to change the
order of integration on the left, and noting that fym H* (AN f71(y —e2)) dL™(y) =
Jgm HK (AN f='(y)) dL™(y) (by change of variable y — y — &z), we conclude

[ HEans T ) aen o) < [ HmEGENFTy) den(y) < Cert(4) - (by (D).

So the Coarea Formula (with both sides = 0) is proved in Case 2 by letting ¢ | 0.

In Case 3, A C M \ My, so H"(A) = 0 by (1), and the Coarea Formula holds (again
with each side = 0) by virtue of 7.1.

This completes the proof of the Coarea Formula. O

Incase f : M — R™ is C! (rather than merely locally Lipschitz) with m < n, there is
an important additional consequence of 7.3: namely if C = {x € M : J}” (x) = 0},

then (by using 7.3 with 4 = C) H*¥(C N f~1(y)) = 0 for L™-a.e. y € R™. Also, since
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J ;‘4 (x) # 0 precisely when d™ f has rank m, the implicit function theorem implies that
either f~1(y) \ C is empty or else is a k-dimensional C! embedded submanifold in the
sense of §4 above.

In summary we thus have the following important result.

7.5 Theorem (C ! Sard-type Theorem.) Suppose f : M — R™, m < n, is C', with M is
an n-dimensional C' embedded submanifold of RN. Then for L™-a.e.y € f(M), f~1(y)
decomposes into a k-dimensional C" embedded submanifold and a closed set of H*-measure
zero, where k = n — m. Specifically,

)=\ e)u (T y)nc).

C={xeM:JMx)=0}(={x e M :rank(dfy) < m}) HE(fY(y)nC) =
0, LMae y € R, and f~1(y) \ C is either empty or an k-dimensional C' embedded

submanifold.

7.6 Remark: If f and M are of class C¥*!, then Sard’s Theorem asserts the stronger
result that in fact f~!(y) N C = @ for L"-a.e. y € R, sothat f~1(y) is either empty
or a k-dimensional C**! embedded submanifold for £™-a.e. y € R™.

We conclude this section with some important remarks about selection of “good” slices
by a given locally Lipschitz function f : M — R™:

7.7 Remarks: (1) First notice that the formula 7.4 (1) enables us to bound the H* measure
of the “slices” 1y for a good set of y. Specifically if | f| < Rand gisasin7.4 (g = 1
is an important case), then there must be set S C Bg(0) (CR™), S = S(g, f. M), with
L£"(S) = 1£m(Br(0)) and with

2
dHF < m—/ TEdH"
/f—1<y>g (B (0) Ju® 7

for each y € S. For otherwise there would be a set T C Bg(0) with £™(T) >
1L (Bg(0)) and

2
dmk > —/ JrdH', y €T,
S8 = By
so that, integrating over 7' we obtain a contradiction to 7.4 if [}, g /7 dH" > 0. On the
other hand if [y, ¢ J dH" = 0 then the required result is a trivial consequence of 7.4.

(2) The above has an important extension to the case when we have f : RN — R” and
sequences {M; }, {g; } satisfying the conditions of M, g above. In this case there is a set
S C Br(0) with £ (S) > 2£™(Bg(0)) such that for each y € S there is a subsequence
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{J'} (depending on y) with

2
gjrdHF < m—/ gjr Iy dH".
/M,-mf—1<y> ’ L™ (BR(0)) Ju;, > "7

Indeed otherwise there is a set 7 with £™(T) > 1£™(Bg(0)) so that foreach y € T
there is £(y) such that

2
CdHE > —/ CJEAH"
®) /M,-mf—lmg’ L™ (Br(0)) M;g’ 4

foreach j > £(y). But T = U2\ T}, T; = {y € T :4(y) < j}, and hence there must
exist j so that £ (T;) > 3™ (Bg(0)). Then, integrating (}) over y € T}, we obtain a
contradiction to 7.4 as before.
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CHAPTER 2 PROBLEMS

2.1 f : R™ — R” is said to be approximately differentiable at x € R with respect to
Lebesgue measure if there is a linear map vy : R™ — R” such that

lpiigp"”ﬁ’”({y € Bo(x)\{x} : ly—x|""f(y)—f(x)—vx(y—x)| = £}) =0 Ve > 0.

If f is locally Lipschitz near x (i.e. 3K, R > 0 such that |f(z) — f(y)] < K|z —
y| for all y,z € Bg(x)), prove that approximate differentiability at x is equivalent to
differentiability at x.

(Recall differentiability at x means that there is a linear map vy : R — R” such that
limy_x [x —y|7' f(¥) = f(x) —vx(y — x)| = 0; i.e. for each & > 0 there is § > 0 such
that [x — y| 7! £ (y) = f(x) —vx(y —x)| <eforall y € Bs(x) \ {x}.)

2.2 (Tietze extension theorem) Assume X is an arbitrary metric space, A C X is closed,
A>0,and f : A — R is bounded continuous with sup, | f| < A.

(1) Let Ay = {x: f(x) = A/3}, A = {x : f(x) < —A/3} and check that if A4
are non-empty then 1 (x) = %(d(x, A_)—d(x,A4+))/(d(x,Ay) +d(x, A_)) defines
a continuous function h; : X — [-A/3, 1/3] on X such that h; = A1/3 on A4 and
h1 = —A/3 on A_; note also that such a function %, is obtained by taking h; = 1/3 if
A_=Qandh; =-1/3if AL = @.

(i1) Prove by (i) and induction on k that for each k = 1,2,... there exist continuous
hy,ha, ... hi on X such that sup, | f — Z?:l hil < (2/3)*xand |h;| <2/711/37 on
X,j=12,.. . .k

(iii) By letting k — oo in (ii), prove there is a continuous H : X — [—A, A] such that
H|A=f.

(iv) Prove there is a continuous H : X — R with H|4 = f even if no boundedness
hypothesis is assumed for f.

Hint for (iv): Start by applying (iii) with arctan f in place of f. Caution: In this case (iii) would be applied
with A = 7/2 and the extension H may possibly have a non-empty set C = {x : |H (x)| = m/2}, so you

cannot get the required extension for f simply by using tan H. (Note however that C is a closed set disjoint
from A.)

2.3 Suppose f : R™ — R" is continuous on R™ and satisfies lim sup,,_, ly—x|"Y f(y)—
f(x)] < oo at almost all points x € R™ (that is, lim,y0 Supg|,_ <, |V — x|7Hf(y) =

f(x)]) < o0 ae.)

WUC; ={x:|f(y)— f(x)] < jly — x| whenever |y — x| < 1/j }, prove that C; is
closed and that £"(R" \ (U;C;)) = 0.
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(i1) Let U; Cj; be a decomposition of C; into closed (not necessarily disjoint) subsets of
diameter < 1/j. Prove that f|Cj; is Lipschitz.

(iii) Prove that f is approximately differentiable (see 2.1 above) at £"-a.e. point x € R™

2.4 (Chain rule for composite of a Lipschitz and an AC function.) If g : R — R is
Lipschitz and f : [a,b] — R is absolutely continuous (AC) (hence both f, g o f are AC
on (a,b) and so both (g o f)'(x), f/(x) exist a.e. x € (a, b)), prove:

(1) x € (a,b)and f'(x) =0 = (go f)'(x) exists and is equal to zero.

(1)) If y(y) = g’(y) when this exists, and y(y) = 0 at points y where g’(y) does not
exist, prove that (go f)'(x) = y(f(x)) f/(x) for a.e. x € (a,b).

Hint for (ii): By (i), (g © f)’(x) exists and is equal to zero at all points of Fo = {x € (a,b) : f/(x) = 0}.
Then show, directly by using difference quotients, that (g o f)’(x) and g’(f (x)) f’(x) both exist and are
equal at every point of (a,b) \ (E U Fp), where E = {x € (a,b) : f’(x) does not exist} U {x € (a,b) :
(g o f)/(x) does not exist}.

2.5 Let X, Y be metric spaces with X o-compact and let f : A — Y be Lipschitz with
AC Xand A =U3, A; withH"(A;) < oo for each j.

(i) Prove that H™({y : H®(A4; N f~'y) = oco}) = 0 for each ;.

(ii) Give an example to show that H™({y : H*(A N f~'y) = 0o0}) = oo is possible
with the stated hypotheses.

2.6 Let M be an n-dimensional embedded C! submanifold of R***, and x € M.

() Ifx; € M\ {x} withx; — xand |x; —x| ' (x; —x) — v € S"*~1 prove v € T, M.
(i) If £ : R"T* — R™ is Lipschitz, if x;, v are as in (i) above with f(x;) = f(x) for
each j, then D, f(x) = 0. Note: Part of what is to be proved is that Dy, f (x) exists.

2.7 Suppose f : R" — Ris Lipschitz and [ |Df| < 1. Prove that for each K > 0 the
slices {x € R" : f(x) =t} have (n — 1)-dimensional Hausdorff measure < K with the
exception of a set of ¢ of Lebesgue measure < 1/K. Hint: Coarea formula.

2.8 Suppose X is a o-compact metric space, m € {1,2,...}, k > 0, A C X is H" k.
measurable with #"™+¥(4) < 0o, and f : A — R™ is continuous. Prove

(i) If A is compact and U is an open subset of X, then {y € X : f~!y C U} isan open
subset of R™.

(ii) If A is compact then {y € R” : HE(f~1(»)) < ¢} is open for each ¢ € R and each
s> 0.
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(iii) #*(f~'y)) is an H™-measurable function of y € R™, provided f : A — R” is
Lipschitz.

Hint for (iii): Using the inequality (4) in the proof of Theorem 1.10, start by showing that if 1% (4) =0
then H¥ (f~1y) = 0 for £L-ac. y € R™,

2.9 Let yj : la;j,bj] — R" be absolutely continuous and such that y;(a;) = 0 and
lengthy; = 1foreach j =1,2,....

(1) Prove thereisa Lipschitzmap y : [0, 1] — R” with Lip f* < 1 such that a subsequence
of yj([aj,bj]) = y(]0, 1]) in the Hausdorff distance sense.

Note on terminology: Given sets A, B in a metric space X, the Hausdorff distance between A4, B is defined as
the inf of the set of A > Osuchthat A C {x € X :d(x,B) <A}and BC {x € X : d(x,A4) < A}.

(i1) Construct an example of a sequence y; which shows that y in (i) may have length
strictly less than 1.

2.10 Foreach N = 2,3, ... let My be the 2-dimensional C*® submanifold of R? defined
by

My = Ujkefo,£1,22,.1{(x.y) e R* xR |x — (j/N.k/N)| = 1/N?}.
(Thus My is a countable pairwise disjoint union of cylinders with axes parallel to the
third coordinate axis.)

Prove that H?> L My — 27L3 (i.e. 27 times Lebesgue measure on R3) as N — o0; i.e.
prove

/ fdH? — 271/ fdL? foreach f € C2(R?).
My R3

Hint: Firstshowthat N2 Y v —o. 41,42, Jx F(J/N.k/N,y)dy — [g3 f d L3 foreach f € CO(R?).

2.11 With My asin Q2.10 above, prove that fMN ® — 0as N — oo for each continuous
2form w on R? with compact support in R3.

Note: Here we use the usual definition of [y, @ for a 2-dimensional oriented C'! submanifold of R? and a
continuous 2-form @ = w1dx? A dx3 + wrdx! A dx3 + wzdx! A dx?; namely, we assume that we
have selected a continuous unit normal v = (v1,v2,v3) for M and then [, @ = [ @* - v dH?2, where
o™ = (w1, —w2,w3) the vector field dual to .
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1 Basic Notions, Tangent Properties

Firstly, a set M C R"** is said to be countably n-rectifiable if

1.1

where H"(My) = O and F; : R" — R"t* are Lipschitz functions for j = 1,2,....!

M C My U (U2, F; (R")).

Notice also that by the extension theorem 1.2 of Ch.2 this is equivalent to saying

where H"(My) = 0, F; : Aj — R"** Lipschitz, A; C R". More importantly, we have

M = Mo U (U2, F;(4;))

the following lemma.

1.2 Lemma. M is countably n-rectifiable if and only if M C U32 (N;, where H" (No) = 0

and where each N;, j > 1, is an n-dimensional embedded C' submanifold of R+

Proof: The “if” part is essentially trivial because if N is an n-dimensional C! embedded
submanifold, then using local representations for N as in Remark 4.2(3) of Ch.2 we see

Notice that this differs slightly from the terminology of [Fed69] in that we allow a set Mo with H" (M) =

0.
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that for each x € N there is py > 0 such that B, (x) N N = ¢ (V) for suitable C' map
¥ 1V — Rk ¥V C R” open. Since such C! maps are automatically Lipschitz in each
closed ball C V it is then clear that M satisfies the definition 1.1.

The “only if” part is a consequence of the C! Approximation Theorem 1.5 of Ch.2,
which guarantees that if F; are Lipschitz functions as in the Definition 1.1 above, then
for each j € {1,2,...} we can choose C! functions Gy;, Ga;, ... : R" — RF such that
H"({x: Fj(x) # Gij(x)}) < 1/i. So, with

Zj =R"\ (U2 {x : Fj(x) = Gi; (x)}),
we have H"(Z;) = 0, in which case
1) Fi(R") C F5(Z)) U (U2, Gy (RY), j = 1.2,....
Then H"(Fj(Z;)) = 0 because Fj is Lipschitz and H"(Z;) = 0, so
) H(No) = 0, where No = (U2, F5(Z))).

and we have proved
M C Mo U No U (U7 ,Gij (R")).

Let Ci; = the critical set of Gjj; i.e. Cij = {x € R" : Jg,; (x) = 0}. By the area formula
H"(Gij(Cij)) = 0, whereas if x € R" \ Cj;, then by an inverse function theorem
argument similar to that in Remark 4.2(2), there is a p > 0 such that G;; (B, (x)) is
an n-dimensional C! embedded submanifold of R” (with G;;|B,(x) providing a local
representation in a neighborhood of the point y = Gj;(x)). So U;;G;;j(R") can be
written as the union of a set of measure zero and countably many n-dimensional C'!
embedded submanifolds of R**t*. O

1.3 Remark: If M is countably n-rectifiable, the above lemma guarantees that we can find
Ny with H" measure zero and n-dimensional C! embedded submanifolds Ny, N,, ...
with M C USZ,N;, and so we can write M as a disjoint union M = U2, M; with
M; C Nj foreach j = 0,1,2,.... To achieve this, just define the M; inductively by
My = M NNyand M; = M N N; \ U{;&M,-, J = 1. Of course the sets M; so
constructed are all #"-measurable if M is.

We now want to give an important characterization of countably n-rectifiable sets in
terms of approximate tangent spaces, which we first define:

1.4 Definition: If M is an H"-measurable subset of R**¥ with H"(M N K) < ooV
compact K, then we say that an n-dimensional subspace of P of R"*¥ is the approximate
tangent space for M at x (x a given point in R"**K) if

lim [ FO)AH) = [ F0)dH () VS € CORTE),

Al0. Nx A (M)
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(Recall 3 : R"* — Rk js defined by .5 (y) = A7 (y —x), x,y e Rk, 1 > 0.)

1.5 Remarks: (1) Of course P is unique if it exists; we shall denote it by T, M.
(2) We show below (in the proof of the “=" part of 1.6) that, with M;, N; as in Re-
mark 1.3 above,

TxM =TxN;, H'-ae.x e M;, j=12,....

This is a very useful fact.

(3) By choosing f : R"** — [0, 1] € CO(R"*¥) with f = 1 0on B;(0) and f = 0 on
R"+*\ B, 1(0) in Definition 1.4, we see (after letting ¢ | 0) that Ty M exists =

lim(w, ") ""H" (M N B,(x)) = 1.

P40
and similarly, if Ty M exists, if 0 < @ < 1, and if we let f : R**K — [0,1] € CO(R"*F)
in Definition 1.4 approximate the indicator function of {y € R**¥ : dist(y, (T, M)*) <
a|y|} N B1(0) then

li?&(wnp")_lH"(M N{y e R"™* s dist(y — x, (TxM)1) < |y — x|} N B,(x)) = 0.
0

The following theorem gives the important characterization of countably n-rectifiable
sets in terms of existence of approximate tangent spaces.

1.6 Theorem. Suppose M is H"-measurable with H" (M N K) < oo for each compact
K C R"" . Then M countably n-rectifiable <=> the approximate tangent space Ty M
exists for H"-a.e. x € M.

Proof of 1.6 “=”: As described in Remark 1.3 above, we may write M as the disjoint
union USLoM;, where H"(Mo) = 0, M; C N;, j > 1, N; embedded C' submanifolds
of dimensions n, and M; H"-measurable. Let R > 0 and f € C2(R"*k) with f = 0in
Rtk \ BR(O). Foreach j = 1,2, ... we can write

M= (M\N;)U(MnNN;)=(M\N;)U(N;\(N;\M)),

and hence

[ paw= [ paw- |
nx.a (M) Nx.a(Nj) Nx.A (Nj\M

J J

FdH" + / Fdn
) Mo (MAN,)

J

If x € Mj, then x € N; and N; is a C' embedded submanifold, so

lim Fdu =/ Fdn.
A40 Sy A (N;) TxN;
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Also, by the Upper Density Theorem 3.8 of Ch.1,

"/77x,A(M\N/')f dH"| < sup|f|’}-[n(BR(0) a nx,A(M\Nj))

=sup|f|IAT"H" (Byr(x) N M \ N;) — 0 for H"-a.e. x € M;.
Similarly, again by the Upper Density Theorem,

‘/ fdH"| — 0for H"-ae.x € M;.
Inx 3 (Nj\M)

Thus we have shown that Tx M exists and = Ty N; for H"-a.e. x € M;. In particular
Remark 1.5(2) is checked. O

Proof of 1.6 “<”: We can of course assume H" (M) > 0. Define p = H"L (M N
Bg(0)), with any R > 0 such that M N Bg(0) has positive measure. Then p is Borel
regular with 0 < u(R"**) < oo.

Given any k-dimensional subspace 7 C R"** and any « € (0, 1) we let X, (7, x) denote
the double cone

(1) Xo(m,x) = {y e """ : dist(y — x,7) < aly — x|},

which can alternatively be written

@) Xa(m.x) = {y € R Jga(y —x)l < aly — 1},

where ¢, denotes orthogonal projection of R"*¥ onto 7+, with
rt={zeR""*:z.w=0vVwen}

For k-dimensional subspaces 7, 7/ we define the distance between 7, 7/, denoted d (7, '),

by

(3) d(m. ') = sup |px(x) — prr(x)l,

|x|=1

where 77, denotes orthogonal projection of R**¥ to , so that in fact d (7, 7”) is just the
norm || py — pn/| of the linear map pr — py.

By Remark 1.5(3) we have
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for p-a.e. x € M N Bg(0), where my = (Py)*.
Fork =1,2,...and H"-a.e. x € M N Bg(0), define

o ABl)

X)) =
fk( ) O<p<% wp P
and
(X (%) 01 By ()
qr(x) = sup - .
0<p<4 @np

Then
(6) lim fi(x) = land limgx (x) = 0 p-a.e. x € M N Br(0),

and hence by Egoroff’s Theorem (1.12 of Ch. 1) we can choose a Borel set E C MNBg(0)
with

(7) R(R™EN\E) < Jpu(RHF)
and with (6) holding #niformly for x € E. Thus for each ¢ > 0 there isa § > 0 such that

w(Bp(x) _ |, 1(X 1 (e, x) N Bp(x))
wnp" T ' Wnp"

(8)

<e¢

xe E,0<p<é.

Now choose k-dimensional subspaces 71, . .., 7ty of R**K (N = N (n, k)) such that for
each k-dimensional subspace 7 of Rtk thereisa j € {1,...,N}such that d (7, 7;) <
%, and let Eq, ..., Exn be the subsets of E defined by

Ej={x€eE:d(mj,my) < %}

Then E = UJNZIEJ- and we claim that if we take § > 0 such that (8) holds with ¢ =
1/16"1, then

(9) X%(nj,x)ﬂEj N Bs/a(x) ={x}, Vx e E;, j =1,...,N.

Indeed otherwise we could find a point x € Ej anday € X (mj,x) N E; NdB,(x) for
some 0 < p < §/2. Butsince x € E and 2p < §, we have (by (8) with & = 1/16"*1)
(10) (X g (702, %) N Bap(x)) < 167" o, (20)" < 1(p/8)".

On the other hand B,s(y) C X%(ﬂj,x) N Bay(x), because |z — y| < p/8 = d(z —
X, mx) < p/8+d(y—x,mx) = p/8+(y —x) = pr, (y =) < p/8+ |(y — x) =
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Pr; (¥ = X)| + (Pn; — Pr)(y = X)| < 7p/16 < |z — x|/2. Hence we have also (again
by (8))
(X (72, %) N Bap(x)) = i(Byys(v)) > 30m(p/8)",

which contradicts (10). We have therefore proved (9).
Take any fixed x¢ € E;. Since Bsj4(x9) C Bsj»(x) for each x € Bs/4(x0), (9) implies

(11) X%(nj,x) N (E; N Bsja(x0)) = {x}, Vx € E; N Bs/a(x0), j =1,...,N.

If Q is an orthogonal transformation of R"** with 7; = Q ({0} x R¥), (11) evidently
implies that E; N Bs/4(xo) is contained in the graph of a Lipschitz function defined over
a domain in R”, and hence by the extension theorem 1.2 of Ch.2, we have

Ej N Bsja(xo0) C Q(graph f),

where £ = (f',..., /%) : R”" — RF is Lipschitz.

Since j € {1,...,N} and xo € E; are arbitrary and since we can cover E by finitely
many balls Bs/4(x;), where x; € E, we conclude that there are finitely many Lipschitz
functions fi...., f7 : R" — R¥ and orthogonal transformations Q1,..., Qs of Rtk
such that

E C UJ_,Q,(graph f;).
Thus by (7) we have

pw(R™ N\ UI_, 0 (graph f7)) < 2u(R*H5).

Since we can now repeat the argument, starting with M N Bg(0) \ (UjJ=1 Q;(graph f;))
in place of M N Bg(0), we thus deduce that there are countably many Lipschitz graphs
graph f;,j = 1,2,..., f; : R" — R¥, and corresponding orthogonal transformations
01.0,.... with p(R*% \ U2, Q) (graph f;)) = 0. Taking G; to be the graph map
x + (x, fj(x)) and F; = Q; o G; we then have F; : R" — R"** Lipschitz and
H"(M N Br(0) \ (U2, F;(R"))) = 0, so, since M = USZ; M N B;(0), we conclude
M is countably n-rectifiable. O

It is often convenient to be able to relax the condition H" (M N K) < oo V compact K
in 1.4 and 1.6 and consider instead sets M which can be written as the countable union
U2, M; of H"-measurable sets M; with " (M; N K') < oo for each j and each compact
K C R"*. This is evidently equivalent to the requirement that M is H"-measurable
and there exists a positive H"-measurable function 6 on M such that [}, 0 dH" < 00
for each compact K, so we proceed to discuss this situation, starting with the definition
of approximate tangent space in such a setting:
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1.7 Definition: Let M be an H"-measurable subset of R” ¥ and let 6 be a positive H"-
measurable function on M with [, 0 dH" < oo for each compact K C R"T. We
say an n-dimensional subpace Py is an approximate tangent space of M with respect to
6 at the point x € M if

() lim SO +Ay)dH (y) = 0(x) | f(y)dH"(y)
A0 Jny 2 (M) Py

for each f € CO(R"*k). Evidently P, is unique if it exists at all so we denote it Ty M,

and also Tx M agrees H"-a.e. with our previous notion of approximate tangent space in

case 0 is equal to 1 H"-.a.e. in M.

1.8 Remark: By taking a C° function f : R"*% — [0,1] with f = 1 in B;(0) and
f =0inR"*\ B;1(0), and then letting & | 0, we see that the definition (%) implies
in particular that

lim(@np") [ gaw =

N0( P") . (»)

whenever M has an approximate tangent space with respect to 6 at y.
We now have the following generalization of Theorem 1.6:

1.9 Theorem. Suppose M C R"** is H"-measurable and 0 is a positive H" -measurable
function on M with [y, 0 dH" < oo for each compact K C R"*. Then M is countably
n-rectifiable <= M has an approximate tangent space Ty M with respect to 0 for H" -a.c.
xeM.

Proof: Let 4 = H" L 6. By Lusin’s Theorem 1.24 and Remark 1.25 of Ch.1 there is an
increasing sequence { M }j—1»,... of closed sets with M; € M, u(M \ (U;M;)) = 0 and
0| M; continuous for each j, hence of course then infpr,nx 60 > 0 for each compact K C
R"** and in particular H" (M; N K) < oo for each compact K ¢ R"**, j =1,2,.. ..
Using the continuity of 6|M;,
(1) Vx e M;: TyM; exists (as in Definition 1.4) <= TyxM; is the

approximate tangent space of M; with respect to 6 (as in Definition 1.7).

Also the Upper Density Theorem 3.8 of Ch.1 implies that lim, o o™ (M \ M;) N
By(x)) = 0for H"-a.e. x € M; and hence, for H"-a.e. x € M;,

(2) TxM; is the approximate tangent space of M; with respect to § <>
Ty M; is the approximate tangent space of M with respect to 6.

But, according to Theorem 1.6, M; countable rectifiable <= T, M, exists for H"-a.e.
x € M;, and of course M countably rectifiable <= M; is countably rectifiable for each



92 CHAPTER 3: COUNTABLY n-RECTIFIABLE SETS

J- So by (1) and (2) we have M countably n-rectifiable <= M has an approximate
tangent space with respect to 0 at x (as in Definition 1.7) for H"-a.e.x € M. O

2 Gradients, Jacobians, Area, Co-Area

Throughout this section M is supposed to be H"-measurable with locally finite " mea-
sure, and countably n-rectifiable, so that we can express M as the disjoint union U2, M;
(as in Remark 1.3 of the present chapter), where H" (M) = 0, M; is H"-measurable
of finite H"-measure, and M; C N;, j > 1, where N; are n-dimensional C! embedded
submanifolds of R"*K.

Let f be a locally Lipschitz function on U, where U is an open set in R” ¥ containing
M. Then according to the discussion in §4 of Ch.2 we can define the gradient of f,
VM f H"-ae.y € M by

2.1 Definition:
VM) =V f(y). yeM;,
where the notation is as above.

Notice that, up to change on sets of 7{"-measure zero, this is independent of the decom-
position M = UM, (and independent of the choice of the C! submanifolds N;). Because
for H"-a.e. y € M we have D, f (y) = %f(y +17)|¢c=¢ forall t € Ty M, and is a linear
function of € T, M, by 4.16 of Ch. 2 and the fact that 7}, M agrees with T\, N; for H"-a.e.
y € Mj(= M NN;). Inparticular V¥ f(x) = 37, D, f(x)t;, where t1,..., 7, isan
orthonormal basis for T, M, is well defined as an L' function with respect to Hausdorff
measure H" on M.

Having defined VM £, we can now define the linear dMf, : Ty M — R induced by f by
setting

dMf (1) = Do f () (= (. VM f(x))). T € TeM
at all points where Ty M and VM f(x) exist.

More generally, if f = (f1,..., f<) takes values in RC (f7 still locally Lipschitz on
U,j=1,...,k), wedefine dMf, : T:M — R? by

2.2 dex(T) = th(x)'

With such an f, in case Q = n + k (k > 0), we define the Jacobian JJM (x) for H"-ae.
X € M as in 4.18 of Ch. 2; thus

23 M (x) = \Jdet((dMf)* o (dMfy)) = Jdet(Dy, £ (x) - Dy £ (3)).
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where 71, ..., T, is any orthonormal basis for Ty M and and (d M f;)* : R*tk5 > T M
denotes the adjoint of dMf,.

We then have the general area formula (still assuming Q > n)

2.4 /AJ;” dH" = /RHkHO(A N f7Ny)dH (y)

for any H"-measurable set A C M. Indeed by 4.19 of Ch.2 we do have 2.4 with N; in
place of M and A N M; C N; in place of A and j > 1, because, for j > 1, J;Vj = JJM
H"-a.e. on M;. We then conclude 2.4 by summing over j > 1 and using the (easily
checked) fact that if ¥ : U — R™ is locally Lipschitz and B has 7{"-measure zero, then

H'(¥(B)) =0.
We note also that if / is any non-negative H"-measurable function on M, then, by ap-
proximation of & by simple functions, 2.4 implies the more general formula

25 /hJMd’H”z/ / hdHO) dH" (y).
7 v o p 147°) 47700)

In case f|M is 1:1 this becomes
2.6 /hJ;” A" =/ ho f~'dH".
M f (M)

There is also a version of the co-area formula in case M is merely H"-measurable, count-
ably n-rectifiable and f : U — R™ (U open U D M) is locally Lipschitz with m < n,
sothatn =m + k withk € {0,1,...}.

In fact we can define (Cf. the smooth case described in §7 of Ch.2)

27 TM(x) = \Jdet(dMf, o (dMf)*) = \/det(VM fi(x) - VM i (x)),
with dMfy asin 2.2 and (dMf,)* = adjoint of dMf.. Then, for any H"-measurable set
ACM,

2.8 /AJfM dH" = /]Rm’Hk(Aﬂf_l(y))dﬁ’”(y).

This follows from the C* case (see §7 of Ch. 2) by using the decomposition M = U2 o M;
of Remark 1.3 and the C! Approximation Theorem 1.5 of Ch.2 in a similar manner to
the procedure used for the discussion of the area formula above.

As for the smooth case, approximating a given non-negative H"-measurable function g
by simple functions, we deduce directly from 2.8 the more general formula

2.9 / JMdH"z/ / A1k dom(y).
1877 .Rm(ffl(ymMg ) (»)
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2.10 Remarks: (1) Note that Remark 7.7 of Ch.2 carries over without change to this
setting.

(2) The “slices” M N f~'(y) are countably k-rectifiable subsets of R"** for £L™-a.e. y €
R™. This follows directly from the decomposition M = U2, M; of Remark 1.3 together
with the C1 Sard-type Theorem 7.5 of Ch.2 and the C! Approximation Theorem 1.5 of
Ch.2.

3 Purely Unrectifiable Sets, Structure Theorem

3.1 Definition: A subset S C R"** is said to be purely n-unrectifiable if P contains no
countably n-rectifiable subsets of positive H"-measure.

3.2 Lemma. If A is an arbitrary H" ofinite subset of R"*k (ie. A = US2,4; with
H"(Aj) < oo foreach j), it is always possible to decompose A into a disjoint union

A=RUP,

where R is countably n-rectifiable and P is purely n-unrectifiable. Also R can be chosen to be
a Borel set if A is H" measurable.

Proof: First observe that in case A is H"-measurable we can also take each A; to be H"-
measurable (e.g. first take a Borel set B; D A; with H"(B;) = H"(A;) and then replace
Aj by AN By), then by Theorem 1.22(2) of Ch. 1 we can take a Borel set C; C A; with
1(A4; \ C;j) = 0. In this case we let

o = sup{H"(S): S C C;, S acountably n-rectifiable Borel set}.

By definition of @j we can select countably n-rectifiable Borel sets R;; C C; with H" (R;;)
oj — 1/i and let R; = U;R;;. Evidently R; is a countably n-rectifiable Borel set and
C; \ R; is purely unrectifiable, because if C; \ R; contains a countably n-rectifiable set of
positive measure then C; \ R; contains a countably n-rectifiable Borel set B; of positive
measure and hence R U B; C C; with H"-measure > «;, contradicting the definition of
@j. S0 3.2 is proved with R = U; R; Borel and P = A\ R H"-measurable.

To handle the case when A is not necessarily H"-measurable, we first pick a Borel set
B = U; B, where each B; is a Borel set containing A; with the same #"-measure as A4;.
Then by the case of the theorem when A is H"-measurable which we established above,
we have B = R U P (disjoint union) with R countably n-rectifiable Borel and P purely
n-unrectifiable, and then 4 = (AN R) U (AN P) is a suitable decomposition of A. O
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The following lemma gives a simple and convenient sufficient condition for checking if
a set is purely n-unrectifiable. In this lemma we adopt the notation that p;, denotes the
orthogonal projection of R"*¥ onto L for any n-dimensional subspace L C R"*¥.

3.3 Lemma. Forl < ji < jo < -+ < jo < n+kletpj,. . ;, denote the orthogonal
projection of R"** onto span{e;,, ..., e;, }, and suppose S C R"** has the property that
H(pjy,jn(S)) =0foreach1 < ji <-+- < j, <n+k. Then S is purely n-unrectifiable.

Proof of 3.3: Suppose on the contrary that S is not purely n-unrectifiable. Then Lemma 1.2
implies there is an n-dimensional C! embedded submanifold N with #"(S N N) > 0,
so there must be some x € S N N with H" (S NN N B,(x)) > 0 forall p > 0. With
such an x we see that, by Remark 4.2(2) of Ch.2 (with M = N) that thereis 1 < j; <
ja <+ < jan<n+kandp>O0suchthat pj, _; |N N B,(x)isaC! diffcomorphism
onto an open W C span{e;,,...,e;, } andso H" (p;,..;, (SN N N By(x))) > 0. O

3.4 Example. A simple example (in the case n = k = 1) of the use of Lemma 3.3 is
the following: Let Cy = [0, 1] x [0, 1], C; = the union of the 4 sub-squares of Cy with
edge length } each sharing one corner with Co. Observe that the orthogonal projection
p onto the line y = 1x projects C; onto a full line segment o of length is Thus if
we inductively define a sequence C, of sets, each of which is the union of 4" squares
with edge length 47" and if we stipulate that C,4; is obtained from C, by replacing
each square s of C, with 4 squares of edge-length 4™"~L each sharing a corner with s,
then Cp41 C C, and each C,, projects via the orthogonal projection p onto the full line
segment o, and hence so does the compact set C = N C,. Furthermore #'(C) >

H' (p(C)) = \/ig > 0, and also H'(C) < +/2 < oo because each of the 4" squares
comprising C, has diameter 47 v/2. Finally, each C,, projects via orthogonal projection
px of R? onto the x-axis to a union of 2" closed intervals each of length 47, and hence
LY(px(C)) = lim L' (px(Cy)) = 0. Similarly £'(p,(C)) = 0, where p, denotes
orthogonal projection onto the y-axis. Evidently then Lemma 3.3 is applicable with

n =k = 1,so C is purely 1-unrectifiable.

A very non-trivial theorem (the Structure Theorem) due to Besicovitch [Bes28, Bes38,
Bes39] in case n = k = 1 and Federer [Fed69] in general, says that the purely unrecti-
fiable sets Q of Rk which (like the subset P in 3.2) can be written as the countable
union of sets of finite H"-measure, are characterized by the fact that they have H"-null
projection via almost all orthogonal projections onto n-dimensional subspaces of R"*+*.
More precisely:

3.5 Theorem. Suppose Q is a purely n-unrectifiable subset of R"*t* with Q = U2, 0/
H"(Qj) <oo Vj. ThenH" (p(Q)) = 0foro-almostall p € O(n+k,n). Hereo is Haar
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measure for O (n + k, n), the orthogonal projections of R"T* onto n-dimensional subspaces
Of ]Rn+k.
For the proof of this theorem see [Fed69] or [Ros84].

3.6 Remark: Of course only the purely n-unrectifiable subsets could possibly have the
null projection property described in 3.5, by virtue of Lemma 3.3 above.

Notice that, by combining 3.2 and 3.6, we get the following Rectifiability Theorem, which
is of fundamental importance in understanding the structure of subsets of R"*+*:

3.7 Theorem (Rectifiability Theorem for sets.) If A is an arbitrary subset of R"+*
which can be written as a countable union U2, A; with H"(A;) < oo Vj, and if every
subset B C A with positive H"-measure has the property that H" (p(B)) > 0 for a set of
p € O(n + k,n) with o-measure> 0, then A is countably n-rectifiable.

4 Sets of Locally Finite Perimeter

An important class of countably n-rectifiable sets comes from the sets of locally finite
perimeter in R” 1. (Or Cacciopoli sets—see De Giorgi [DG61], Giusti [Giu84].) First
we need some definitions.

IfU C R"*! is open and if E is an £"!-measurable subset of R"*1, we say that E has
locally finite perimeter in U if the indicator function Xg of E is in BVjo.(U). (See §2 of
Ch.2.)

Thus E has locally finite perimeter in U if there is a Radon measure g (= |DXg| in

the notation of §2 of Ch.2) on U and a Borel measurable function v = (v!,...,v"11)
with [v| = 1 ug-a.e. in U, such that
4.1 / divgdﬁ”“:—/g-vduE

ENU U

foreach g = (g',...,¢" ™) with g/ € C}(U), j = 1,...,n + 1. Notice that if E
is open and dE N U is an n-dimensional embedded C! submanifold of R"*!, then the
divergence theorem tells us that 4.1 holds with ug = H" L (dE N U ) and with v = the
inward pointing unit normal to dE. Thus in general we interpret g as a “generalized
boundary measure” and v as a “generalized inward unit normal”. It turns out (see 4.4
below) that in fact this interpretation is quite generally correct in a rather precise (and
concrete) sense.

We now want to define the reduced boundary 9*E of a set E of finite perimeter by

vdug
4.2 8*E:{x€U:lime”L

p10 11E (B, (x)) exists and has length 1}.
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We henceforth use the notation

vdpg
43 vE (x) zlimI&L, x € 0*E.
pl0 pg(Bp(x))
By virtue of the Lebesgue Theorem 4.10 of Ch.1 we have vg = v pg-a.e. in U, hence

weg(U\O*E) =0and ug = pug L 0*E. We in fact claim much more:
4.4 Theorem (De Giorgi). Suppose E has locally finite perimeter in U. Then
uwg = H'LO*E,
0*E is countably n-rectifiable, and at each point x € 0*E the approximate tangent space
T 0*E of 0*E exists (in accordance with Definition 1.4) and is given by
(%) T.0'E = {y eR""! 1 y-vg(x) =0},

where v is as in 4.3 (5o that |vg (x)| = 1 by the definiton 4.2). Furthermore v (x) is the
“inward pointing unit normal for E” in the sense that

(1) Exp={A""(y—x):yeE} > {yeR" !y vg(x)>0}
inthe L\ (R"*1) sense for each x € 9*E.

Proof: Take any y € 0*E. For convenience of notation we suppose that y = 0 and
v(0) = (0,...,0,1). Then we have

/B (O)Vn+1 dug
1 lim —2—————— =1
. oo e (B,(0)
. . O)\vn-q-l\dME
Since Vy41 < |Vn41] < 1 we have also lim, g =T = | and hence
[ wildus
(2) Bo® _ _g i=1,...n,

ol0 11z (B, (0))

because |v;| < /1—vZ | < V24/1=[vy11]. Further if ¢ € C}(U) has support in

B,(0) C U, then by 4.1
3) [ vnitdis == [ XgDpiigdcr
U U
< [ Ipglacr.
E

Now replace ¢ by a decreasing sequence {{x } converging pointwise to the characteristic
function of B,(0) and satisfying

(4) kli)n;o/E}DCH = dipﬁnH(E N B,(0)).
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(Notice that this can be done whenever the right side exists, which is £'-a.e. p, because
L'(E N B,(0)) is an increasing function of p.) Then (3) gives

d
5 w1 dpE < —L"THE N B,(0
(5) i = L (E 0 By(0))
for £L'-a.e. p € (0, po), po = dist(0, V). Then by (1) we have, for suitable p; € (0, po),
d
©) ke (By(0)) < 24 £1%1 (0 B,(0)) = 20 (5 198,(0)

=2(n + wns10"

for £'-a.e. p € (0, p1).

Then by the Compactness Theorem 2.6 of Ch. 2, it follows that we can select a sequence
ok 4 0sothat Xng p (E) = XF in L} (R"*1), where F is a set of locally finite perimeter
in R"*1. Hence in particular for any non-negative ¢ € CJ (R"*1)

(7) lim / Ditdrt! = / Ditd LM,
10,0y (E F

k—o00 .

Now write ¢ (x) = ¢(p; 'x) and change variable x — pgx; then
(8) [ pigactt =g [ Digeactt =~ [ G dp
10,0y (E) E U
(by 4.1), so that fno i (E) DitdL" — 0by (2)fori = 1,...,n. Thus (7) gives
/ DitdL"™ =0Vee CLR™Y), i =1.....n,
F

and it follows that F = R” x H for some £!-measurable subset H of R.

On the other hand by 4.1 with ¢ = {xe,+1 and by (1) we have, for k sufficiently large
and ¢ > 0,

0= p]:n/Ué‘kVn+1 dpug = / Dp41¢
n

0.0
—>/D +1§E/ (/ i()c’ X" dx" ) dx’
r" Rre O JE Oxnt1 N
as k — 00, so that Xy is non-decreasing on R, hence

(9) F={xeR':x"t <2}
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for some A. We have next to show that A = 0. To check this we use the Sobolev inequality
(see e.g. [GTO1]) to deduce that, if £ > 0, spt¢ C U and o < dist(spt &, dU ), then

([ (oo 12) "5 agmiyata

< C/U|D(§(po « Xg)|dLm!

fc(/UﬂD(‘Pa*XE)\dE"H+/Ugoa*XE|D§|dL"+l).

By 2.5 of Ch.2 it follows that

lsaégwf+éumdﬂ“x

and replacing ¢ by as sequence (i as in (4), we get for a.e. p € (0, p1)

n

(L"FH(E N B, (0))) 7+

L i1 (£ B, (0)).

< C(us(By(0) + 4

which by (6) gives

(L™ (E N B,(0)))7+T < Cdipﬁ”“(E N B,(0)) ae.pe (0,p1).

d
1< Cd—p£"+1(E N B, (0D e pe (0.p1).

Integration (using the fact that £t (E N B,(0))Y"*1) is an increasing function of p
and hence [ dUﬁ"'H(E N B, (0))/*+Y) do < £ (E N B,(0))Y 1)) then implies

(10) L7 (E 0 By(0)) = Cp!

for all sufficiently small p. Repeating the same argument with U \ E in place of E, we
also deduce

(11) L7 (B,(0)\ E) = Cp™!

for all sufficiently small p. (10) and (11) evidently tell us that A = 0 in (9).

The argument above guarantees Xy, ,(£) = Xjxern+1:xn+1<gy as p | 0. Then by 4.1, (1)
and (3) we have

__ qyn n+l1 . .n+1 __
Hro.p(E) 7 Mixerntlxntl<o} = H'L{xeR tX =0}asp 0.
Of course (since we can reduce to that above case y = 0 and vg(y) = ep41 via an
orthogonal transformation) this implies in general that

(12) My p(E) =7 Hixer"+1:(x—y)ve(y)<0} — H'L {x eR"!: (x = y) "VE (y) = 0}
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as p | 0 for each y € *E. In particular
(13) (wnp™) g (By(y)) — 1Vy € 9*E,
and by the comparison theorem 4.6 (with p g in place of p) we have

H' LO*E < ug in U,

so in particular #" L 0*E is absolutely continuous with respect to g and 0*E is H"-
measurable with locally finite #"-measure in U. Now in view of (12) we can repeat
exactly the argument of the proof of 1.6 “<=” with g in place of the measure p =
H" L (M N Bg(0)) used in that proof, in order to prove that there are Lipschitz maps
F; i R" - R"*! with 4 (9*E \ (U; F;(R"))) = 0, hence in particular 9*E is countably
n-rectifiable.

Next let A C 0*E be arbitrary and for eachi = 1,2, ... let A; be the set of y € 4 with
mE(Bp(y)) < 2wpp" forall p < 1/i. Then A = UF2, 4; by (13), and, by definition of
M5 with § = 1/i, we can choose a family Cjq, Ci», ... with A; C U;C;;, diam Cj; < 1/i
and C;; N A; # @ for each j, and o wy (diam Cj; /2)" < ’H’l’/i(Ai) + 1/i. Then, with
yij € Cij N A; and p;; = diam C;;, we have

u(Ai) < X m( By, (yij)) = 2"FIHY (A) + 2771/

Hence letting i — 0o we have u < 2" 14" |_ 9*E in U, so in particular p is absolutely
continuous with respect to H" L *E.

Since 0*E is countably n-rectifiable we can write it as the disjoint union U2, M;, where

H" (Mp) = 0, M; C N, N; being n-dimensional embedded C! submanifolds of R”*!
w(Bpx)

#H" (By(x)NN;)

1, H"-a.e. x € M; and hence by the Radon Nikodym Theorem 4.18 of Ch.1 we have

w=H"L_0*E as required. O

for j > 1. Then by (13) and the Upper Density Theorem we have lim,, o
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CHAPTER 3 PROBLEMS

3.1 Suppose a,b € R,a < b, and y [a,b] — R" is absolutely continuous. The length
L of y is defined as usual by L = f ly’(¢)|de. Ty : [0, L] - R" is defined by y(7) =
y(t(z)), where t(v) = sup{r € [a,b] : [ |y’ (x)|dx < t} for t € [0, L], prove (i) ¥ is
Lipschitz with Lipy < 1, (ii) [y”(s)| = 1 fora.e. s € (0, L), (i1i) Y ([0, L]) = y([a, b]).

3.2 If C C R? is the purely 1-unrectifiable subset constructed in Example 3.5 of Ch.3,
prove that C x [0, 1] has positive >-measure and is purely 2-unrectifiable.

3.3 () Ifvy,..., vu4¢ is a basis for R+ and if L is an n-dimensional subspace of R+,
prove that there exist 1 < j; < j» < --- < j, < n + £ such that the orthogonal
: : n+4 . )

projection py; ..v;, of R"** ontospan{vj,,...,vj, } hasthe property that py; ..., IL
is an isomorphism of L onto span{vj,,...,vj, }.
Hint: You can of course assume without loss of generality that L = R” x {0}. Observe
[R" x {0} = mnkl’vjl ..... vj, © PR"x{0}

= rank prrx {0} © Pvj....vp,

= rank prnx oyl span{v,y,..., v, }.

1o Ujn

(11) Using (1), check the claim made in Remark 3.4 of Ch.3 of the text.

3.4 Justify the claim made in Remark 1.5(3) of Ch. 3 of the text, that if M is H"-
measurable with H" (M N K) < oo for each compact K and if x € R+ is such that the
approximate tangent space Ty M exists, then

lim o~ H" (M 0 X 2((Ted)* ) 0 By(x)) = 0.
o)

3.5 If M is an n-dimensional C! submanifold of R"t¢, if x € M, and if T, M is the
tangent space of M at x, prove that T, M is also the approximate tangent space of M at
X; Le.

lim fdH" = fdn"

MO Sy M TxM

for every f € CO(R"*Y).

Hint: Suppose without loss of generality that Ty M = R” x {0} and x = 0, and use a local graphical
representation for M near 0 as discussed in Remark 4.4 of Ch. 2 of the text.
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Let U C R"** be open and M C U a countably n-rectifiable, H"-measurable subset of
R"*k and let 0 be a positive H"-measurable function on M with [, 0 dH" < oo
for each compact K C U. Corresponding to such a pair (M, ) we define the rectifiable
n-varifold v(M, ) to be simply the equivalence class of all pairs (M, 6), where M c U
is countably n-rectifiable with 1" ((M \ M)U (M \ M)) = 0 and where 0 =0 H"ae.
on M N M.' V = v(M,0) is referred to as a rectifiable n-varifold in U, and 6 is called
the multiplicity function of v(M,0). v(M,0) is called an integer multiplicity rectifiable
varifold if this multiplicity function is positive integer-valued H"-a.e.

In this chapter and in Ch.5 we develop the theory of n-rectifiable varifolds in U as in-
troduced above, particularly concentrating on stationary (see §2 below) rectifiable n-
varifolds, which generalize the notion of classical minimal submanifolds of R**¥ dis-
cussed in §5 of Ch.2. Since we now consider rectifiable M (which are not necessarily
smooth—indeed only have approximate tangent planes 7{"-a.e.), it no longer makes much
sense to take a C'! vector field X with support in a compact subset of M, which was the
natural approach adopted in Ch.2 when M was a C? submanifold. So instead in this

'We shall see later, in Ch.$, that this is essentially equivalent to Allard’s ([All72]) notion of n-dimensional
rectifiable varifold.
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chapter we work with C!' (or sometimes just Lipschitz) vector functions X : U — R"**k
with support of X a compact subset of U, but still making deformations of M with initial
velocity given by X.

The key section is §3, in which we obtain the monotonicity formula; much of the sub-
sequent theory is based on this and closely related formulae.

1 Basic Definitions and Properties

Associated to a rectifiable n-varifold V' = v(M, #) in the open set U C R"** (as de-
scribed in the above introduction) there is a Radon measure u (called the weight measure
of V) on U defined by

1.1 py =H"L6,

where we adopt the convention that 6 = 0 on U \ M. Thus for an H"-measurable set

ACU,

v (4) = / 0 dH",
ANM

the mass (or weight) of the varifold V', M(V'), is defined by

1.2 M(V):,LLV(U)z/MGdH”.

1.3 Definition: We define the tangent space Tx V of V = v(M, 0) to be the approximate
tangent space of M (as defined in the statement of 1.9 of Ch.3) whenever this exists;
notice that this is independent of the choice of representative (M, ) for the equivalence
class v(M, 9).

We also define
1.4 sptV = sptuy,

which is the (relatively closed) set of points y € U such that uy (B,(y)) > 0 for each
p > 0, or, equivalently, U \ Y where Y is the union of all open subsets W of U with
py (W) = 0.

For any H{"-measurable subset A C R"*¥, v L_ A is the rectifiable n-varifold in U defined
by

1.5 VLA=0v(MnNAGA).

Given a sequence Vy = v(Mp, 6;) of rectifiable n-varifolds in U, we say that V}, — V
provided py, — py in the usual sense of Radon measures in U. (Notice that this is 7ot
varifold convergence in the sense of Ch.8.)
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Next we want to discuss the notion of mapping a rectifiable n-varifold relative to a Lip-
schitz map. Suppose V = v(M,0), M C U, U open in R**¥, W open in R"** and
suppose f :sptV N U — W is proper?, Lipschitz and 1:1. Then we define the image
varifold f4V by

1.6 SV =v(f(M), 00 f71).

Since K compact = f~!(K) compactand f(M)N K = f(M N f~1(K)), the area
formula 4.20 of Ch.2 gives

17 [ bortaw = JMoan,
Jf(M)NK Mnf—1(K)

so in particular fo f ~!islocally H"-integrable in W, and therefore 1.6 does indeed define
a rectifiable n-varifold in W. More generally if f satisfies the conditions above, except
that f is not necessarily 1:1, then we define f;V by

fV =v(f(M),0).
where 6 is defined on f (M) by Yoxer—1mnnm0(x) (= [r=1()nm O dH°). Notice that
0 is locally H"-integrable in W by virtue of the area formula (see §2 of Ch.3), and in fact

1.8 M(f#V):/ 0dH" z/ M6 dn",
() M

where J ;\4 is the Jacobian of f relative to M as defined in §2 of Ch.3. Thus, assuming
m > n, we define

1.9 JfM(x)z v det T (x).

where J(x) is the matrix with D¢, f(x) - Dy, f (x) in the £-th row and m-th column
(t1, ..., Tn any orthonormal basis for Ty M).

2 First Variation

We continue to assume that V = v(M, @) is is a rectifiable n-varifold in U, U open in
R"** and we assume ¢ : (—¢, &) x U — R**k (where & > 0) is a C! map such that

)1 { ¢(0,x) = x for each x € U, and 3 compact K C U with

@(t,x) = xforall (r,x) € (—¢,&) x U,

Zie. f7H(K) NsptV is compact whenever K is a compact subset of W
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and such that the velocity d¢ (¢, x) /¢ isalso C'. Then the initial velocity X = d¢(z, x)/dt|;=0
isa C! vector field with compact support in U. Of course given any C! vector field X

with compact support in U, we can construct a function ¢ as in 2.1, with initial velocity

X, simply taking ¢(¢,x) = x 4+ tX (x) and & > 0 sufficiently small.

According to 1.8,

M(gi, (V L K)) = /MnKJMgO,Gd’H”,

and we can compute the first variation %M(@,#(V L K))‘ . exactly as in §3 of Ch.2.
t=
We thus deduce

d
2.2 EM(%#(V L K))

=/ diVMXduv,
t=0 M

where X, = %(p(t, x)‘ . is the initial velocity vector for the family {¢;} and where
t=
divays X isasin §4 of Ch.2:

2.3 divig X = Y1 VM X7 (= Yite; - (VM X)),

(VM X asin §2 of Ch.3)

We say that V is stationary in U if the first variation vanishes in U. That is, by 2.2, the
definition is as follows:

2.4 Definition: V = v(M, ) is stationary in U if %M((p,#(V L K))‘t=O = 0 for
every family {¢;} as in 2.1; of course by 2.2 this is equivalent to the requirement
[ divar X dpy = 0 for any C! vector field X on U having compact support in U.

More generally let N be an (n + £)-dimensional C2 embedded submanifold of R**¥
(£ <k),let M C N be H"-measurable and let & > 0 on M be such that [, 0 H" < oo
for each compact K C N. We call such V = v(M, 0) a rectifiable varifold in N.

Observe that each local representation for N provides a homeomorphism between an
open subset of Euclidean space R”*¢ and an open subset of N, so for each y € N there is
py > Osuch that B,, (y) NN is a compact subset of N. Hence the set U = Uyen By, (»)
is open in R"*¥ and has the property that if K C U is compact then K N N is a compact
subset of N. Thus V = v(M, 6) can in fact also be viewed as a rectifiable varifold in the
open set U C R"** and spt uy C N.

Now let ¢ : (¢,6) x N — N (where ¢ > 0) be a C! map such that

55 @o(x) =x Vx € N, 3 compact K C N with
o(t,x) =x VY(t,x) € (—¢&,6) x (N \ K),
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and such that the initial velocity X (x) = 9¢(t,x)/0dt|;=0 is C'; note that X will of
course automatically have the property that X (x) € TN for each x € N (so X is a
tangent vector field on N), because, for fixed x € N, ¢(¢,x), 1 € (—&,¢),isa C! curve
in N which passes through x at time r = 0.

The quantity %M(@,#(V L K))‘ _with ¢ asin 2.5 is called the first variation of V in
N, and of course we still have the identity 2.2.

2.6 Definition: V is stationary in N if %M(@,#(V L K)) = 0 forevery ¢ asin 2.5,

where ¢, (x) = ¢(t, x).

As already mentioned in the discussion preceding 5.10 of Ch.2, for each C! vector field
X on N with X|, € TxNVx € N, there is always ¢ as in 2.5 with initial velocity
(%goz (x)|t=0 = X|x for each x in x. Thus, by V = v(M,0) is stationary in N that
V =v(M,0) is stationary in N if and only if

/ diVMXd;LV =0
M

for each C! vector field X on N with {x € N : X(x) # 0} contained in a compact
subset of N and X tangent to N at each point of N; that is, Xy € TxN Vx € N. On
the other hand, by exactly the computation of 5.11 of Ch.2 (which did not depend on
smoothness of M), we can start with any C! vector field X on N and compute (as in

5.11 of Ch.2) that
divayr X = divar X7 — Z?:lﬂlj\vl X

at all points x € M where M has an approximate tangent space Tx M, where X7 is C'!
with compact support in N and tangent to N at each point of N and, as in 5.12 of Ch.2,

2.7 Hy(x) = Y1 BY (ri,7).

with BV the second fundamental form of N and ty,..., 7, any orthonormal basis for
TxM. Thus in fact we conclude that V is stationary in N <

2.8 / divMXduyz—/X-ﬂf\vlduvforeachclmapX:N—>]R”+k
M IM

with {x € N : X(x) # 0} contained in a compact subset of N.

3 Monotonicity Formulae in the Stationary Case

In this section we assume that U is open in R"** V' = v(M, 0) is stationary in U, which
means Definition 2.4 holds, 1.e.

3.1 / divay X duy =0
M
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whenever X isa C! vector field on U with compact support in U. We proceed to extract
important information from this identity by taking specific choices of the vector function
X = (X1,..., Xn+k)- In fact we begin by choosing Xy = y(r)(x — &), where £ € U is
fixed, r = |[x —&|,and y : R — [0, 1] is a C!(R) function with

y'(t) <0Vt, y(t) =1fort <p, y(t) =0fort > R,

where R > p > 0and Br(§) C U.

For any f € C!(U) and any x € M such that Tx M exists (see 1.6, 1.9 of Ch.3) we
have (by 2. 1of Ch.3) VM f(x) = Z;"[kl e/t Dy f (x)e;, where Dy f denotes the partial

derivative -2 37 of f taken in U and where (e/*) is the matrix of the orthogonal projection

of R*** onto Ty M, viewed as a map R"** — R"**. Thus, writing VM = ¢; - V¥ (as
in §2), with the above choice of X we deduce

32 divy X =Y VM X = o
= y(r) i e +ry'(r )Z"Zflef"—(”"&")—“‘k‘fk).

] r r

Since (e/*) represents orthogonal projection onto Ty M we have Z"+k e// =n and
k ik (x)—£7) (xk—gk £\ 2
Stk L (228
and, writing 4 = iy, the formula 3.1 thus yields
3.3 n/y(r)d,u—i— ry' ()| VMr?du = 0.

A useful variant of this procedure is obtained by more generally taking any non-negative
C! functions h : U — R and y : R — R with support of 4(x)y(r) a compact subset of
U; then using the computations above and keeping track of the additional terms involving
derivatives of /i, we see that in place of 3.3 we get

3.4 n/y(r)hdu + [ry'(M)IVMrPhdp = —/y(r)(x —&)-VMpau.

For the moment we work with the identity 3.3 (which is 3.4 with 7 = 1). Take ¢ € (0, 1)
and a C' function ¢ : R — [0, 1] such that ¢(7) = 1 fort < 1,¢(¢t) =0fors > 1+ ¢
and ¢’(¢) < 0 for all 7. Then we take y(r) = ¢(r/p) in the above identity, provided
(1 +¢)p < R. Since

ry'(r) =ro~'o'(r/p) = —pas[0(r/p)].

this gives

3.5 n/MsO(r/p)du—pf—,,/MIVMrlzw(r/p)du=0, p<R/(1+e),
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provided Bg(§) C U and (1 + ¢)p € (0, R], which we subsequently assume.

On the other hand pr,yv = v — pp yyrv forv € R, so |prv (5 g)| 1 -

|D-r |2, where D1r denote the orthogonal projection of r=! (x—§) = Dr = (Dyr,..., Dpyir)
(which is a vector of length = 1) onto (7 V)*, so 3.5 can be written

nl(p)—pl'(p) = —pAl%[w(r/p)}lDlrlzdu, p<R/(1+e).

where

1(p) = / ¢(r/p)d
M
Thus, multiplying by p~"~! and rearranging, we have
EE 1) = [ 5 le(r/pID 1P du
Since (1 + 8)_"r_”3% l@(r/p)] < p‘”% l@(r/p)] < r_”a% [@(r/p)], this gives

36 (1+6)70'(0) < (67" 1(p) = I (p). J(p)= [ rIDrPPg(r/p) duy.

By integration in 3.6 over the interval [0, p] we thus get
37 [ (L4e) " (p(r/p) = plr/a)ID P dpy = g1 (p) =01 (o)
= [ lrlo) =g (r/o)) D4 dpy.

Now we let ¢ | 0. Then ¢ decreases to the indicator function of the interval (—o0, 1]
and hence ¢(r/p) decreasing pointwise to the indicator function of the closed unit ball,
so we obtain

’ 2

B B, D+
3.8 /'LV( P(E)) _ I’LV( (S)) _(,()_1/ ’ r dl'LVs 0<o Sp < R,
()\Bo (&)

Wy P oo " rn
provided Br(§) C U.

3.8 is the fundamental monotonicity identity. In particular 3.8 tells us that the ratio
3.9 (wnp™) " (B, (£)) is increasing in p, 0 < p < R,

and hence the density

3.10 " (uy,§&) = liin Ry exists and is real for every £ € U,
pl0
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and by letting o | 0 in 3.8 we also have

LSS

p duy, 0 < p < R,

B (on )y (By(6) =@ 8) = [

2
Dtr . . .
—— duy < oo. We also claim the upper semi-continuity

and in particular [p )

3.12 0" (ny, &) = limsup, _, ®" (uy,x), &e€U.

To check this take and p > 0 and ¢ € (0,1) with B,(£§) C U and any sequence §; — £.
Then B(1—¢),(§;) C B,(£) for all sufhiciently large j, and hence using the monotonic-
ity 3.9 we have

(1-6)"0"(uv. &) < (0np") " v (Ba—e)p(§)) < (0np") " v (Bo(£))
for all sufficiently large j, and hence

(1—e)" limsup ©" (. &) < (wnp") ™ v (B,(£)).
Jj—00
Letting & | 0 we then have limsup; , ., ©" (uy, &) < (0n0") " 1y (B,(§)), and finally,
by letting p | 0, we obtain 3.12 as claimed.

Since V = v(M,0) and ©" (uy,x) = 6(x) for H"-a.e. x € M (by Remark 1.8 of Ch.
3), 3.12 enables us to choose “canonical representatives” My, Oy for V, so that V =
v(My,®y), where

3.13 My ={x €U :0"(uy,x) >0} and Op(x) = O"(uy,x)Vx € U.
Since Oy is then upper semi-continuous in U by 3.12 we then have
3.14 {x € My : Oy (x) > o} is relatively closed in U for each o > 0

and in particular My itself is relatively closed in U (and in fact equal to spt V N U ) in case
there exists @ > 0 with 6(x) > « for H"-a.e. x € M (and then of course Oy (x) > « for
every x € My by 3.12).

We now want to generalize this discussion to a context which includes varifolds which
are stationary in an (n + k)-dimensional C2? embedded submanifold N C R? (for some
P > n + k) rather than in R"** as discussed in §2 above. We in fact introduce the
concept of generalized mean curvature vector for the varifold V = v(M, 6) as follows:
3.15 Definition: Let V = v(M, 0) be a rectifiable varifold in the open set U C R"**,
Then we say that V has generalized mean curvature vector H in U if

(1) /MdivMde — —/MX Hdpy ¥ X € CH{U.R™),
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where H € L] (uy) in U. Thus V is stationary in U if and only if it has generalized
mean curvature zero.

Notice also V is stationary in N, where N isa C? (n + k)-dimensional embedded sub-
manifold of R"*¢, if and only if V has generalized mean curvature H% in U, with HY)
as in 2.7 of the previous section.

We want to show that the above monotonicity discussion generalizes to the case when
V = v(M, 6) has when we assume suitable bounds on generalized mean curvature H.
For this purpose, first proceed on the left side of 3.15 (f) exactly as in the case H = 0
with the same choice X = hy(r)(x —£) (h non-negative C!), thus giving, in place of 3.4,
the general identity

3.16 /(ny(r) +ry'(NIVMr?)hdpy = —/(x — &) (hH + VM h)y(r) duy,
Replacing y(r) by ¢(r/p) (as in the argument leading to 3.5), then we obtain
d M2
3.17 n/hw(r/p) duy —pd—p/hIV r*o(r/p) duy = Epn(p),
with Ep(p) = p7" 71 [(hH + VMh) - (x — §)e(r/p) duy.
Now suppose Bg(£§) C U and that there is constant A such that
3.18 RSUPBR($)|E| <AonM.
Then, by the identity 3.17 with & = 1, writing |[VMr|?> = 1 — |D1r|? we obtain
3.19 (1+e)7"(p) < £(p™"1(p)) + E1(p) < T '(p).

where 1, J are as in 3.6 and where the extra term E; is equal to p™" [;; o7 ' (x — §) -
Ho(r/p)dpy. Thus, since ¢(r/p) =0forr > (1 +¢)p,

—(14+&)R7'Ap™1(p) < Ex(p) < (1 +&)R™'Ap™"I(p).

and hence E1(p) = E(p)p"1(p), with E(p) € [—(1 + &)R7IA, (1 + &)R7A] for
each p e (0, ) Thus, after multiplying 3.19 by the integrating factor e (?) where
= [V E(t)dt € [-(1 +&)Ap/R, (1 4+ &)Ap/R], we obtain (analogously to 3.6)

(1+e) e 18 (p) < (PP p ™1 (p)) < "4 (p),

where J (p) = [3, ¥ "|D*r|?¢(r/p) diu. Then integrating from o to p as in the case
H = 0 and then letting ¢ | 0 as we did before, we obtain (analogous to 3.8)

eF(p)MV(B,D(E)) _ eF(o):U“V(BO(g))

wy p" w,o"

= 0,'G(0.p) | r D P dpy,
By(§)\Bo (§)
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with G (0, p) € [e™®, e?]. Thus we have proved the following:

3.20 Theorem. IfU isopenin R"*K, if Br(£) C U and V has generalized mean curvature
vector H in U with |H| < A, then

eF(p)H“V(BP(é)) _eF(o)MV(Ba@» — 0 'G(

wy p" w,o"

a,p)/ r DY duy,
Bo(§)\Bo (§)

forall0 < o < p < R, where F(p) € -2, 58] and G(0.p) € [e™,e?] for all
O0<o=<p<R

3.21 Remark. Since |F(p)| < Ap/R in the above theorem, we again conclude that
O"(uy, &) exists for all ¢ € U and is an upper semi-continuous function on U by merely
notational modifications to the previous argument for H = 0.

We conclude this section with some variants of the above computations which will be
important in our later discussion of local conical approximation and elsewhere.

Let Br(§) C U and V = v(M, 0) have generalized mean curvature H € L!(uy) on
Br(£). Welet 0 < 0 < p < R and we observe that if we let ¢ | 0 in 3.17, then we
obtain, in the distribution sense,

d
3.2 p—/ WV P duy =
dp JB, (&)
n/ hdw+/ (hH + VMR- (x — £) duy.
Bo(e) Boe)

We also observe that the Co-area Formula 2.9 of Ch.3 with f(x) = |x — £|(= r) (in
which case JfM = |VMr|) and with M N B, (&) in place of M implies

0
3.23 / g|VMr|duV=// gdvdt
By (£) 0 J3B;(£)

for any non-negative H"-measurable function g, where dv = 0dH" ™!, so the left side is
an absolutely continuous function of p and

d
3.24 —/ gIVMrlduy = / gdv,
dp JB,(¢) 3By (£)

for £'-a.e. p € (0, R). Hence, taking g = h|Vasr|, 3.22 implies
3.25 / rhIVM r| dv =n/ hd;w+/ (hH +VMR) - (x — &) dpy
0B, (£) By (§) By (§)

for £L'-a.e. p € (0, R).
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If we now subtract the inequality 3.25 with 0 < p in place of p from the same inequality
3.25, then we get

3.26/ rh|VMr|dv—/ rh|IVM r| dv
dBy (&) 0B (§)

:n/ hduy + (hH + VMR- (x — &) dpuy,
JBp(§)\Bo (§) B, (§)\Bo (§)

and then by replacing & by r~"h and observing that (x —£)-VMr=" = —nr=|VMr|2 =
—nr™" 4+ nr~"|D+r|?, we obtain

3.7 rl_"hler|dv—/ rl_"h|VMr|dv—n/ P D PR dpy
9B, () 980 (&) B, 0\806)
= r"(hH +VMh) - (x — &) duy.
B, (6)\Bo )

Now we take & : R"*¥ \ {£} — [0, 1] to be a homogeneous degree zero C'! function of
the variable x — & and let b > 1 be such that

3.28 |[Dh(x —£)| < br™'.

Observe that then (x —£) - Dh = 0,and so (x — &) - VMh = (x — &) - pr.ym(Dh) =

prom(x —§)-Dh = ((x —§) - p(TxM)l(x —£&))-Dh = —P(TXM)L(X —£&)-Dh
—rDLr - Dh, so in fact

3.29 |(x—&)-VMh| <b|D*r|,

with b as in 3.28. Then, since r = p on 3B, (), 3.27 implies

3.30 ‘pl_" VM| dy — o' h|VMr|dv—n/ r_”|Dlr|2hdMV‘
3B, (§) 0B (£) By (§)\Bos (§)

< [ H 4 b D ) iy
By (§)\Bo (§)

4 Monotonicity Formulae for L? Mean Curvature

Here we continue to assume that V = v(M, ) is a rectifiable varifold in U (U open in
R"**) with generalized mean curvature vector H in U, but now we assume H is merely
in L? function rather than L as in the previous section.

We begin with the inequalities 3.19, but now we assume only an L? condition with p > n
instead of a bound on H. Specifically we assume

. 1/p
4.1 p > nand <Rp_"/ )|H|deV) <A,
Br(¢
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where A > 0. Observe that then by using Holder’s inequality we have (since ¢ (r/p) = 0
forr < (1+4¢)p)

o [ o7 =6 Hp(r/p) duv |
< (L+ )™ IH o (uy s rien (I (p))' 717
= -1 —n/p(pp—n P du )P (o 1-1/p
(1+&)R™(o/R)™"7 (R /B@)IHI uy) (e (p))

< (1+&)AR (o/R) P (5 +p"1(p)), p<R/(1+5),

R

where at the last step we used a 1-1/p < % +a, valid for a > 0, as one checks by observing
that the function f(a) = a'=1/? — (% + ijla), a > 0, attains a maximum value of
zero at a = 1. Thus 3.19 implies

4.2 (1+6)7"0(p) = 55 (p7"1(p)) + Folp) (5 +p7"1(p)) = J'(p).
where (asin 3.6) 7 (p) = fy "D rI?¢(r/p) dy and
|Fo(p)] < (1 +€)AR™! (o/ R) ™7

Observe that then F(p) = [ Fo(t) d satisfies

|F(p)] = (1+&)Ak(p/R)"™7 < (1+e)Ak, &= p/(p—n).
50, after multiplying in 4.2 by the integrating factor e (#), we obtain

(14 &) e+ /() < j_p(eF(p)p—nl(p) n %eF(p)) < o1+ 11

Hence, after integrating over the interval [0, p| and letting ¢ |, 0,

43 (eF(p)lLV(Bp(E)) +

> %(eF(m —1)) - (€F<0)MV(BG(§)) n

1
a)nO” D

= G (o, p)/ r" D r 2 duy
By (§)\Bos (§)

(" —1))

with
44 e <G(o,p) e, |F(p)l < Ac(p/R)'"™?, k=p/(p—n)
forall0 <o < p < R, provided Bg(§) C U. In particular

45 eF(p)IJ'V(BP(E)) +

o %(eF(p) —1) is increasing in p, 0 < p < R,
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Since ef'(?) — 1asp | 0,4.3,4.4 and 4.5 enable us to argue precisely as in §3, to conclude
that ©" (uy, &) = limgo(0n0™) 'y (Bs(§)) exists V& € U and

4.6 (eF(p)MVC(Uf;’(lS)) +%(€F(p)_1)) _®n(MV’§)

=G(p) [ D e duy,
Bo(£)

with F(p),G(p) as in 4.4, so in particular pr@) rY"DYr2dpy < oo. Also, again
following the argument of §3,

4.7 O" (v, &) is an upper semi-continuous function of £ € U,
and, as in 3.13, V = v(M, 0) has a “canonical representative” (My, Oy ):

48 V =v(My,Qp), Op(x) =0"(uy,x), My ={xeU:0"(uy,x) > 0}.

4.9 Remarks: (1) In the case of H € L{ (uy) with p > n,if 0 > 1 py-ae. in U,
then, by upper semi-continuity, ®" 1y, x) > 1 at each point of spt sy N U, and hence
in this case the canonical representative My in 4.8 is just the closed set spt V, because
My ={xeU:0p(x)>0}={xeU:0p(x)>1} =sptuy.

(2) Notice that as p — 00, 4.3, 4.4 yield 3.20.

B)UT > 0and p™"puy (B, (£)) < T, then 4.3 gives bounds of the form u(Bs (§)) < Bo™
for0 <o < R, with 8 = B(A,T). It follows that

npn—a) H(p"*—0""%), 0<a<n

plog(p/a), a =n.

/ x — 7 du <
By (§)\Bo (§)

forany 0 < 0 < p < R. This is proved by using the following general fact with f(x) =
|x —&71, 1o = p~1, and with n — « in place of «.

4.10 Lemma. If X is an abstract space, ju is a measure on X with u(X) < oo, f >0, f
w-measurable, and Ay = {x € X : f(x) >1t}, then

/t“_lu(A,)dtza_l/ (f*=1t8)du, O<a<n
to Ato

[T A de = [ tog(s/10)dn

0

foreach ty > 0.

Proof: Since [;;o 1 (A, de = f;;o fAto 1% 1x4, (x) du(x) dt, this is proved simply
by applying Fubini’s theorem on the product space 4y, x [t9,00). O
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5 Local Conical Approximation

Here we want to derive an important theorem concerning conical approximation of V/
near an arbitrary point of spt V, assuming V = v(M, €) has generalized mean curvature
in L? with p > n.

5.1 Theorem (Conical Approximation.) Suppose A > 0, p > n, A € (0,1], 8 € [0, L],
andV = v(M, 6) has generalized mean curvature H in a neighborhood of B1(0) and satisfies
the hypotheses

0 €sptuy, O"(uy,0) <T,

1/p
o'y (B1(0) = 0" (uy. 0) 48, ([ 1HIPduy) " =5
Then ]

v B, &) _ce(say < M Bo(E) 1 (s, ®)

wn " I (7 L wn p"
forall § € B1(0)\ By (0) (£ does not need to be in spt juy), all © € [A, 1), and all p with
A <p<min{|§]—A,(1+ 8%)_1(1 —&1)}, where C = C(n, p,T") and where

k(8.0) = A6 + 84 |log Al.

+ Cx(8, 1)

5.2 Remarks: (1) In the special case when H = 0 and 0, uy (B1(0)) = ©*(uy.0)
(which implies (wn0") " sy (B,(0)) = ©"(uy,0)V p > 0 by monotonicity 3.9) we
can apply the above with § = 0 and with arbitrarily small A, so we can let p | 0 in the
conclusion to infer that ©” (uy, t&) = ©"(uy, &) forall r € (0, 1]. Thus, by 4.8, in this
case V L B1(0) is a cone: (no,-#V)L B1(0) =V L B1(0)Vr € (0,1).

(2)If V = v(M, 0) is any rectifiable n-varifold with generalized mean curvature H € L7,
p > n,andif € € spt uy, then, foro € (0, 1), ng o4V has 0 in its support and generalized
mean curvature with L?-norm — 0in B1(0) as o | 0 and also w, ' v (B1(0)) —
O(Une s 0) = (0n0™) 'y (By(§))— 0" (uy.£) — Oaso | 0, so the above theorem
is applicable to g ¢4V with arbitrarily small § by taking o > 0 small enough.

Indeed if ®"(uy,€) > 1 on sptuy, the Allard compactness theorem (which will be
proved in Theorem 5.8 of Ch. 8) guarantees that for each sequence o; | 0 there is a sub-
sequence 0, with Mngo,uV = BT for some rectifiable n-varifold T which is stationary

in R"** and has multiplicity > 1 on spt 7. Of course by construction this T satisfies the

hypotheses on the theorem with § = 0 and A € (0, 1] arbitrary, so T is a cone by the

first remark above. Such a T is called a tangent cone of V at €. It is still an open (and
important) question as to whether T is unique (i.e. whether or not T is independent

of the choice of the sequence o; and the subsequence o). Tangent cones will be more
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systematically discussed in § 5 of Ch.8.

Proof of 5.1: We can assume § > 0 and obtain § = 0 as a limit. In view of the stated
hypotheses we can apply 4.6 (with A = §) to give

(1) /B (O)r_”|DJ‘r|2d/LV§C8, C =C(n,p,T).
1

Let /i : R"**\ {0} — [0, 1] be a homogeneous degree zero C! function R**¥ \ {0} —
[0, 1] with

(2) |Dh(x)| <b/r

(as in 3.28 with & = 0), where for the moment b > 1 is arbitrary.

Lett € [A,1], 7 € [A, 1), and apply 3.30 with ¢, 77, 0 in place of p, 0, & respectively. This

gives

3) ‘tl_"/ RIVM | dv — (17)' h|VMr|dv—n/ F DL PR dpy
981 (0) 9B.1(0) B/ (0\Bx1(0)

< [ hH 4 bID ) duy < [ (| + DD ) dy.
B;(0)\ B (0) B1(0)\B,2(0)

Take any 7 € [|§]—p. |&| + p] (i-e. any 7 such that B, (0) N B, (&) # @), and observe that

we can select the homogeneous degree zero C'! function i : R"*¥\ {0} — [0, 1] (depend-

ing on t) such that 4 is identically 1 on dB;(0) N By(€),h = 0on dB;(0) \ B (&)

and |Dh(x)| < 2/(1’8%,0), so (2) holds with b = 2/(5%,0). Thus (3) implies '

4) fl—"/ |VMr|dv§/ VM | dv
0Bz /(0)N\ By (£) 0B:(0)NB,, 4 51/4),(€)

wor [ (r ] 42078 D ) duy
B1(0)\B, (0)

1
+84)p

Similarly, considering ¢ with dB,(0) N B (&) # @ and choosing another homo-

1
(1-84)p
geneous degree zero C'! function & : R" 7%\ {0} — [0, 1] such that / is identically 1 on
9B:(0) N B 1 (£),h = 00n dB:(0) \ By(§) and again |Dh(x)| < 2/(r83p), we

—8§4)p

obtain

) / VM | dy < fl—"/ VM | dv
DB:(0)NB(,_s1/4),(€) 3B1/(0)NBrp (k)

+m"—1/ F DLy 2 dpuy +z”‘1/ r (v + 297874 ID 0 duy.
B1(0) B1(0)\B,2(0)

(
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Observe that the term involving H on the right of (4) and (5) can be estimated by the
Holder inequality and the fact that | H |22 (4, B, (0)) < &:

(6) / P o ldpy < [ LH Loy 5, (0)) < C8.
()\sz( L T (uy | p LO1\B;2(0)) (kv LLB1(0))

where C = C(n, p,T"), and where we used 4.9(3) witha = (n — 1)p/(p — 1)(< n).
Also to handle the term fB \Blz( ) 2r_”p_18_% |DLr| duy on the right of (4) and (5)

1.2 : _ st
we use the Cauchy inequality a < 3¢ + 3a?/e with e = 834, so

7) 2r " p 1V D r dpy
B1(0)\B;2(0)

55%/ r—"dw+5—%/ DL duy < C8¥]log Al
(0)\B,2(0) 31(0

with C = C(n, p,T"), where we again used 4.9(3) and also (1).

Now we integrate in the inequality (4) with respect to 7 over the interval [|€]| — p, |§] + p]
(which is integration over [|t&| — tp, |t€| + Tp| with respect to t7), and use the bounds
(6), (7) together with the Coarea Formula 3.24. This gives

[ wMrean |, V¥ duy
Bp(18) < B(1+51/4)p($)

1
< + C84%|logh|, C =C(n,p,T).
on(ep)" |log Al (n,p.T)

wnP"

Hence (since [VMr|2 = 1 — | D1r|?), after another application of (1), noting that r < t
in By (7£), 50 (7p) " me(té) |DLYr2dpy < A" fBl(o) | DLr 2 duy,

pv(B, 1 (§))
/’LV(B‘L’P(T%‘)) < (1464 )p +C(8%|10gk|+81_n), C ZC(I’l,p,F)
wn(Tp)" wn "

Similarly, integrating with respect to ¢ over [|&] — (1 — 8%)/0, €] + (1 — (ﬁ)p] in the
inequality (5), and again using the bounds (6), (7) and (1), we obtain
B
Bl s 1)y (Be(e8)
Wnp" ~ wa(p)"

C(8%|logAl +8A7™). O

6 Poincaré and Sobolev Inequalities

In this section’® we continue to assume that V' = v(M, 6) has generalized mean curvature
H in U, and we again write i for py. We shall also assume 6 > 1 p-a.e. x € U, so that

3Note: The results of this section are not needed in the sequel



§6 oF CHAPTER 4: POINCARE AND SOBOLEV INEQUALITIES 119

(by the comments in 4.9) ©"(u,x) > 1 everywhere insptu N U if H € L (u) for
some p > n.

We start with the identity 3.17, which since [VMr|? = 1 —|D~r|?, can be written in the

form
0 ~ 0
o1 oo T(0) = o7 g [I(Dr) Pho(r/p) d
+ p’"’l/(x —€)- [VMh+ Hh] o(r/p)dp
where now I(p) = [ ¢(r/p)h dp.
Thus

o)) = 7 [ 6) - (TMh 4 ) o) d

We can estimate the right-side R here in two ways: if |[H | < T we have
6.2 R> —p‘”‘l/r\VMh! ¢(r/p)du— (Tp)p™"1(p).
Alternatively, without any assumption on H we can clearly estimate
6.3 R2—p_”_l/r(}VMh|+h|ﬂ|)¢)(r/p)du.

If we use 6.2 in 6.1 and integrate (making use of 4.10) we obtain (after letting ¢ increase
to the indicator function of (—o0, 1) as before)

1 1 1 vMp
/ hdp < M ( / hdu + / |—}_1du),
©n0" JBo (&) Wn 0" JB, () nwy JB, () |x —§|"

provided B,(§) CU and 0 < o < p.

6.4

If instead we use 6.3 then we similarly get

1 1 | —— M
/ hdu < / hdu+—/ . / r(|V™h| + h|H|) duds.
wp 0" JBs (£) wn " JB,(8) Wp Jo B (£)

and hence (by 4.10 again)

1 1 1 VMp| 4 h|H
/ hdp < / hdu+—/ M
Wn0" JBs (€) Wn " JB,(§) nw, Ja,E)  |x — £

provided B,(§) C U and 0 < o < p.

6.5

If we let o | 0 in 6.4 then we get (since ©(u, &) > 1 for & € spt )

VM
h(§) < e™( /B |—|ni_1), Eesptu, By(§) C U

du
Wy p" ~/Bo(f) nwp JBy(§) |x —§
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We now state our Poincaré-type inequality.

6.6 Theorem. Supposeh € C'(U), h > 0, By,(§) CU, |[H| < A, 0 > 1 pae inU and
p{x € By(€) 1 h(x) > 0} < (1 —a)wup”, e <1+«

for some a € (0, 1). Suppose also that

(1) w(Bap(€)) <Tp", T > 0.
Then there are constants B = B(n,«,T') € (0,1/2) and ¢ = c(n, o, T') > 0 such that

/ hdufcp/ |VMh|du.
Bgo (&) By (§)

Proof: To begin we take f§ to be an arbitrary parameter in (0, 1) and apply 6.5 with
n € Bg,(&) Nsptu in place of &. This gives

(1) h(n) < eA(lfﬂ)p(;/ hdu + ! / Mdu)
B wn((1=B)p)" B(1—p)p(n) Ny JB(_g), () |X — n|n-1

! | ndu+ 1/ A
— T o H T a1 9H)-
wn((1—=B)p)" /B, (¢) nwy JB,(E) |x — "1

Now let y be a fixed C! non-decreasing function on R with y(z) = 0 for < 0 and
y(t) < 1 everywhere, and apply (1) with y(h — 1) in place of h, where t > 0 is fixed.
Then by (1)

Ap(

dp+ (1-a®) (1= )"

w'(h— M
oy —ny < e 02O

nwy |x —n[n—1

Selecting B small enough so that (1 — )™ (1 —a?) < 1 —a?/2, we thus get

a
2 — <
) 2 T nwp |x —p|»—1

2 1+a/ v'(h—1)[V¥h|
By(e)

for any n € Bg, (&) Nspt w such that y(h(n) —7) > 1. Now let ¢ > 0 and choose y such
that y(¢) = 1 fort > 1 + &. Then (2) implies

y/(h—1)|[VMh|
By(5) |x—n|"7!
where Ay = {y e sptpu: h(y) > t}. Integrating over A4, N Bg, (&) we thus get (after
interchanging the order of integration on the right)

, 1
RlArre 0 Bgp(§)) = C [ /) = ORI (o din)) ()

§CFp/ )//(l’l—[)|VMh|d/L
JBy(£)

1<C dp, n € Bpp(§) N Arye,
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by hypothesis 6.6(%) and Remark 4.9(3). Since y’'(h(x) —t) = —%y(h(x) —t) we can
now integrate over ¢ € (0, 00) to obtain (from 4.10) that

/ (h—s)fCFp/ |VMh|d/L.
AeNBp, () By (§)

Letting ¢ | 0, we have the required inequality. O

Remark: If we drop the assumption that 6 > 1, then the above argument still yields

/ hd,qup/ VM i) dp.
[0(x)2 1) N B (6) By (8)

We can also prove a Sobolev inequality as follows.

6.7 Theorem. Suppose h € Cl( ), h>0,and 0 > 1 p-ae. inU. Then

1) ([ntr an) - < C [(IV¥h| + h|H|) dye. ¢ = c(n).
Note: C does not depend on k.
In the proof we shall need the following simple calculus lemma.

6.8 Lemma. Suppose f, g are bounded and increasing on (0, 00) and

I<o™f(o)<p"f(p +/ 7)dt, 0 <0 < p < o0.
then A p with0 < p < po = 2(f (00))™ (f (00) = limppeo f (p)) such that
®) £(50) = 35" p0(p).

Proof of Lemma: Suppose () is false for each p € (0, pg). Then

/:p_”f(Sp) dp

—n

1< sup o7"f(0)<py"f(po)+

0<o<pg

= 00" f(po) + % o " f(p)dp

=P5nf(,00)+5—p0 /;P_"f(,o) d,o+f;:0p_"f(p) d,o)
2

<po"f(oo)+ < sup p"f po" f(00).
1) 4G s 0 (0) 5" (o0)
Thus L

Lol G omrio) <205 flo) =2,

2 20<a<p0
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which is a contradiction since n > 2. O

Continuation of the proof of 6.7: First note that because & has compact support in U,
the formula 6.5 is actually valid here for all 0 < 0 < p < co. Hence we can apply the
above lemma with the choices

flp) = a);l/ hdpu,
By (£)

¢(p) = wI/ (V™| + h|H|) dp,
By (§)

provided that € € spt u and h(€) >
Thus for each § € {x € sptu: h(x) > 1} we have p < 2(w; ! [3, hdu) Y7 such that

(1) /BSD(§>hd,LL < 5"(w / hdp) 1/"/ (|VMh|+h|H|)dp.

Using the covering Lemma (3.4 of Ch. 1) we can select disjoint balls By, (§1), Bp, (£2),
LEre{éesptu:h(§) =1} suchthat {E€ M :h(§) =1} C US2, Bsp; (&). Then
applying (1) and summing over j we have

hdp < 5" (o /hdu 1/"/ IVMh| +h|H|)d

AxESPtu:h(x)zl}

Next let ¥ be a non-decreasing C! (R) function such that y (1) = 1fors > egand y(¢) =0
for t < 0, and use this with y(h — 1), ¢ > 0, in place of . This gives

p(Mie) = 5"on (u(M)' " [ (/=) V¥ B + (= )| ) e

where
Maz{xeM:h(x)>a},a20.

Multiplying this inequality by (1 +¢) T and using the trivial inequality (z+¢) T (M) <

/ (h + &)#=1 dy on the right, we then get
M;

1
(t+e)mTpu(Mite) <

S"wn_l/n(/ (l’l+€)"ﬁ1
JM

1, d
P [y E=0VMh|+ [ |H]dg).
M Im,
Now integrate of t € (0, 00) and use 4.10. This then gives
/M (hn=T —en=T)dp < 5n+1w;1/n(/ (h+¢&)mT)n / (\VMh| + | H|)d
The theorem (with C = S”Ha),,_l/n) now follows by letting ¢ |, 0. O

6.9 Remark: Note that the inequality of 6.7 is valid without any boundedness hypothesis
on H: it suffices that H is merely in L (u).
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7 Miscellaneous Additional Consequences

Here V = v(M, ) is a rectifiable n-varifold in R"** with generalized mean curvature
HinU,U C R"¥ open, as in Definition 3.15 of the present chapter. We first derive a
preliminary property for V in case H is bounded.

7.1 Lemma. Suppose U = R""K \ Bg(£) and VLU has L} (1v) generalized mean
curvature H in U withn™ |H (x) - (x = §)| < 1 py-a.e. in U, and suppose also that spt V
is compact. Then

sptV C Bgr(§).

(e VLU =0)

Proof: Since spt V is compact it is easily checked that the identity (see §3)
n [y duy + [ry' () (1= (D2 Pyduy = = [H(x) - (x = )y (r) diay (x)

(where r = |x — &|) actually holds for any non-negative increasing C!(R) function y
with y(¢) = Ofort < R + &. (¢ > 0 arbitrary.) We see this as in §3, by substituting
X(x) = ¥(x)y(r)(x — &), where ¥ € C}(R"*¥) with ¥ = 1 in a neighborhood of
spt V. Since 1—|D17|2 > Oand |H-(x—£)| < n juy-a.e., we thus deduce [ y(r) duy = 0
for any such y. Since we may select y so that y(¢) > 0 for t > R + ¢, we thus conclude
spt V (= spt uy) C Br+e(§). Because ¢ > 0 was arbitrary, this proves the lemma.

7.2 Theorem (Convex hull property for stationary varifolds.) Suppose K C R"*¥ is
compact, let U = R"*k \ K, and V = v(M, 0) is a stationary rectifiable n-varifold in U
with spt V' is bounded. Then

spt V C convex hull of K.

Proof: The convex hull of K can be written as the intersection of all balls Bg(§) with
K C Bgr(€). Hence the result follows immediately from 7.1. O

Next we want to discuss local Hausdorff distance sense convergence of the support of
a sequence of stationary rectifiable varifolds or more generally a sequence of rectifiable
varifolds with mean curvature in L? for p > n.

We first recall the definition of local Hausdorft distance sense convergence.

7.3 Definition: If F, Fy, F,, ... are subsets of the open set U then we say F; converges
to F locally in the Hausdorff distance sense in U if for each compact K C U and each
8 > 0 we have jo = jo(8, K) such that

FiNK C{xeU:dist(x,F) <8}
FNK Cc{xeU:dist(x, F;) <8}
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for all j > jo.

7.4 Theorem (Distance Sense Cvce. of Supports.) Let p > nandletV; = v(M;,6;), j =
1,2, ..., berectifiable varifolds in U with generalized mean curvature vector H; € LY (wy;)
in U with ®" (uy,,x) > 1forall x € sptuy, and

sup v, (K) < 00, sup | H,llLr(uy k) < 00
J

for each compact K C U.

Then there is a Borel regular measure p on U and a subsequence Vj, with jy;, — p and
spt i;, converging to spt p in the Hansdorff distance sense 7.3.

7.5 Remark: We will show in Chapter 8 (in the Allard compactness theorem) that the
limiting measure y in the above statement is in fact the weight measure puy of a rectifiable
varifold V' = v(M, 6) with 6 > 1 uy-a.e. and with generalized mean curvature H €

LY (uv).

Proof of Theorem 7.5: First note that the existence of a subsequence 1y;, converging
to a limiting measure u is a consequence of the general convergence theorem 5.15, and
indeed the inclusion K Nispt u € {x € U : dist(x,spt uy;, ) < 8} for all sufficiently large
{ is a general property of convergent sequences of measures, and easily checked using the
definition of spt uy;, and spt .

So only the inclusion K Nsptuy,, C {x € U : dist(x,sptu) < 8} for all sufficiently
large £ needs to be checked. Supposing the contrary, we would have compact K C U and
§>0andz, € KNspt K, with dist(z¢, spt ) > § and g > £. Since K is compact z¢
has a subsequence (still denoted z¢) which converges to z € K with dist(z, spt ) > §. By
convergence of 1V, o juwehavelimsup,_, v, (Bsj2(z)) < n(Basa(z)) =0, te.
limg— 0 1V, (Bsj2(z)) = 0. But Bs/2(2)) D Bsja(zg) for sufhiciently large £, hence,
by the monotonicity 4.5, 1V, (Bs2(z2)) = 1V, (Bsya(z¢)) = C for a fixed positive
constant C because z¢ € spt uy,,. O

We note the following corollary of the above Theorem:

7.6 Corollary. Suppose 0 > 1 p-ae inU, H € LL (n) in U for some p > n. If the
approximate tangent space Ty V (see § 1) exists at a given point x € U, then Ty V isa “classical”
tangent plane for spt Ly in the sense that 0y p(spt Ly ) converges, as p | 0, locally in the
Hansdorff distance sense in R" ¥ to the subspace Ty V.
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4.1 Let M be a smooth n-dimensional minimal surface in R**¢ withM \ M = @,0 € M
and limp— o0 (@ p") "'H" (M N B,(0)) = 1. Prove that M is an n-dimensional subspace
of R**¢,

Hint: Monotonicity identity.

4.2 Suppose M is a bounded, H"-measurable, countably n-rectifiable subset of R”**
with H"(M N K) < oo for each compact K C R"** and with M stationary in R**+*
(i-e. [y divar X dH" = 0 for each C! vector field X on R"*¢ with compact support
in R"*¢). Prove H"(M) = 0 (so in particular there are no smooth compact minimal
surfaces without boundary in R”*¢).

Hint: Use monotonicity.

4.3 Let U be openin R"*4, let V = v(M, ) be a rectifiable n-varifold which is stationary
in U, let iy be the weight measure (i.e. duy = 6d H" _ M), and assume 6 > 1 uy-a.e.
(1) Prove V = v(S,®), where S = spt uy (closed), and ©(x) = ©" (puy, x), x € S (i.e.
prove that uy ((S\M)U (M \ S)) =0and ® = 0 uy-a.e.on M N S).

(Recall that by definition sptuy = {x € U : py (Bo(x)NU) >0 Vo > 0}.)

(i) If B,(y) C U and (@,0") 'y (Bo(y)) < 1, prove that y ¢ S.

44 If U, V,S are as in 4.3 above, if x € U, ¢ € {1,2,...}, and if V has multiplicity
¢ approximate tangent space at x (i.e. there is an n-dimensional subspace L C R"**

such that fn”ng o n;’adH" —qf, fdH" as A | OV f € C2(U) ), prove that

NxaS — L 1bcally in the Hausdorff distance sense.

Note: x2S — L locally in the Hausdorff distance sense means that for each R > 0, & > 0 thereis § > 0
with 7, 28 N Br(0) C {x : dist(x,L) < e} and L N BR(0) C {x : dist(x,nx 1 S) < &} for all
0<A<3d.
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Chapter 5

The Allard Regularity Theorem
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Here we discuss Allard’s ([All72]) regularity theorem, which says roughly that if the
generalized mean curvature of a rectifiable n-varifold V = v(M,0) isin L{ (uy) in U,
p>n,if0>1py-ae inu,if § €sptVNU,and if w; o7 uy (B,(§)) is sufficiently
close to 1 for some sufficiently small® p, then V is regular near & in the sense that spt V is
a C11=7/P p_dimensional embedded submanifold near £.

A key idea of the proof is to show that V' is well-approximated by the graph of a harmonic
function near £&. We begin in the first section with a motivating discussion, where we
consider smooth minimal surfaces with small C! norm, and discuss the fact that in such
a classical setting harmonic functions do indeed give a very good approximation.

The rest of the chapter to devoted to Allard’s theorem, beginning in §2 with a discussion
of the fact that a stationary n-dimensional rectifiable varifold V' in a ball Bg(£) C R"*+*
which has mass density ratio (w, R") ™'y (Br(£)) close to 1 has nice affine approxima-
tion properties near every point in the support, and can be very well approximated by a
Lipschitz graph with small Lipschitz constant. We in fact do this under the assumption
that the generalized mean curvature has small L? norm with p > n.

In §4 we show that the harmonic approximation lemma of §3 can be applied to the

'Depending on [ H || .7 (1)
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Lipschitz approximation of §2, leading to the “tilt-excess decay” theorem, which is the
main step in the proof of the Allard theorem.

The idea of approximating by harmonic functions (in roughly the sense used here) goes
back to De Giorgi [DG61] who proved a special case of the above theorem (when k =1
and when V corresponds to the reduced boundary of a set of least perimeter—see the pre-
vious discussion in §4 of Ch.3 and the discussion in §5 below). Almgren used analogous
approximations in his work [ Alm68] for arbitrary k > 1. Reifenberg [Rei60, Rei64] used
approximation by harmonic functions in a rather different way in his work on regularity
of minimal surfaces.

1 Harmonic Approximation in the Smooth Case

Suppose M is an n-dimensional C? embedded submanifold of R”**. We say that M
is a2 minimal submanifold if its mean curvature vector H is identically zero. From the
discussion in Ch.2 we have seen that this is exactly equivalent to the volume H" (M ) being
stationary with respect to compactly supported perturbations of the identity. Thus, in
the notation of §6 of Ch.2, M is minimal if and only if " (¢,(M))|;=o = 0. We
showed that this in turn is equivalent to the first variation identity [, divas X dH" = 0.

In the present smooth case we can use the local graphical representations discussed in
Remark 4.2(3) of Ch.2. Thus, modulo an orthogonal transformation of R**¥ we can
locally write M as a graph of a C2 function with values in R over a domain in R”. Thus
for each £ € M we can assume there are open sets W C R"** and a ball B,(n) C R” and
aC? map u : B,(n) — RF such that u(n) = &, Du(n) = 0 and graphu(= {(x,u(x)) :
x € B,(n)}) = M N W. Then stationarity of M implies in particular that the area
functional

A(u) = / JudH"
Bp(n)

must be stationary with respect to compactly supported perturbations of u in B,(7),
where Jy, is the Jacobian of the graph map x € B,(n) > (x,u(x)) € graphu = MNW.
Thus J, = v/det 7, where J(x) is the n x n matrix (D; (x,u(x)) - Dj(x,u(x))); Le.,
the n x n matrix with entry (e;, Diu(x)) - (e;, Dju(x)) = &; + Diju(x) - Dju(x) in
the i-th row and j-th column. Thus

A(u =/ det(8;; + Diu-Dju) dL"
()= [ derlsy ju)

and for | Du| < gg (for suitably small g9 = ¢(n,k) € (0,1)) we can use a Taylor series
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expansion to give

11 A(u):/B (1 3 IDul? 4 F(Dw)) der.

where F = F(P) is a real analytic map of n x k matrices P = (pjj)i=1,....n, j=1,...k
with | P| < &g such that

1.2 |[F(P)| <C|P|*, |Dp,, F(P)|<CI|P’, |P|=1,

where C is a fixed constant depending only on 7, k.

Since A(u) is stationary with respect to compactly supported perturbations of u we have

LA(u+18)l=0=0. {=({1.....0) € Cg (Bp(n).RF),

where C¢ (B, (1), R¥) denotes the C! maps ¢ : B,(1) — R¥ with ¢ = 0 on 9B, (7).

In view of 1.1, if | Du| < &g this takes the form

1.3 Yi—iDiu-DitdL" =/ Yk Ay (Du)Dity).
By (n) By(n) '

for all £ € Cl(B,(n), RF), where A;;(P) = Dy, F(P),so |A;j(P)| < C|P[?. Inte-
grating by parts, we get

Au = Z;”jzlaij(Du)D,-Dju, aij(Du) = O(|Dul?).

It is therefore reasonable, so long as | Du| is small, to expect that u is well approximated
by a harmonic function. Indeed let us check this rigorously: Assume |Du| < g (go as
above), and let v be the harmonic function on the ball B,(n) with v = u on 9B, (n)—it
is standard that such a harmonic function v exists and it is C! on B, () and C®(B,(n)).
Multiplying the equation Av = 0 by ¢ and integrating by parts over the ball B,(n), we
obtain

1.4 S Div-DigdL" =0, e Cl(By(n)).
Bp(ﬂ)

Taking the difference between 1.3 and 1.4, we see then that

/ Yi—i1Di(u—v)-DitdL" = / 27=1Zf=1Aij(D”)Di§j, ¢ € Co (Bp(n),R).
Bp(m) Bp(n) '

In this identity we take { = u — v, so that

f P nPaet= [ S Ay (D) — ).
14 14
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and using the Cauchy-Schwarz inequality ab < 1a?+ 1b? on the right side we get finally

/ |D(u—v)|*dL" < / Z,, ij(Du)) /|D u—v)
By(n)

SO

D(u—v 2d£”§/ ;i (Aij(Du 2,
L, =) [ K (A (D)

That is, since |Y_;; (47 (P))?| < C|P|° for | P| < &9, we obtain

15 / |D(u—v)|2d£”§C/ | Dul®.
Bo(n) Bo(n)

This shows that indeed v is a very good approximation of u for | Du| small: For example
if supg () 1Dul = & < &o, then 1.5 shows

/ |D(u—v)|2d£"§Cs4/ \Du?d L,
By (n) By (n)

where (as in 1.2) C is a fixed constant depending only on #, k, so that fBo(’?) |D(u—v)|?
is much smaller than pr(n) | Du|? for & small.

So there is good motivation to think that harmonic approximation could be relevant in
the study of the regularity of stationary rectifiable varifolds; indeed, as mentioned in the
introduction to this chapter, we will show that such approximations are appropriate even
in the more general context of rectifiable varifolds with generalized mean curvature in
L?, p>n.

2 Preliminaries, Lipschitz Approximation

In this section U is an open subset of R**¥, V' = v(M, ) is a rectifiable n-varifold with
generalized mean curvature H in U (as in Definition 3.15 of Ch. 4).

A key quantity which will appear in the computations to follow is the tilt excess E (€, 0, T)
of V over a ball B, (§) C U relative to a given n-dimensional subspace T C R"*¥; this
is defined by

2.1 E(£,0.T) =0_”/B (E)lpTXM_PT|2dMV(x)~2

Notice that this could be roughly described as “the mean square deviation of Ty M away
from T in B, (§).”

2 . ..
2| prep — p|” denotes the inner product norm trace (pr, — p)?; this differs from || p7, ar — plI? by at
most a constant factor depending on # + k—see Remark 2.2 below.
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2.2 Remark (Operator norm v. inner product norm): In the above definition 2.1 of
tilt excess we use the inner product norm for pr_ — pr, but we could equivalently use
the operator norm: If L : RP — R is linear with matrix £ = (¢/) (so that L(x) =
ZJ-Q=1 Zle ! x"e;) then the operator norm is ||L | = sup,j=; |L(x)], whereas the in-
ner product norm is [L| = /3=, ; (¢; /)2, Observe |L(x)[? = xT£T4x and £7¢ is a sym-
metric positive semi-definite P x P matrix with non-negative eigenvalues 0 < A1 < A, <
< Apand |L|? = trace £T¢ = Z};l Aj, while |[L]|> = Ap = max{A,...,Ap}, s0
PTHLP < LI < LI
In particular (n + k)~ fB y1prem = prexqoy = g ) IPTam — Proxqoyl? =

J3, ) |PTcb = Prox{0) P—ice. fBG e |Pros = Proxqoy 1* and [p o) |PTobt = Prox(o) 2
differ by at most fixed factor depending on n + k.

If T = R" x {0} then, in terms of the (n + k) x (n + k) matrices (e ) and (&) for the
orthogonal projections pr, i and pr respectively, | pr,. m _p]R”x{O}| isjust ) ; (e e —
Sij)z = Zi,j((eij)z + (Sij)z - 2eij5ij) = 2(n - Z?:l "jj) = ZZ;H—rIfHe =
2 Zle |VM x1+712 where we used the facts that (e¥/)? = (e”/) and trace(e”/) = n.
Thus

2 ko jj k ~
2.3 %|pTxM - pT| = Z;?Zn—i-ley = Zj=l|van+j |2v

so, still assuming T = R" x {0},

_ P2
2.4 E@.p.T)=207" | <E>Zf=1|VMx"+’! dpy

(VM = gradient operator on M as defined in §2 of Ch.3).

We begin with the following lemma relating tilt-excess and L? distance from the relevant
affine plane.

2.5 Lemma. Suppose B,(y) C U. Then for any n-dimensional subspace T C R"** and
any y € (0,1) we have

P_"/ |prom — pr)* dpy (x)
Byp(¥)

<cp (dlst(x,é +7T)

Y+ o™ [ |HP duy,
Bo(¥) o Bp ()

o (¥

where C = C(n,y).

Proof of 2.5: It evidently suffices to prove the result with y = 0and 7 = R” x {0}. The
proof simply involves making a suitable choice of X in the first variation formula of 3.15
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(1) of Ch.4. In fact we take
X =2(x)x!, x" = (0,x"F, . x"TR)
forx = (x!,...,x"*%) € U, where { € C}(U) with ¢ > 0 will be chosen below.
By the definition of divys (see §2 of Ch.3) we have
divag x' = YIHK el pae. x € M,

where (') is the matrix of the projection pr, a (relative to the standard orthonormal
basis for R”*¥), and where, here and subsequently, we write & = uy. Thus by the
definition 3.15 of Ch.4 of H we have

k k i ij
(1) Jot?du = [(-26 SpEk e e Dy - 2 H) dp,
with
. L
(2) o= Yitie = 30 (7 —67)? = JIprom — Proxioy s

by 2.3, where (") = matrix of prax{o}. Also observe that &/ = 0if i > n, so (1) can

be written
B)  Jortdn= [(-2TiEN I (e — ) Dt~ 2(0.5) - H) d.
SO

Jot?du = [(va0lx 1951 + 15| H6?) d

Hence (using ab < 1a” + 1b?)

/@2 dp < 16/(|x’|2|VC|2 + x| H |¢2) dp

The lemma now follows by choosing { = 1 in B,,(0), { = 0 outside B,(0) and |V¢| <
2/((1-y)p), and then noting that |x'| | H | = (o~ |x'|)(|H |p) < 307 2x"1*+5 (IH]| p)*.
O

For the remainder of this section we continue to assume that V = v(M, ) has general-
ized mean curvature H and now we additionally assume, with § € (0, 1] a constant to
be specified below and i = uy = H" L 6, the following:

1 <6 p-ae, 0esptV, B,(0) CU

2.6 L _ 1
ot (By(0) < 1+ 6. (0 | ol )" <5
0
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Notice that then by 3.13 of Ch. 4 we then have the “canonical representative” (spt uy, ©" (y,-))
for V, so we can, and we shall, assume 6(y) = ©"(uy,y) for all y € B1(0), and
©" (14, x) is an upper semi-continuous function of x by 4.7 of Ch.4, so

2.7 6(x) = ©" (i, x) > 1 at every point x € spt ju N B,(0).

Also, by the monotonicity 4.5 of Ch.4 we have, subject to 2.6, that y € spt V N Bys,(0)
and 0 € (0,(1 =28)p] = 1 —C§ < (w,0") ' u(Bs(y)) < (1 + C8)(wn(1l —
28)"p" ) i (B(1-25)p(¥)) < 1 + C8, because B(1-25),(y) C B,(0). Thus for § < 8,
with 8¢ = 8o(n, k, p) sufficiently small, we have

B
28 L<1-C6< “(;(f)) <1+4C8<2, o€ (0.(1—28)p]. y € spt u N Bas,p(0).

1
2 Wno
where C = C(n, k, p). In particular, letting o | 0, we have

2.9 O(y) <14 C8, yesptun Baysy(0).

Also, by the monotonicity identity 4.3 of Ch.4, we have, assuming 2.6,

_ X—Yy \L12
2.10 / lx —y|™ du < C8, y €sptieN Bas,y(0),
B(1-25)p(¥) |<|X_J’|) | g

with C = C(n,k, p).

We now establish a lemma which guarantees local afline approximations of the support
at all points of spt uy in the ball Bys,(0) and at all radii 0 < 46p.

2.11 Lemma (Affine Approximation Lemma.) If§ € (0, ] and 2.6 holds, then, for each
y € spt iy N Bysp(0) and each o € (0,48p),

(1) sup dist(x.y + T (y.0)) < C§mr5, C=C(n.k p).

xespt wy NBg (y)

Proof: Take any fixed o € (0,48p] and y € spt V N Bys,(0), and suppose for convenience
of notation (by changing scale and translating the origin) that 0 = 1 and y = 0, so now,
since § < 1 and hence (1 —68)p/(48p) > 2, 2.8 in this rescaled setting ensures that
K(Bs(y))

<———22 <2 Voe€(0,2], y€sptun B;(0),
= oo = 0 €(0.2], y e sptpu N B1(0)

(1)

[SIE

where, here and subsequently, 1 = py. Also, 2.10 now guarantees

2 2 —n—
@ [ pans =0 dies [ [paans =)l v dps €8
Ba(y) Ba(y)

for y € spt V N B1(0). Next take o € (0, 1) (to be chosen shortly, but for the moment
arbitrary). Recall the general principle that if K is compact and 1 > 0 then any maximal
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pairwise disjoint collection By, /2(y;) of closed balls with y; € K will automatically have
the property that K C U; B,(y;). Using this with n = 8% we have pairwise disjoint balls
Bsaja(y1),.... Bseya(yn) with y; € spt u N By (0) such that

(3) sptiu N B1(0) C UL, Bse(y)).
Notice that then, by (1),
4) n2 1 < u(Baya (), J = Lo,

and hence, using (1) with o = 2,
on2 "IN < 3L (a2 () = (U Baa(37)) < u(B2(0) < 2"+ .
Thus N < 4"*t1§7%" and so, by using (2) with y = y; and noting that B>(y;) D B1(0)
for each j, we have
2 —
/ Z_;V=1|pTxML(x—yj)| dpu < CN§ = C§ton,
B1(0)
Thus for any given k > 1 we have

2 -
(5) Z;V=1|PTXML(X —yj)|" = Cks'=om,

except possibly for a set of x € B1(0) N spt u of pu-measure < 1/k. Since u(Bs« (0)) >
C~18%" by 2.8, we can select k = C87*", thus ensuring that (5) holds for some xo €
spt 4 N Bsa (0). So we have shown there is xo € spt £ N Bsa (0) with

2 _
(6) Z,I'V=1|P(TXOM)i(x0 -y = csl=zen,

and hence
1_ .
|p(Tx0M)i(J’j_x0)|§C52 en. j=1,...,N.

Since |x0| < §%, we then have
1_ .
(7) }p(TXOM)lJ’AfC(SZ an—i—(ga), ] :1,...,N.

Then, selecting o such that 3 —an = o (ie.a = ﬁ), we have shown that all the
points y1,. .., yn are in the C§1/(2n+2) neighborhood of the subspace Ty = Ty, M, and
hence by (3) we have

dist(y. To) < €822 vy e sptpu N By (0),
so the inequality (%) is proved with T = Ty = Ty, M. O

2.12 Remark: Note that if y € B,5(0) and o € (0, 48] we can use the Holder inequality
and pu(Bo(y)) < 2w,0" (by 2.6) to estimate

p2—n/' |H’2d/,l, < C(pp_n/‘ }ﬂ|pdﬂ)2/l7’
JBs(y) Bs(y)
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and then choose T = T(y, o) (notation as in 2.11) in the conclusion of 2.5 to give

@ o[ iprar = prPdu(x)
Byo (y) .

<c sup (dlst(x, y+T)

xespt iy NBo (y) o

with C = C(n,k, p,y).

jaclor [ | ) < corh
oly

An important corollary of the above Lemma 2.11 is the following Lipschitz Approxi-
mation Theorem, which provides a key step in proving the Allard theorem. We assume
in this (without loss of generality since we can rescale and rotate coordinates) that the
hypotheses 2.6 hold with p = 1 and that the subspace 7'(0,48), which, according to
Lemma 2.11 with p = 1, provides the affine approximation for spt sy in the ball B4s(0),
is just R” x {0}. Thus we assume

(11) T(0,48) = R" x {0}.

2.13 Lemma (Lipschitz Approximation Theorem.) Let L € (0, 1] be given. There is
B = B(n.k,p) € (0, 1] suchthat if 0 < § < (BL)*"*2,if p = 1, if 2.6 holds, and if (1)
above holds, then there is a Lipschitz f : B} (0) — R with

Lipf <L, supl|f|=<Céz

87" (uv (Bs(0) N (spt pwy \ graph f)) + H"(Bs(0) N (graph f \ spt uy)))
=127 [ pran = proioy | diuy = CLZ8T, € = Cln.k. p).
B3;5(0)

Proof: Let B € (0. 1] be for the moment arbitrary, but which we will choose eventually
to depend only on n, k, p. Assume 2.6 holds, where for the moment § € (0, %] is also
arbitrary and let Tp = T(0,48), so To = R" x {0} in accordance with (1) above.
Throughout the proof C denotes any constant depending only on 7, k, p, and we let
n=Hy.

Let

G = {y € spt 0 N Bys(0) : sup 0_”/ |prom — P1ol* dp < ,32L2}.
0€(0,8] JBo (y)

Thus y € spt 0 N Bps(0) \ G = Fo € (0,68] with
(1) B>L*0" </B ( )|PTxM - prp* dp.

oly
By the five-times covering lemma we can pick pairwise disjoint balls B, ( ;) such that (1)
holds with 0 = 0; € (0, 8] and y = y; € spt u N Bys(0) \ G, and such that

spt o N Bys(0) \ G C U; Bsg, ()).
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Thus using (1) with 0 = 05, ¥y = y; and summing over j we obtain
B?L?u(B25(0) \ G) < B2L*Y; 14(Bso, (1)) < CB*L*Y ;07
<C |prem — pro* dp < C/ |prem — prol d.
UjBo; (¥ B3;5(0)

Thus
@ p(Bas(0)\G) = CBL72 [ Ipras — pr P dp.
B35(0)

We now claim that G is contained in the graph of a Lipschitz function. To check this, let
Y1, ¥2 be distinct points of G and let 0 = |y; — 2], so 0 < 48. Observe that
o_”/ \prom — pro)* < 4"B2L2, (because y; € G),
B(r/4 YI)

1

o [ e = pre) = OO S CRLY (by 2.12(4).
Bs/a(y1)

Since | pry — Pr(v1,0)1* < 2IPTeM — PTo1* + 21PTeM — PT(31,0)1* and p(Boya(y1)) =
%a)n (o/4)" by 2.8, we now have
(3) |pTo - pT(y1,0)| = CﬂL7

and so
) 1pry 1= 22)l = [(Pri .0t + (Pr = Priyio)t)) (01— y2)]|
<dist(y2.y1 + T(y1.0)) + |p1y — PT(y1.0)|0 < CBLo,

where at the last step we again used the Affine Approximation Lemma 2.11. Thus

|Q(y2—y1)| < CBL|y1 — y2| < CBL(IQ(y1 — y2)| + [P (y1 — y2)I),

1 n+k)

where P, Q is denote the projectionsof y = (y',....y onto its first n and last k

coordinates respectively. Assuming Cf < 1 we then have

|0(y1) — Q(y2)| < CBL|P(y1) — P(y2)l.

In view of the arbitrariness of y1, y» € G this says that G is contained in the graph of a
Lipschitz function f : G N Bs(0) — R¥ with Lipschitz constant < CBL, provided we
1

eventually choose B = B(n, k, p) to satisty the above restriction Cf < 3. Also, by 2.11,

sup|f| < C § 22 § , s0, by the Lipschitz Extension Theorem 1.2 of Ch.2, f extends to
give a Lipschitz f : R” — R¥ (henceforth denoted f) with

(5) G N B,5(0) C graph f, with Lip f < CAL and sup | f| < CﬂSﬁS.
Rn

Thus we get Lip f < L as required by choosing 8 = 8(n, k, p) such that C < 1. Also,
by (2), with F = graph f we have

(6)  §7"u(Bs(0)\ F) < CL_ZS_"/ |\prom — pro|” dp < CL™2§wtT
B35(0)
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It thus remains only to prove

™ H(B3(0) N F \sprp) = CL [ prow = prof* i
38

To check this, take any 7 € Bs(0) N F \ spt i and let

o = 2 dist(n,spt ) (< 38 because 0 € spt 1 and n € Bs(0)).

So Basy3(1) Nspt = @ and Bay/3(n) Nspt it # @, and the monotonicity identity 4.3
of Ch.4 implies

(8)  o"w(Bs(n)) =0"1n(Bs(n)) — (6/2)" n(Bss2(n))

=¢ x=n™" 221912 gu 4 C§
B Ba(n)\Bo/z(n)l U ‘p(TxM)L(\x—nl)} M

< o2 / |Peronye (x =) [P di + C8.
Bo(n) ’

Now spt 4 N Bag/3(n) # @ so 2.8 implies

(9) 1(Bs (1)) = 37" wno™,

and also C§ < C(BL)*"*2 < CB"*2, hence, for small enough B = B(n,k, p), (8)
gives

x—n\ |2
(10) o" < C/ |P(TXM)L(T")| dp
Bo(n)

x=m)|? Y
SC(./Bg(n)|pT°l( - )‘ du—i_/Ba(ﬂ)'lngM iz dM)

for some o € (0, 25]. On the other hand if o € [§, 26] then, by 2.12(}) with o = 44,

y = 2 and y = 0, and by affine approximation 2.11 with 0 = 4§ and y = 0, the above
inequality gives 6" < C§ 22 " < CBLo™ < CPo™, which is impossible assuming
1

CB < 5. Thus in fact, assuming we do so choose = B(n,k, p), (10) must hold for

some o € (0, 8] rather than o € (0, 25]. Also
2
a0 [ Apr (5P dut [ o= o di
ot 77 057! Ba(n) ’

< )P dju+ Cu(Bo () \ F) + [ v — o2 dp.
_/BU(WFMTOL(U )" dp + Cu(Bs(n) \ F) o | PTeM — DTl it

Since |pTOJ_(%)\ < CBforx,y € F N By(n) (because Lip f < CBL < CB), and
1(Bs(n)) < 2wn0™ by 2.8, the inequalities (10) and (11) imply
o" < C(Bo" + u(By(n)\ F) + /B <n)|PTXM — pro|*dp).

. . . 1
With 8 chosen appropriately (depending only on 7, k, p), we can arrange that Cf < 3,
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and hence we have proved
(12) 0" = C(u(Bs )\ F) + [ Iprow = pry[” )

for some o € (0, §].

Now observe that the collection of such balls By (1) by definition cover all of Bs(0) N
F \ spt i, so by the 5-times covering lemma we can find a pairwise disjoint collection

By, (1) of such balls with

(13) of = CuBoy )\ F) + [ 1proae = proldi)
aj )
for each j and Bs(0) N F\spt u C U; Bsg, (1;). F is the graph of the Lipschitz function
f with Lip f < 1, so we of course have %" (Bsq, (1) N F) < Co for each j with
C = C(n), hence by (13)
(14)
H"(Bs(0) N F \'sptp) < H"(F N (U Bs; (1)) < 21" (F N Bso; (1))
= CY,07 = € (1M(Boy )\ F) + [5, (g IPom = p1o|* i)
< C( (U;B o) i)\ F)+ ijBg () |pTAM 1o du) by disjointness of{ng (nj)}

< C(u(Bas(0)\ F) + [p,,0) |1t — P[> dpt).
and u(Bys(0) \ F) < CL™? fB33(0) |prom — p1o|* dp by (6), so (7) is established and
the proof is complete. [

2.14 Corollary. There is a choice of B = B(n.k, p) € (0, §] such that if the notation and
assumptions are as in Lemma 2.13 and if

_ 2
sup o "/ |prom — pro|” dp < B2L?
0€(0,8] Bs ()

Jor every y € spt i N Bys(0), then
spt 4 N Bs(0) = graph f N Bs(0)
for some Lipschitz map f : R* — RF with Lip f < L, sup | f| < C87n2.
Proof: The hypotheses ensure that the set G in the above proof is all of spt 1y N B,s(0),
and if n € Bs(0) N graph f \ spt uy then the inequality (12) in the above proof gives

0" = C [p | PTM — p1o? diy < CB20" for some o € (0, 6], which is evidently
impossible for 8 = B(n, k, p) sufficiently small. O
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3 Approximation by Harmonic Functions

The main result we shall need is given in the following lemma, which is an almost trivial
consequence of Rellich’s theorem:

3.1 Lemma (Harmonic Approximation Lemma.) Given any ¢ > 0 there is a constant
§=08(n.e) > Osuchthatif f € W'2(B), B = B;(0) = open unit ball in R", satisfies

/B|Vf|2§1, (/BVf-vgdﬁn < §sup |V¢|

forevery ¢ € C°(B), then there is a harmonic function u on B such tbat/ [Vu|?2 < 1and
B
JACEARED
B

Proof: Suppose the lemma is false. Then we can find ¢ > 0 and a sequence { f¢ } €
W12(B) such that

(1) VBka-v;dcn < k™ Vsup |V¢|

foreach ¢ € C°(B), and
/B|ka|2 <1,

but so that
(2) /B(fk—u)2>s

whenever u is a harmonic function on B with [ |[Vu|* < 1. Let Ay = w, ! [ fr d L.
Then by the Poincaré inequality (see e.g. [GT01]) we have

fBifk _)Uc|2 =< C/B|ka|2 <C,

and hence, by Rellich’s theorem (see [GT01]), we have a subsequence {k'} C {k} such
that fir — Ags — w with respect to the £2(B) norm and V f» — Vw weakly in L2,
where w € W2(B) with [ [Vw|*> < 1. By the weak convergence of V f/ to Vw and
by (1) we evidently have

/Vw-vgd.c" =1im/ka-v;d,c" —0
B B

for each ¢ € C°(B). Thus w is harmonic in B and fB|fk’ —w — Ay > 0. Since

w + Ay is harmonic, this contradicts (2). O
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We also recall the following standard estimates for harmonic functions (which follow
directly from the mean-value property—see e.g. [GTO1]): If u is harmonic on B =
By (0), then

3.2 sup 0q|un} < CU_”/2||u||Lz(B)
Bs/2(0)

for each integer ¢ > 0, where C = C(g,n). Indeed applying this with Du in place of u
we get

3.3 sup 0‘1_1|un| < C||Vull2(p)
By /2(0)

for ¢ > 1. Using 3.2, 3.3 and an order 2 Taylor polynomial expansion for u, we see that
if £ is the affine approximation to u given by £(x) = u(0) + x - Vu(0) then
1£(0)] = [u(0)| < Co™?ull2(p), |VE| = |Vu(0)| < Co™/?|[Vu||12(p)

sup |u—{| < (no)?sup|D%u| < (n6)?| sup |D*u| < Cn?c' ™| Vu 12 (p)
Byo(0) Byo Bs/>

34

for n € (0, 1], where C = C (n) is independent of 7.

3.5 Remark: We note particular that the first two inequalities above can be applied to
the approximating harmonic function u of Lemma 3.1, thus giving

u(0)] = CllullLzmy < C(lu = fliz2sy + 1 £ lz2(8)) = C (Ve + 1 fllL2(m))-
[Vu(0)| = ClIVull2p) = C

for the harmonic approximating function of Lemma 3.1.

4 The Tilt-Excess Decay Lemma

In this section we continue to assume V has generalized mean curvature H in U (as in
Definition 3.15 of Ch.4), and we write u for wy.

We are now ready to discuss the following Tilt-excess Decay Theorem, which is the main
result concerning tilt-excess needed for the regularity theorem of the next section. In this
theorem the tilt excess E (&, 0, T) is as defined in 2.1, and we also use the notation

Eu(§.0.T) = max{E(6.0.7).67 (077" | L dp)*'"},

where 8 is as in 2.6.



§4 or CHAPTER 5: THE Tirt-Excess DEcay LEMMA 141

4.1 Theorem (Tilt-excess Decay Theorem.) There are constants n = n(n,k, p), 8o =
So(n.k,p) € (0,%] such that if § € (0,80] and if hypotheses 2.6 hold, if o € (0, 5p],
£ € spt iy N Bs,(0), and if T is any n-dimensional subspace of R"*, then

Es(£n0,8) < ' "V EL(§,0.T)
for some n-dimensional subspace S C R" ¥,

4.2 Remark: Notice that any such S automatically satisfies

(1) |ps — PT|2 <Cn"E«(§,0,T).

Indeed we trivially have
_ 2 _
Mﬂ”/ \prom — pr| du <n"E(£.0.T),
Byo (§)
while by 4.1 we have

o) [ |prose = ps[ du < Bo(e.0.T),
Bo ()

and hence, since ’ps — pT|2 < 2|pTxM — pT|2 + 2|pTXM —ps 2, (f) follows by adding
these inequalities and using the fact that jt(Bpo (€)) = 2 (wano)™ (by 2.8).

Proof of 4.1: Throughout the proof, C = C(n,k, p). We can suppose (via translation
and rotation of coordinates) that

(1) £=0, T =R"x{0}.

Let Ty = T(0,20) (notation as in Lemma 2.11). By Remark 2.12 (), Tj satisfies
(2) E(0,0.Ty) < C§7,

and hence we can assume that T also satisfies

(3) E(0,0.T) < C8FT,

because otherwise we just prove the lemma with Ty in place of T and this then trivially
implies the lemma for the original T. Since | pr — p1y|* < 2|pr — prom|* + 2| p1 oM —

1 |* We see from (2) and (3) that

1
|pr — pro| < C82nF2
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and hence, since sup,.c. A5, (0) dist(x, To) < C§mr2g by Lemma 2.11, we must also

have sup,.c . ung, (o) dist(x. T) = C8 724, Since T = R” x {0}, this ensures

(4) sup Z}‘:l|x”+/| < Csmro,
Bs(0)Nspt i1
By the Lipschitz Approximation Lemma 2.13, with L = 1 and with ¢/3 in place of dp,
there is a Lipschitz function f : B] (0) - R* with
{ Lip f < 1, sup|f| < C8§77F20
pu(sptw N Bgy3(0) \ F) 4+ H"(F N Bgy3(0) \ sptu) < CEgo™,

where, here and subsequently,

()

F = graph f,
and Eg = E«(0,0,7), 1.e

Eq = max{a_"/B (O)IPTXM —pT|2dM, “HoP~ ”/ }H}pdu 2/”}

Let us agree that sz < 1,C = C(n,k, p) asin (4), in which case (4) implies

(6) spt i N Bo (0) N (Bg4(0) x RE) C BY4(0) x By4(0) C Boys(0).

Our aim now is to prove that each component of the Lipschitz function f is well-
approximated by a harmonic function. Preparatory to this, note that the defining identity
for H (see 3.15 of Ch.4), with X = (e, 4, implies

|Vt dn = fens; - HEdp, ¢ € CY(Boys(0)).

Jo= 1.k where V) . = enij - VM = proy(ens;) - VM = (VMxnt7) . vM
(VM = gradient operator for M as in §2 of Ch.3). Thus we can write
(7) | (M) My =~ [ eny - HEdp.

M M

Since x"t/ = f7(x)on M N F (where f7 is defined on R"+* by fi (x1,...,x"Tk) =
FI(x . x™) for x = (x1, .. .,x”"‘k) € R"t*), we have by the definition of VM (see
§2 of Ch.3) that

(8) VMl = VM fi(x) p-ae.x e MNF.

Hence by (7) can be written

/ Vij~VM§d/L=—/ VMx””-VMEdM—/enH'EEdW
MNF M\F M
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and hence by (5), together with the fact that (by 2.6)
' 1
/ |H|dp < ( / [H|” dp) P (u(Bo (£))) 717 < C82 Eg o™,
Bs (§) JBg (§)
we obtain
- 1
O o[ (VM) VM edp| < C (o7 sup |¢I84 B + sup |VE| o)
MNF

1
< C'sup|V§‘|(8%E02 + Ep),

for any smooth ¢ with spt{ C By/3(0).

Furthermore by (8) and 2.4 we evidently have

(10) o | V¥ dn =250,
MOFNBy,3(0

Now suppose that ¢ is an arbitrary C!(B ”/3( )) function, and let ¢(x!,...,x"tk)
C(xl,.. x"), so sptl = spt¢ x R C B”/3(0) x R¥. By (6) there is a function

CeCl(B, /3(0)) which agrees with ¢ in a neighborhood of spt i N spt ¢, and hence it is
legitimate to use ¢ in place of ¢ in the above discussion. Also,

(1) VM f7. Mo =31 e D fIDit =V 7 Vi =37 ,(8i0 —e'“) Dy f7 D,

.....

eié)i,gzl’m,n) is < trace((&g - eiz),- (=1,.. ,,) so, by Cauchy’s inequality and 2.3,
> i (Bie — ™)V fIVE] < Y€V VL]
= <Z;’:,i‘+1e )i fAIViEl = 3lprom — prlPIVi 71198,
So, since |Vj7j| <1, (11) gives
(12) \VM f7. M v f7.9¢| < Ypr — prom|? sup |VE].
Thus (9) and (12) imply
J 1
(13) (o—"/ v i -V;du’ < C(§YE§ + Eo) sup|VEl.
MNF
Also since (12) is valid with ¢ = f/, we conclude from (10) that

(14) o |foy du < CEj.

—n /
MNFNBy/3(0
From 2.9, (5), (13), (14) and the area formula ?? of Ch.2 we then have

|0_n/3,, Vf/l-Vi0oGJgdLl"| < CS%EO% sup| V¢|.

0_”/ IV fIP6oGJgdL" < CE,,
. 0
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where G : R" — R"*¥ is the graph map defined by x € B} 5(0) = G(x) = (x, f(x)) €
F c R"tk x e B"/3( ), and where Jg is the Jacobian of G defined, as in §3 of Ch.2,
by

J6(x) = \/det(DiG(x) - D;G(x)) = \/det(8; + D; f (x) - D; f (x)).
Then1 < Jg <1+ C|Vf|* on BZ(0 )andl <6 <1+ C§ (by 2.8), so we conclude

. 1
(16) |o—"/ Vfl.vedLr| < C(8PE; +80‘”/ |fo| d L") sup |V¢|
B2(0) B

0/2

< C82E sup V|
by (15), because by (15) (and the fact that > 1, JF > 1) we have
(17) o / VS e =y,
0/4

Now (16), (17) and the Harmonic Approximation 3.1 (with (CEp)~"/2 f/ in place of

f) we know that for any given ¢ € (0, 1) there is §o = 8¢(n) such that, if the hypotheses

of 3.1 hold with § < 8, there are harmonic functions u?, . . ., u* on B /4(0) such that

(18) 07”/3

By (5) and Remark 3.5

|Du| dL" < CE, o*H/H |f—u| dL" < sy,

0/4 0/4

(19) o " u(0)] < C(e2EN? 4 s20m2) < cs57F2, |Vu(0)| < CEM2.

Now, defining A(x) = (A'(x),...,A¥(x)) with A/ (x) = u/(0) + x - Vu/ (0) for j =
L,..., k, and again using 3.4 with 7 € (0, 1), we have also

(20) (nd)_"_2/B” F AP aer <20y [ (1f —uP = 2P) de

no (0)

<"

eEy + 2w, nfzafzsupBMm)w —A)?

<2)"2%¢Ey + Cn’o _"/ \Dufdﬁ"
B5(0)

<20 " 2¢Ey 4+ Cn*E,,

where at the last step we used (18). Now let S be the n-dimensional subspace graph(A —
A(0)), let T = (0,A(0)), and observe that dist(x,7 + §) < |f(x') — A(x')] for any
x = (x', f(x')) € Byo(r) N F, so (20) implies

(170)_"_2/8 (t)nF dist(x — 7, 8)*dH" < Cn " 2eEg + Cn*Ey.
no
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Then by (5), (4), and (19), keeping in mind 8(£) < 1 + C§ < 2 in By (0),
(no)f"*z/B ) dist(x —7,8)?du < Cn ™" (e + B"%)Eo + Cn*E,,
no
and then by Remark 2.12 (1) we have
(21) E(1.10/2,8) < Cp™"2(e + §#1) Eq + C (n? + 8) Eo.
Now (19) implies |¢| < C§272 0, hence
(22) C87F2 < /4 = Byo/a(0) C Byoya(T)
(for § small enough depending on n, k, p and 1), and then (21) gives
(23) E(0.n0/4.8) < C""2(e + 8741 ) Eg + C (n* + 8) Eo.

The proof is now completed as follows:

With C = C (n.k, p) asin (23), first select n = n(n. k, p) sothat Cn? < 1(n/4)21=1/p),
and then choose ¢ = ¢(n,k, p) so that Cn™"2¢ < %(n/4)2<1_"/1’>, and finally choose
8 < 8o(n,k, p) with 89 small enough so that B;5/4(0) C Bys/2(7) asin (22) and so that
the above harmonic approximation is valid with the choice of ¢ made above, and also so
that Cn_”_ZSnTlrl < 1(n/4)21=n/P)_ Then (23) implies

E(0,70,8) < 72="/P)E,,
where 7j = /4. Since

(o) |

= ) < or [ )
7 Bs (0

no o

by virtue of the inclusion Bj4(0) C B, (0), we thus conclude that
E«(0,70,8) < 7?20/P E,(0,0,T).

This completes the proof of 4.1 (with 7 in place of ). O

5 Main Regularity Theorem

We recall the hypotheses of §2 on V (which is a rectifiable varifold V' = v(M, ) with
generalized mean curvature H in the open set U C R"*¥):

{ 0> 1 p-ae., 0€sptV, B,(0) CU
5.1

o 0" w(ByO)) = 148 (o7 [ HIP dp) <.

14
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Then we have the following:

5.2 Theorem (Allard Regularity Theorem.) If p > n is arbitrary, then there are y =
y(n.k,p).8o = So(n.k,p) € (0.+c] such that if § € (0,80] and if the hypotheses 5.1
hold, then there is an orthogonal transformation Q of R"** and au = (u',... u*) €
Ccl1=n/p (B2 (0);R¥) with Du(0) = 0, spt V N B,,(0) = O (graphu) N By,(0), and

ot sup |u| + sup |Du|+
PP sup |x—y[TUTP)|Du(x) — Du(y)| < €57,
x,y€B},(0),x#y

where C = C(n,k,p)>0andy = y(n,k,p) € (0,1).

5.3 Remark: At the conclusion of this section we shall prove a slight improvement on

the above theorem, in that for every y € (0, 1) there is 8o = 8o(y, n,k, p) € (0 such

6]
T
that the hypotheses 5.1 with some § < §¢ imply the conclusion of the above theorem.

In the proof of 5.2, we shall need the following corollary of the Affine Approximation
Lemma 2.11, which shows that if 7o = T'(0,48) (notation as in 2.11), and if 5.1 holds

then the tilt excess is < C§7+T on every ball centered at 0 with radius < p.

5.4 Lemma. Thereis§o = So(n,k, p) €
if, with the notation of Lemma 2.11, To = T'(

(0, 5] such that if § € (0,8¢], if 2.6 holds, and
0,48p), then, for each 6 € (0,1),
1
o7 | prow = proPduy < C8THL € = C(6.n.k. p).
B (0)

Proof: Let ¢ € [§, 1). The inequality 3.30 of Ch.4 with p = ¢ € (0,1), 0 = §¢ and with
h(x) = |PT0L (x/]x])|? implies that

[ nvMrldy <87 [ BV rlday +n [ DR dpy
0B;(0) 0Bs;:(0) B1(0)

1(0

+C/ (71 D4r| + P R H ) duy .
(0)\By2 (0)

By the Cauchy inequality ab < 1a® + 152 we have |D1r| < §2 + 671/2|DLr|2, and
since fB 0\Bya(0) " r"duy < C|logé| by Remark 4.9 of Ch.4, we then get

(1) /aUhIVMrldwsSl’”/a VM r| dpy

B (0 B¢ (0)

res2 |

r—"|DLr|2dw+cs%|1og5|+/ PR H | dpy .
B1(0) B (0)
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Also, by the Holder inequality and Remark 4.9 of Ch. 4, fBl rh|H | dpy < CIH|lLr(uy B (
Cé, so in fact (1) gives

(2) / hIVM r| iy 581‘”/ RVM | dpy + C5%logs|.
0B (0) JOBs;(0)
Now by integrating over ¢ € (8, 1) and using the coarea identity 3.24 of Ch.4 we get

/ WM PP duy 55—"/ RIVM 2 djy + C83|log ),
B1(0)\B5(0) B5(0)\By2 (0)

SO
/ RVM 2 duy < (1 + 5*")/ RIVM 2 diy + C8%|log).
B1(0) B;5(0)

Since [VMr|2 = 1 — |D1r|?, by 2.10 this gives

(3) / hdMVS(1+8_")/ hdpLV—i-CS%llogSl—i-Cé’,
B (0) Bs(0)

and h(x) = |pTOJ_ (x/|xD)? < CS7H for x € spt uy N Bs(0) by the Affine Approxima-
tion Lemma 2.11 (because 7o = T(0,46)), so (3) gives

4 / 2 duy < C8w .
@ [ P (0P v =
The proof is now completed by using 2.12 (f) with T = Tp. O

Proof of 5.2: The proof is based on the Tilt-excess Decay 4.1 of the previous section.
Throughout the proof C = C(n,k, p) > 0.

Take & € Bsp/2(0) NsptV and o € (0,8p/2] and let So be an arbitrary n-dimensional
subspace of R"**. By the Tilt-excess Decay Theorem 4.1 we then know that there are
80 = 8o(n,k, p), n=n(n,k, p)sothatif § < § then 5.1 implies

EulE.no.81) < PUPEL(£.0.S0)

for suitable S;. Notice that this can be repeated; by induction we prove that if £ €
spt V' N Bsp/2(0), then, with 09 = §p/2, there is a sequence Sy, S, . .. of n-dimensional
subspaces such that

(1) E«(En700.8;) < VTP E(E, 0/ p/2, S51) < I PI E, (£, 00, So)

for each j > 1.

Let To = T(0,209); then 2.11 tells us that £(0, 09, Tp) < C87+ and hence, with the
same C, E(§,00/2,Tp) < 2 C§7HT for each £ € spt i N Bgy/2(0), so then the above,
always taking So = To (for each & € By,;»(0) N spt pt) implies

(2) Ev(£,10700.8;) < ?PE (807 00/2, Sj—1) < n? 1PV B,
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where, here and subsequently, Eg = E,(0, 09, To). Notice in particular that this gives
(Cf. 4.2)

(3) s, = ps;_|” < CE«(€.07 00, Sj—1) < CP1=/PV E, (£, 00, So).

for each j > 1.

By summation from j + 1 to £, (3) gives

(4) |ps, — ps,|© < CpPI/PI E,

for £ > j > 0. (4) evidently implies that there is S (&) (= limy— o S¢) such that
(5) pse — ps,|© < CPUTPI B, j=0.1.2.....

In particular (setting j = 0)

(6) |psie) — pro|” < CEo.

Now if 0 € (0,00/2] is arbitrary we can choose j > 0 such that n/0¢/2 < o <
n/~log/2. (1) and (5) imply

(7) Ev(§.0.8(§)) = C(0/00)*" ™ P Ey, € =C(n.k.p).
for each & € By,/2(0) Nspt V and each 0 < 0 < 6¢/2. Notice also that, by (6) and (7),
(8) Ev(£,0.Ty) < CEy < C87%F2, 0 <0 <0p/2.

Supposing without loss of generality that Top = R” x {0}, we then see, by Corollary 2.14
and (8), if Lo € (0, ‘1—‘] is given, and if § < 8o L3" 2 for suitable 8o = 8o (1, k, p), then

(9) spt V' N Byy/4(0) = graph f N By, /4(0),

where fis a Lipschitz function B} ,(0) — RF with Lip f < Lo.
With suchan f,let F = graph f and & = (¢', f(§’)) € F, and note that, in view of (9),
(7) implies

limﬁ_"/ |pT . F — p5(5)|2 dH" =0
o0 Bo (E)NF

for H"-a.e.§ € F N Bg,/2(0), and at all such points & it evidently follows that S () is the
approximate tangent space of F;i.e. S(£) = pr, F, so (7) can be equivalently written

(10) (,—n/B (E)nF|pT"F — prerPdH" < C(0/o9)* P Eq
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forall 0 < 0 < 09/2. Now the orthogonal projection PT:F of R"t* onto the sub-
space T¢ F is given by pr.r(v) = Y_j_,(7j - v)7;, where 7; is an orthonormal basis
for T¢ F, and by the Gram-Schmidt orthogonalization process, starting with the basis
(ej.D;j f(&)). j = 1.....n, for TeF, where (§', f(§')) = &, shows that pr,r has

matrix Pg of the form

(e DFE) ,
e ((Df(é'))’ Ocs ) FHPIE)

where F(p) is a real analytic function of p = (p;;)i=1...n.j=1...x € R"™™ with F(0) =
0, DpF(0) = 0 and hence |F(p1) — F(p2)l = C(n.k)(Ip1l + |p2])|p1 — p2| for
|p1l,|p2| < 1. Evidently then (provided we choose L¢ small enough, depending only on
n, k) we have

IDf (x") = Df (") < |proF — prer|* < 3IDf (x) = D ()17

and so (10) implies
(11) a‘"/ |Df (x) = Df(§)[ dL"(x) < C(0/00)* /P E,,
Bs (&)

forall 0 < 0 < 0¢9/4. For p-ae. x1,x2 € sptV N By,5(0) we can use (11) with
0 = |x;—xz]and with & = x1, x5. Since | Df (x1)—Df (x2)*> < 2|Df (x)—Df (x1)|*+
2|Df (x)—Df (x2)|* for x € B?(x1) N B (x2) D BJ,,((x1+x2)/2) we then conclude

|Df (x1) = Df (x2)| < C(|x; —>€2|/ffo)l_n/pE(}/2

for £"-a.e. x1,x2 € B} /,(0). Of course it follows that then [ € C1177/P and this

holds for every x1,x2 € B} ,(0). Thus, choosing suitable § = (n, k. p) to satisfy the
smallness restrictions imposed in the above argument, the theorem is established with

u= fandy =4§/4. O

As an application of The Conical Approximation Theorem 5.1 of Ch. 4 we establish the
following corollary of the regularity theorem (Theorem 5.2), guaranteeing that the con-
clusion of the regularity theorem holds for any y € (0, 1) (rather than for small enough
y = y(n.k, p)), provided the hypotheses 5.1 hold with § sufficiently small depending
ony:

5.5 Corollary. For eachy € (0,1) there is §o = 8o(n,k, p,y) € (0,1) such that the
hypotheses 5.1 with p > n and § < 8o imply the existence of a linear isometry q of R"** and
afunctionu = (u',... uk) e C11="/P(Br (0):RF) with Du(0) = 0, spt VN By, (0) =
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g(graphu) N By, (0), and
p ! sup |u| + sup |Du|+

PP sup x— y[T07P | Du(x) — Du(y)| < C87,
x,y€B},(0), x#y

where C = C(n,k, p,y).

Proof: Let o € (0, 7] and assume 5.1, where without loss of generality we can assume
p = 1. Then the monotonicity inequalities 2.8 guarantee that the hypotheses of Theo-
rem 5.1 of Ch.4 are satisfied for any £ € dB1—»(0) with C§ in place of § and C inde-
pendent of &. Furthermore for © < §/2 sufficiently small we have (again by 2.8) that
(wn ") (B (7)) < 14 C8. So Theorem 5.1 of Ch.4 with A = § and p = o implies

that
(wn0™) ' u(Bs(£)) <1+ cs'4,

which means that for sufficiently small § = §(n,k, p) > 0 and & € spt u, we can apply
Theorem 5.2 to give spt 4 N Bs (&) = q(graphu) N Bs(&). In view of the arbitrariness
of £ this evidently gives the stated conclusion. O

6 Some Initial Applications of the Allard Theorem

The Allard Theorem of §5 is fundamental in the study of the regularity and compactness
properties of rectifiable varifolds (including also smooth submanifolds) with prescribed
(generalized) mean curvature, in particular in the study of stationary varifolds. Here
we discuss some initial applications. First we have the following corollary of the Allard
theorem 5.2.

6.1 Theorem. If V = v(M,0), of dimension n, has generalized mean curvature H (as
in 3.15 of Ch.4) in an open set U C R*** and if H is locally in LP (py ) for some p > n,
if0 > luyae inU and if ¢ € U with ©" (uy,&) = 1, then there is p > 0 and an
orthogonal Q and of R"** such that

() Q ot(sptiy) N B,(0) = graphu, 7:x+> x —§,
whereu : W — RK, W open inR", isa C 1 ="/P (W, R¥) function withu(0) = 0, |Du(0)| =
0.

In case 0 is positive integer-valued jLy-a.e. in U and H = h|sptuy, where h isa C?
Junction in U for some q € {0,1,2,...} and some o € (0, 1), then, for sufficiently small
o > 0, the above u is antomatically C1t2% (W) and @™ (wy, x) = 1 on spt uy N B, (£).
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Finally, if 0 is positive integer-valued juy-a.e. in U, if N C U is an (n + {)-dimensional
CI%2 embedded submanifold of R"*¥ (where ¢ < k) with &€ € N, if V is stationary in
N as in 2.8 of Ch.4 (so that V has generalized mean curvature H = H ,; in N as in 3.15
of Ch.4), then again () holds for sufficiently small p > 0, withu € CIt2%(W) and

©"(uy.x) =1 inspt puy B,(£).

Proof: Since limy o (0™ [p &) [HI? dpy )P = 0and limpyo(wpp™) "Ly (By(£)) =
1, we can choose p > 0 such that the hypotheses of Theorem 5.2 hold, so, after applying
the appropriate translation and orthogonal transformation, the required u exists with

(1) graphu = spt V N B, (0)

with 0 = yp, y as in Theorem 5.2. Since @ is integer valued and < 2 a.e., we have § = 1
H"-a.e. on graphu; but graphu is a C! embedded submanifold so then ©" (uy, x) = 1
at every point of graph u.

Let &9 € (0,1). Since Du(0) = 0, by choosing a smaller o if necessary we can assume
that |Du| < &9 on By (0) and so the analysis we made in §1 of the present chapter is
applicable and tells us that u satisfies a system of equations of the form 1.3; i.e.

(2) Au; = Z;LIDJ-(AU(Du)) +h;,i=1,...k,

with 4;; (P) are C* functions of the variable P = (pm)¢=1....n.m=1,.. k with [4;; (P)| <
C|P|? and |DpA;;(P)| < C|P|, where C = C(n). Then by the Schauder theory for
elliptic equations we sce that h; € C%%(B,(0)) implies that u € C4+t2%(B,(0)) as
claimed.

Finally, assume V is stationary in N. Then we can apply Theorem 5.2 for each p > n
so for each @ € (0,1) we have o such that (1) holds with u € C"*(B,(0)). Then
(ei. Diu(x)),i = 1,....n,is a C%* basis for T(x,(x))F, F = graphu, x € B, (0).
By the Gram-Schmidt orthogonalization theorem we then have functions F; (Du), j =
1,....n,suchthat Fj(P)isasmoothfunctionof P = (pij)i=1,..n,j=1,..
is an orthonormal basis for Ty y(x)) F for each x € B, (0). Then, by 2.8 of Ch.4, F has
generalized mean curvature at (x, u(x)) equal to Y7 _ By (x)(F; (Du(x)), Fj (Du(x))).
Thus, in this case (1) can be written

(3)  Aui =377 D;(Ayj(Du)) + 3 1en+i - Bxux)) (Fj (Du(x)). F;(Du(x)))
fori =1,....,k, and again standard elliptic theory implies u € C4+t2%(B,(0)). O

6.2 Definition: If V' = v(M, 0) is an n-dimensional rectifiable varifold, we say that a
point & € spt V' is a regular point of V if there is a p > 0 such that B,(£) N'spt V is an

xand F1(Du(x)),....
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n-dimensional C! embedded submanifold of R”**. Then we let

regV = {€ € sptV : £ is a regular point of V'}
singV =sptV \ regV.

Notice that then by definition reg V, sing V' are respectively relatively open in spt V' and
relatively closed in U.

6.3 Corollary. If V. = v(M,0), of dimension n, has generalized mean curvature H in
an open set U C R"T*, if H is locally in LP (wy ) for some p > n, and if 0 is positive
integer-valued jLy-a.e. in spt V, then reg V is a relatively open dense set in spt V; i.e. sing V
is nowhere dense in spt V, and spt V. is the closure, taken in U, of reg V.

6.4 Remark: It is an open question whether on not sing V' has H"-measure zero under
the general conditions of the above corollary, even if we assume H = 0; such results
(and much more) are true in the special case when V is the varifold associated with a
minimizing current, as discussed below in Ch.7.

Proof of 6.3: Take any ball B,(¢) C U and let
N =min{j € {1,2,...} : ©"(uy.x) = j for some x € B,(£)}.

Then V = v(M,N7'0) L B,(£) has density ©" (uy,x) > 1 everywhere in spt V N
B,(£) and ©" (1. x0) = 1 at some point of xo € B,(£). Such a point xg is in reg V (=
reg V N B,(£)) by Theorem 6.1, so we have shown reg V N B,(§) # @. O

The Allard theorem will play a key role later (in Ch.7) in establishing the regularity
theory for solutions of the Plateau problem in arbitrary dimensions.
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CHAPTER 5 PROBLEMS

5.1 Let y : [0,1] — R? be defined by y(r) = r(cos((log(2/r))%).sin((log(2/r))%))
for r € (0,1] and y(0) = (0,0), where & € (0, 1). Prove
() |y'(r)| <2 and hence H'(y([0,1])) < 2.

(1) T = y([0,1]) U (—y)([0,1]), prove that the approximate tangent space ToI" does
not exist, but that I" has the strong affine approximation property at 0, meaning that for
eacho € (0, 1] there is a 1-dimensional subspace T, of R? with o~! dist (75N B, (0), T’ N
B5(0)) > 0aso | 0.

Here dist means as usual Hausdorff distance d (A4, B) = inf of all numbers A > 0 such that 4 is contained in

the A-nhd. of B and B is contained in the A-nhd. of A4.

5.2 With T' as in 5.1 above, calculate p(z, ). (x) for x € T\ {0}, and check that
fr‘ |p (TxT ( )|2 dH' < co.

Note: 5.1,5.2 suggest that finiteness of the term f rr3 Py (* )[2dH! (which is one of the key terms
appearing in the monotonicity identity) does not in itself guarantee any especially strong asymptotic properties
of T' on approach to 0.

5.3 Let F(p) = /det(8;; + pi - p;), where p = (p®)i=1...na=1,.4 € R" and p; =
(ph,....pH) e R

(1) Prove that there is ¢ = &(n,£) > 0 such that F(p) is a convex function of p for
lpl<e.

(i1) Suppose u : l;’” (O) — R%is Lipschitz with Lipu < ¢ and let A(u) = H" (graphu).

Prove that in fact A f Bn F(Du)dL", and, if v B” (0) — R is also Lipschitz
with Lipv < &, A(u ) < pr > i A (Du)D; ( —v%), where A%(p) =
F(p)/dpf.

Hint: Let f( ) = A(u+1t(v—u)),t € [0,1], and use the 2nd order Taylor expansion f (1) = f(0) +
f(0) + fo (1—1)f"(¢)dt together with (i).

5.4 u as in 5.2(ii) is said to be a weak solution of the minimal surface system (MSS)
if it is a weak solution of the Fuler-Lagrange system for the functional A(u); that is
%h:oA(” + 5¢) = 0 for each Lipschitz ¢ with compact support in BZ (0).

(1) Prove that this is exactly the requirement thalt i IBZ’ (0) AF (Du)D;t* d L™ = 0 for
for each Lipschitz ¢ with compact support in B} (0).

(it) Prove using 5.3 (ii) that if u is a Lipschitz weak solution of the MSS as in (i) with
Lipu < ¢, then A(u) < A(v) for every Lipschitz v : é;’ (0) — R* which is such that
v — u has compact support in B”(0) and Lipv < e.

(i11) If u is as in (ii) except that now Lipu < ¢/2, prove that G = graphu (viewed
as a multiplicity 1 rectifiable varifold in E’;’ (0) x RY) is stationary; i.e., prove that if



¢(x) = x + tX|x for x € B7(0) x Ré with X = (X',..., X"*%) C! with compact
support in ég (0) x RY, then %L:O’H" (p:(G)) =0.

Hint: Show that, for small enough ¢, ¢; (G) is again the graph of a Lipschitz function u; with Lipu; < ¢,
and then use (it).

Note: Having proved (iii), we can immediately apply the Allard regularity theorem to deduce that u is C 1-% (B (1—6)0(0’
for any &, 8 € (0, 1) provided ¢ = g(a, n, £, ) is small enough.
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1 Preliminaries: Vectors, Co-vectors, and Forms

ei,...,ep denote the standard orthonormal basis for RP. We let A'(R?) denote the dual
space of R”; thus A1 (R?) is the space of linear functionals w : R” — R. dx1,...,dx? €
AY(RP) will denote the basis for A'(RF) dual to the standard basis ey, ..., ep of RP.
Thus for v = (v',...,vP) € R? we have

dx/(v) =v/, j=1,...,P.

Forn > 2, A"(R?) denotes the space of alternating n-linear functions on R? x- - -xR¥ (n

factors). Thusw € A" (RP) meansw (v, ..., v,) is linear in each vjandw(vy, ... v, ..., 05, ..

—o (V1. Vj, .y Vi, 0y) foreach i # j. Hor,...,0n € AY(RP) we define
w1 Awy A+ Awy € A" (RP) by
1.1 OLAD2 A A (V1, ..., 0,) =

205800 06(1)(V1)Wo(2) (V2) *++ 0o (n) (vn) (= det(wi(v)))),
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where the sum is over all permutations o of {1, ... ,n} and where sgn o is the sign of the
permutation o : {1,...,n} = {1,...,n}.

. . P i .
Given vy, ...,v, € R?, we can write v; = Zj,—:l vi/’ejl. foreachi = 1,...,n, so for

any w € A"(R?) we have, by the n-linearity of w,

P ; ;
o(V1,...,0p) = Zj]wjnzlv{‘ vl w(e ... e,),

and because w is alternating this sum can be restricted to distinct j1, ..., j,. Then

_ Jo(1) Jo(n)
a)<v1’ s Un) = Z(x=(j1,,..,jn)61n_P Zaeanla "'Una " w(eja(l)’ s ’eja(n))’

where
1.2 Inp={(t...c.jn) €ZL 1< j1 << jun <P},

and where P, denotes the set of permutations o of {1,...,n}. Since w is alternating we
evidently have w(ej, ... €j,,)) = sgn(o)w(ej ... ¢j,), s0

J J
w(vl’ e v") = Z‘x=(j1,-~~,jn)EIn,P ZaePn Sgn(a)vlﬁ(l) e vnd(n)w(ejl L) ejn)'

. .. J J
But, according to the definition 1.1, Y ¢ p, sgn(o)vy”" -+ 07" = dx¥(v1...., vn),

where we use the notation
1.3 dx® = dx’V A - AdxIn, @ = (J1,---sJn)-

So we have proved that any @ € A" (R¥) can be written

1.4 w = Zaeln.Pa)adxa,

where wy = w(ej,,....ej,) foreacha = (j1,..., ju) € In,p.
Thus {dx® : a € I, p} are a basis for A”(R?) and dimension A" (R?) = (©).

n
Forw =) wedx® € AY(RP), n = > Bel, p ngdx? € A™(R?) we can define

acle p

1.5 AN = Z wanpdx® AdxP e AT™(RP).
acly p.BElm. P

This is consistent with 1.1, and for @, w;, w, € AY(RFP), n € A"(RF),v € AP(RF) we
have

(crw1 + cowp) A= crow1 AN+ cowa A7
(wAn) Av=wA(nAvD)

worn=(-1)""gArw.
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If V is a subspace of R? of dim = ¢ with basis vy,..., v, then A”(V) denotes the
subspace of A" (R?) with basis {vt A---AV : (i1,...,in) € Ing¢}, where v} € AT(RP)
is the element dual to v}, so that, for v € R?, v* € A1(R?) is defined by

1.6 v*(w) =v-w, weRF.
Analogous to the definition of A" (R?), we could similarly define A" (A (R?)) forn >

2 as the space of alternating n-linear functions on A'(R?). In which case, after making
the identification (dx/)* ~ e;, we have the space A, (R?) ~ A" (A'(R?)) of n-vectors

_ o
w= Z(xEIn.pw €a,
where w* € Randeg = ¢j, A---Aej, fora = (ji1...., jn) € In,p,and

P
v A =T

= D (t1,tn)ely p det(Vie; ) g, Ao Neg,

Jn=1V11V2j5 *** Unjn€jy N N ejy,

for any vy,...,v, € RE.

If V is a subspace of RY of dim = ¢ with basis vy, ..., v then A, (V) is the subspace of
An(R?) spanned by {vi, A---Avi, 2 (i1,...,in) € Iy}

o € A"(RP) (respectively w € A, (RP))is called simple if it can be expressed w1 A+ - - Awy
with w; € AY(R?) (respectively wy A -+ A w, with w; € R?).

We assume A, (R?), A" (RP) are equipped with the inner products naturally induced
from R? (making {e, Yaet, po {dX% }yer, , orthonormal bases). Thus

1.7 (Xaer, p@adX®) - (Loer, pNadx®) =X ger, p@ o

and

1.8 (Zaelnip“aea) : (Zaelnvaa eq) = Zt)telnipua w®

The dual pairing between @ € A"(R¥) and w € A, (RP) will be denoted (w, w); thus
1.9 <Zaeln.Pa)adx°‘, > wel, p w"‘ea> = Zael".Pa)aw“.

Given £ : RP — R linear, the “pull-back” ¢ : A" (R?) — A" (RP) is defined by
1.10 Foi,....v) =wl(v1)..... L)), vi.....0, € R,

and then the “push-forward” ¢; : A"(Rf) — A™(R?) is defined by duality according
to the requirement

1.11 <€#a),w> = <a),€#w>, w € A"(IRQ), w e An(]RP),



158 CHAPTER 6: CURRENTS

where (,) is the dual pairing as in 1.9. More explicitly, €%, £4 are then characterized as
the unique linear maps A" (R?) — A" (R?) and A, (R?) — A, (R?) respectively such
that for wq,...,w, € AI(IRQ) and vy,...,v, € RY

L1 {ﬁ(a)l Ao Awop) =) Ao A (o) = (01 08) A A (wy 0 )

Z#(Ul /\"'/\Un) =(€#v1)/\---/\(£#v,,) = K(vl)/\---/\ﬁ(vn).

For open U C R, £"(U) = C*®(U, A"(R?)) and the elements w € £"(U) are called

smooth n-forms on U. Thus w € £*(U) means o = Y wydx® where w, €

acl, p
C>®(U).
The value of @(x) = 3 4, wa(x)dx® at a point x € U will also at times be denoted
®|x-

The exterior derivative £" (U) — E"T1(U) is defined as usual by

da ;

P

1.13 do =312 ger, p W‘;dxf A dx®

fw =73 yes, padadx®. By direct computation (using % = % and dx' Adx! =
—dx’ A dx") one checks that

1.14 d*0 =0 Vo € £"(U).

Given ® = 3 yeq, ,@a(y)dy* € E"(V), V C RR? open, and a smooth map f : U —
V, we define the “pulled back” form f*w € £"(U) by

1.15 [0 =Y iy ety o@a© S df N A Adf,

.....

where df 7/ is Y1, dei, Jj =1,..., Q. Equivalently this says

i=19xi
f#w|x = (dfx)#(w|f(X))7
where the right side is defined as in 1.10 with £ = df.
Notice that the exterior derivative commutes with the pulling back:

1.16 dft = fd.

We let D"(U) denote the set of = 3 ,c; ,wadx® € E"(U) such that each wy
has compact support. We topologize D" (U) with the usual locally convex topology,
characterized by the assertion that wx = } e ,Wkadx® — 0 = 3 o), wadx®
if there is a fixed compact K C U such that sptwgy C K VYo € Iy p, k > 1, and if
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lim DAwry, = DPw, uniformly in K Ya € I, p and every multi-index B. For any
w € D"(U), we define

1.17 o] = sup /o (x) - w(x)

xeU

If f:U — V issmooth (U, V open in RP, R? respectively) and if f is proper (i.e.
F7Y(K) is a compact subset of U whenever K is a compact subset of V) then f*w €
D"(U) whenever w € D" (V).

2 General Currents

Throughout this section U is an open subset of R

2.1 Definition: An n-dimensional current (briefly called an n-current) in U is a continu-
ous linear functional on D" (U ). The set of such n-currents (i.e. the dual space of D" (U))
will be denoted D, (U).

Note that in case n = 0 the n-currents in U are just the Schwartz distributions on U.
More importantly though, the n-currents, n > 1, can be interpreted as a generalization
of the n-dimensional oriented submanifolds M having locally finite "-measure in U.
Indeed given such an M C U with orientation £ (thus &(x) is continuous on M with

E(x) = £y A+ ATy VX € M, where 11,..., 1, is an orthonormal basis for 7 M)!,
there is a corresponding n-current [M] € D, (U) defined by
22 [M](w) = /A/I<w(x),§(x)>d7-£”(x), w e D'U),

where (, ) denotes the dual pairing for A”(R?), A,(RF) as in 1.9. (That is, the n-
current [M]] is obtained by integration of n-forms over M in the usual sense of differential
geometry: [M]|(w) = [}, ® in the usual notation of differential geometry.) In the special
case then M = U (i.e. k = 0 and M is just the open set U equipped with the standard
orientation e A -+ A e,) we have, for o = adx' A--- Adx" € D"(U),

23 [U](0) = /a(x) ALt (x).

U

Motivated by the classical Stokes’ theorem ( [y, dw = [;;, w if M is a compact smooth
manifold with smooth boundary) we are led (by 2.2) to quite generally define the bound-
ary T of an n-current T € D, (U) by

2.4 T (w) =T(dw), weD"(U)

IThus §(x) € Ap(Tx M); notice this differs from the usual convention of differential geometry where we
would take £(x) € A" (TxM).
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(and 0T = 0 if n = 0); thus T € Dy (U) if T € D,(U), where to handle the case
n = 0 we make the notational agreement that D_; (U) = {0}.

Notice that 9T = 0 by 1.14.

Again motivated by the special example T = [M] as in 2.2 we define the mass of T,
M(T), for T € D, (U) by

2.5 M(T) = sup T(w)

|lw|<1,weD" (U)
(so that M(T) = H"(M) in case T = [M] as in 2.2). More generally for any open
W C U we define

2.6 Mw (T) = sup T(w)
lw|<1,weD”(U),sptoCW

2.7 Remark: We here adopt the definition of M(7") using the inner product norm |w|,
but notice that there is some flexibility in this; we would still get the “correct” value
H" (M) forthe case T = [M] if we were to make the definition MI(T') = supy,, ()j<iwepn ) T (
where ||w(x)]|| denotes the comass norm of w at x; thus
ol = sup (.§).

g€y (RP), [E]=1,§ simple
Indeed in general this works (for T = [[M]) provided only that || || is a norm for A" (R?")
with the properties:

(a) (,€) < |lw| |&] whenever £ € A, (RY) is simple
(b)  For each fixed simple £ € A, (R?), equality holds in (a) for some w # 0.

Evidently the inner product norm and the comass norm are two such norms, but the co-
mass norm is the smallest possible norm for A" (R¥) having these properties, which gives
maximality of the corresponding definition of M(T'). The reader is warned that M(7)
is usually defined in terms of the comass norm—this makes no significant difference to
later discussion here but of course there will be contexts in which the difference becomes
significant.

Suppose now T € D, (U) satisfies My (T) < oo for every open W CC U and let C" (U)
denote the set of continuous n-forms with compact support in U; thus w € C" (U ) means
® = Y ger, p dadx®, where ay are continuous functions with compact support in U.
Given such a continuous @ we can find asequence w; = e/, , @jodx® € D"(U) with
ajq converging to dq uniformly on U and with all a4 having compact support in a fixed
W cC U. Thenof course |T (w;) =T (wi )| = |T (wj —wi )| < Mw (T)|wj —wk| — 0as
J.k — 00,50 T (w;) is a Cauchy sequence on R and hence converges to some real number
which we denote 7'(w). Evidently T'(w) is independent of the particular approximating
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sequence @; and also, so defined, T is a bounded linear map {w € C"(U) : sptw C
K} — R for each compact K C U. But then the Riesz Representation Theorem 5.14
of Ch.1 is applicable and we deduce that there is a Radon measure jt7 on U and an
#"-measurable function 7 : U — A,(R?) such that |T| = 1 ur-a.e. and

2.8 T(0) =/U(a), FYdur, wec(U),

and hence

2.9 T (w) =/U<a), T)dur, o e D"(U).

2.10 pr (W) =Mw(T) (= sup T(w))

weD"(U), |wll<1,sptwCW
for any open W with W a compact subset of U. In particular
ur(U) = M(T).

Notice that for such a 7" we can define, for any pr-measurable subset 4 of U (and in
particular for any Borel set A C U), anew current T L 4 € D, (U) by

2.11 (TL A)(w) =/A<a), T)dur.

More generally, if ¢ is any locally ur-integrable function on U then we can define
TL ¢ eDy(U)by

212 (TL)w) = [(0.8)pdur.

Given T € D, (U) we define the support, spt T, of T to be the relatively closed subset of
U defined by

2.13 sptT =U \UW

where the union is over all open sets W CC U such that T (w) = 0 whenever w € D" (U)
with sptw C W. Notice that if My (7T) < oo for each W CC U and if pur is the
corresponding total variation measure (as in 2.9, 2.10) then

2.14 sptT = spt ur

where spt j7 is the support of p7 in the usual sense of Radon measures in U.

Given a sequence {T;} C D,(U), we write Ty, — T in U (T € D,(U)) if {T,} con-
verges weakly to T in the usual sense of distributions:

2.15 T, ~T < limT,(0) =T(») Yo € D"(U).
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Notice that mass is trivially lower semi-continuous with respect to weak convergence: if
T, — T in U then

2.16 Mw (T) < liminf My (T;) VY open W C U.
q—>00

We also observe that if sup, M (7y) < oo for each open W CC U then, by the dis-
cussion preceding 2.8, T, extends uniquely to a linear functional T, on C"(U) such that
IT;(w)| < My (T,)|o| for each @ € C"(U) with sptw C W. The weak convergence
T, — T is thus equivalent to weak™ convergence with respect to continuous forms with
compact support (i.e. T4 (@) — T (o) for all continuous n-forms w on U with compact
support), and hence by applying the standard Banach-Alaoglu theorem [Roy88] (in the
Banach spaces M, (W) = {T € Dy (W) : Mw (T) < oo}, W CC U) we deduce

2.17 Lemma. If{T,;} C Dy(U)andsup,,, Mw (Ty) < oo for each open W CC U, then
there is a subsequence {Ty'} and a T € Dy, (U) such that

/U<a), Tqr) dur,, — /U<a) T)dur
for each continuous n-form w with compact support in U.

The following terminology will be used frequently:

2.18 Terminology: Given T; € D,(Uy), T» € D, (U) and an open W C Uy N Us,
wesay Ty = T» in W if Ty (w) = T>(w) whenever w is a smooth n-form in R"t* with
sptw C W.

Next we want to describe the cartesian product of currents 71 € Ds(Uy), T2 € D;(Uz),
Ui € RP1, U, c RP2 open. We are motivated by the case when T; = [M;] and T =
[M2] (Cf. 2.2) where My, M> are oriented submanifolds of dimension s, 7 respectively.
We want to define Ty x T» € Dy, (U X Uz) in such a way that for this special case (when
T; = [M;]) we get [M;] x[[M2] = [M1x M,]. Since My x M5 has the natural orienting
(s + t)-vector ps(€) A q#(n), where € and 7 are the orienting s-vector and ¢-vector for
My, M, respectively, and where p(x) = (x,0), x € Rf1,and ¢(y) = (0, ), y € RF2,
we are thus led to the following definition:

2.19 Definition: If € D**!(U; x U,) is written in the form

w = Z(a,ﬂ)élshPl Iy p,,s'+t'=s+t dop (x, ) dx® A dy”

then we define

S X T(0) = T(Sper, p, S(Sacr, p, aap (x.)dx)dyP).
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which makes sense because if sptw = K then K C P(K) x Q(K), where P denotes
the projection (x,y) + x of Uy x U, — U and Q denotes the projection (x,y) >y
of Uy x Uy — U,, and one can check that S(Zael&Pl wap (x,y)dx?¥) is a C2°(U,)
function of y with support in Q(K).

Notice in particular this gives, for w; € D*'(U}), , € D' (Us) with s’ +¢' = s +¢ and
with P, Q as above,

S(w1)T (w2) if (s',¢") = (s,1)
0 if (s',1") # (s,1).

One readily checks, using Definition 2.19 and the definition of 9 (in 2.4), that

2.20 SxT((Pfwy) A (Q%wy)) ={

2.21 (S XxT)=(0S)xT + (=1)*S x aT.

Notice this is valid also in case r or s = 0 if we interpret the appropriate terms as zero;
e.g.

2.22 IS xT)=8xdTifs = 0.
Also (Cf. 4.5 of Ch.2), by 2.19 and 2.20,
2.23 My, xw, (S x T') = My, (S) M, (T)

for any open W, CC Uy, Wa CC Uy, so if My (S), My (T) < oo for each open W CC
U then also My (S x T') < oo for each open W CC U x V. Also in this case one checks
directly from the definition 2.19 that

—_— - >
2.24 SxT = p#S e T, USXT = US X LT,

where p(x) = (x,0) andg(y) = (0, y), and where j15 x pu7 is the product Borel regular
measure characterized by the property

/vaf(x,y)dus X pr = /V(/Uf(x,y)dus(X)) dur(y). f€CHUxV).

An important special case of 2.21 occurs when we take T € D, (U), U C RP, and we let
[(0,1)] be the 1-current € D; (R) defined as in 2.4 with M = (0,1) C R ((0, 1) having

its usual orientation), so

—

[0. D] =1, mgoay=L"L(0.1)

and 2.24 says

- . .
2.25 [0.D]xT =e1 AqsT, psxr =L X pur.
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Also, 2.21 gives

226 A0 1] x T) = ({1} = {0}) x T = [(0, 1)] x T
={1} xT —{0} xT —[(0,1)] x aT.

Here and subsequently {p}, for a point p € U, means the O-current € Dy(U) defined
by
{r}(@) =0(p). ©eD’(U)(=CZ)).

Observe that then

—

{p} =Tand pipy = 8,
where 8,y is the point mass at p (i.e. [, f d8,y = f(p) for f € C°(U)), and then
2.24 says

_ -

2.27 {P}xT =qT, pipyxr =8(p) X Ur.
Thusif o =3 yer, 1 ger, o, 5+t=n Pap (x,y)dx%dyP € D"(U x V) with U ¢ R? and
V C R€ open, and if T € D, (V), then

2.28 ({p} xT)(w) = T(ZﬂeIn_Qwo,ﬁ(Pﬂ)’)dyﬂ)

Next we want to discuss the notion of “pushing forward” a current 7' via a smooth map
f:U—V,UcCRP, V c R? open. The main restriction needed is that f|spt T is
proper; that is f~1(K) Nspt T is a compact subset of U whenever K is a compact subset
of V. Assuming this, we can define

2.29 [T (w) =T (fw) Yo € D" (V),

where ¢ is any function € C2°(U) such that ¢ is identically equal to 1 in a neighborhood
of the compact set spt T Nspt f*w. The right side here certainly is defined because ¢ f
has compact support in U (independent of any properness requirements on f') and also
the definition is independent of the particular choice of ¢—if ¢ is another such choice

then 7T (¢ ffw) — T(Ef#w) =T((¢ —?)f#w) = 0 because (¢ —?)f#a) has compact

support and is identically zero in a neighborhood of spt T

2.30 Remarks: (1) Notice that if My (7)) < oo for each W CC U, so that T has a
representation as in 2.9, then, with f asin 2.29, f;T is given explicitly by

() = [ (/*0.T) dur
=/< dfe)! (@7 T(x)) dur (x)
—/ (o1f(x). (df)e(T (x))) dpr (x).
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Thus if My (T) < 0o VW CC U we can make sense of f3T in case f is merely C! with
fIspt T proper; note also that in this case

Mw (f#T) <C sup ldfe"Mp—1y (T), YW CC V,

xef~1Wnspt T
with C = (1:)1/2 (with C = 1if T (x) is simple for pi7-a.e. x).
(2)f T € D,(U) with locally finite mass in U, if f : U — V is C! with f|spt T proper,
and if F is a closed subset of V, then, using the notation of 2.11 and 2.12,

(LT)LF = f(TL f7'F).
One checks this by observing that there is a decreasing sequence g; of C*°(U ) functions
with gj(x) = yr(x)foreveryx € U,so,using2.9, ((f#+T)L F)(w) =lim((/T)L gj)(0) =
lim(£T)(gjw) =lmT(gjof f*o) =lim(f(T L gjof))(w) = (S(TL f71F))(w),
w € Dy(V).
(3)If T = [M] as in 2.2, the above remark tells us that if £|M N U is proper, then

T (@) = [ (ol dfis(x)) dH (2),

where £ is the orientation for M. Notice that this makes sense if f is only Lipschitz
(by virtue of Rademacher’s Theorem 1.4 of Ch.2). If f is 1:1 and if J; is the Jacobian
of f asin ?? of Ch.2, then the area formula evidently tells us that (since dfys+£(x) =
Jr(x)n(f(x)), where 7 is the orientation for f(My), My = {x € M : Js(x) > 0},
induced by f')

FT@)= [ (o)) di ().

S (M)
(Which confirms that our definition of f;T is “correct.”)

Notice that the operations of pushing forward and taking boundaries commute:
2.31 3f#T = f#Z)T, T € Dn(U),
because, with ¢ asin 2.29, 0/; T () = £iT(dw) = T({ffdw) = T (Ldffw) = T(d({ffw)) =
AT (¢f*w) = f20T, where we used 1.16.
We can now derive the important homotopy formula for currents as follows:
If fg:U — VareC®(V CRopen)and h: [0,1] x U — V is C*® with h(0,x) =
S(x),h(1,x) = g(x),fT € D,(U), and if h|[0, 1] x spt T is proper, then, by 2.25, 2.26
and 2.27,
Oy ([(0. D] x T) = hyd([(0. )] x T)
= he({1} x T = {0} x T — [[(0.1)] x oT')
=gT — f3T — hy([(0. 1)] x 7).
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Thus, subject to the conditions stated above, we obtain the homotopy formula
Notice that an important case of the above is given by

2.33 h(t,x) =tg(x) + (1 =1) f(x) = f(x) +1(g(x) = f(x))

(i.e. h is an “affine homotopy” from f to g). In this case we note that if |sptT is a
proper map into V then W cC V = spt([(0, )] x T) N h=}(W) cC [0,1] x U and
hence spt T N P(h~'(W)) CC U, where P is the projection (¢,x) > x. Then by the
integral representation 2.9 and Remark 2.30(1) above we have, for any open W CcC V,

2.34 My (he[(0. )] xT) =C sup |f =gl sup (ldfx] + |dgx|)" Mw, (T).
xespt TNWy, xespt TNWy,

where W, = Q(h™'(W)), with Q : (z,x) — x. Indeed by 2.25 and 2.30(1) we have,
for any w € D"(V),

B0 0] x T)@) = [ [ (ot dhigsnter nae T () dier (o)

- /0 | (@ (ex) = 1))

A (tdge + (1~ 1)) T (x)) dyer (x)ds,
and 2.34 follows immediately.
We now give a couple of important applications of the above homotopy formula.
2.35 Lemma: If T € D,(U), My (T), My (0T ) < coVW CC U and if f,g : U — V

are CY with f = g onsptT, and if h is as in 2.33 with h(spt T) C V and h|spt T proper,
then fsT = gsT. (Note that f4T, g4T are well-defined by 2.30(1).)

Proof: By the homotopy formula 2.32 we have, with h(z,x) = 1g(x) + (1 —1¢) f(x),

g7 (0) = £T (@) = h,([(0.1)] x T) + he([(0. )] x 9T) (@)
— 1 ([(0. )] x T) (de) + s ([(0. )] x 9T (),

so that, by 2.34, for a suitable C depending on T and w, we have
[iT(0) =T (@) = C sup |f —gl=0

x€spt T

since f =gonsptT. O

The homotopy formula also enables us to define f;T in case f is merely Lipschitz, pro-
vided f|sptT is proper and My (T), My (3T) < oo YW CC U. In the following
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P

lemma we let f, = f x¢(@), 99 (x) = 6P p(c7 x), with ¢ a mollifier as in §2 of Ch.

2.

2.36 Lemma. If T € D,(U), Mw (T ), Mw (0T ) < co VW CC U,andif f : U — V is
Lipschitz with f|spt T proper, then limg o fosT (@) exists for each w € D*(V); fiT (w) s
defined to be this limit; then spt fyT C f (sptT) andMw (f4T) = (esssups—1(yy [Df )" Mp—1(p
YW cCV.

Proof: If o, 7 are sufficiently small (depending on ) then the homotopy formula gives

JorT (@) = fur T (@) = hs([(0, )] x T)(dw) + hy([[(0, 1)]] x 3T ) ()

where 1 : [0,1] x U — V is defined by h(t,x) = tfs(x) + (1 —1) fr(x). Then by 2.34,
for sufficiently small o, 7, we have

|fosT (@) = fuT (@)l =C  sup | fo = fel- (Lip f)",
S K)Nspt T

where K is a compact subset of V with sptw C interior(K). Since f; — f uniformly
on compact subsets of U, the result now clearly follows. O

Next we want to define the notion of the cone over a given current T € D, (U ). We want
to define this in such a way that if T = [M] where M is a submanifold of S*~! ¢ R?
then the cone over T is just [Cy], Cpxy = {Ax : x € M, 0 < A < 1}. We are thus led
generally to make the definition that the cone over 7', denoted 0% T, is defined by

2.37 0XT = hy([(0.1)] x T)

whenever T € D, (U), n > 1, with U starshaped relative to 0 and spt T compact, where
h:[0,1] x R — RP? is defined by A(t,x) = tx. Notice that / is an affine homotopy
tg(x)+ (1—1)f(x), where g(x) = x and f(x) = 0. Thus 0XT € D, (U) and (by
the homotopy formula)

2.38 JOXT) = T — 0%3T.
Notice in particular that, with R = 0XT', we have thus established that

2.39 U starshaped relative to 0 and T € D, (U), n > 1, with spt T
compact and 07 =0 = IR € D,41(U) with spt R compact and IR = T.

As a final application of the homotopy formula we have the following lemma which gives
a suflicient condition to ensure that a given current of locally finite mass is conical—i.e.
invariant under homotheties 19 3:
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2.40 Lemma. Suppose C € D, (R"**) with MBR(O)(C) < oo for each R > 0, C = 0,
and x A 6‘|x =0 puc-a.e Thenno#C = C foreach A > 0.

Proof: We apply the homotopy formula 2.32 with f(x) = x and g(x) = A7 'x, and
h(t,x)=tg(x)+ (1—1)f(x). Then
noaxC —C = dhs([[(0,1)] x C).
— -
The right side here is zero because [(0,1)]] x C = e; A gsC, where g(x) = (0, x), and
hence

el ) [(0. D] X Cligy = (14127 = 1))" (A7 = 1)x AClx = 0.0

The following Constancy Theorem is very useful:

2.41 Theorem. If U is open in R" (1.e. P = n), if U is connected, if T € D, (U) and
dT = 0, then there is a constant ¢ such that T = c[[U]| (using the notation of 2.3).

Proof: Let ¢?) (x) = 0 "¢ (07 x), with ¢ a mollifier as in §2 of Ch.2. For any closed
ball B,(xo) C U pick o9 > 0 such that B,4s,(x0) C U and take a € L'(R") with
a =00onR"\ B,(xp). Then we have az € CX(U) for 0 < 09, (s = ¢'9) % a), and
DPa, = (D5<p(0)) % a for each multi-index B, so if a; — a in L' (B,(xo)) witha; = 0
onIR"\Bp(xo) then ajodx! A+ Adx" — agdx' A--- Adx™ in D" (U) for o < oy,
and hence

T(ajodx' A---Adx") — T(agdx" n--- Adx").

Thus the functional F, : L'(B,(x0)) — R defined by
Fy(a) = T(agdx" A--- A dx™)

is a bounded linear functional on L' (B,(xo)), and by the Riesz Representation Theorem
for L'(B, ( 0)) there is a bounded measurable function 8(°) in B,(xo) with F,(a) =
S5, (x a@ )dL" fora € L' (B,(xo)), and hence in particular

(1) T(agdxl/\---/\dx”)=/a9(c>d£” aeC=(By(xo)).

Now for j = 1,...,nlet wje = (=1)/lagdx! A+ Adx/TV AdxITE Ao Adx",
and observe that dw;, = Dj(ag)dx' A---Andx" = (Dja)edx! A--- Adx", so (1) with
Dja in place of a implies

2) /D,-a 0@ dL" = T(dwje) = 0T (wj0) =0, j =1,....n.

Observe that with £ € B,/ (xo) and the choice a(x) = ¢(*) (x — &) with © < p/2 this
in particular says that D; (69)),(£) is zero for & € B,2(xp) and for j = 1,..., n, and
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hence (6(%)), is constant on B,/ (xo). Thus letting 7 | 0 we have that (%) is constant
on B,/2(xg). Finally letting o | 0 in (1) we conclude there is a constant ¢ such that
T(w) =c[U](w) if o € D"(U) with sptw C B,/2(x0). In view of the arbitrariness of
B, (x0) this completes the proof. O

2.42 Remark: Notice that if we merely have M (d7) < oo for each W CC U rather
than 9T = 0 then the above proof still gives a bounded measurable function 6(%) as in (1),
but now instead of (2) we get only that

‘/Dja0(0> dLr] < CsuplalMy, ., (OT). a € C(By(xo)).

with C independent of 0. We claim that 8(°%) is convergent in L' (B) for some sequence
ok | 0, B = B,(x¢). Indeed by 2.7 of Ch.2, since a7 has locally finite mass in U, there
are constants A such that §(%¢) —; is bounded in L' (B,(xo)), and hence Ty, — Ay [B]
has bounded mass in B, (xo), where Ty (adx' A--- Adx") = T (agdx' A--- A dx™) for
a € CX(By(x0)). But Ty, — T in B,(xo) and hence {A;} is bounded. Thus (see §2
of Ch.2 and in particular 2.6 of Ch.2) we deduce that (°*) — ¢ in L} (U) for some
sequence 0y |, 0, with 6 € BV,.(U), and

(%) T(0) = /aedc", w=adx' A Adx" € D"(By(xo)).

Using the definition of M((37T'), we easily then check that My, (dT') = |DO|(W) for each
open W C U (and My (T) = [, 16]dL"). Indeed in the present case n = P, any
w € D" 1(U) canbe written w = Y7 _; (—1)/aj dx* A---Adx/ 7P AdxT TN Ad X"
for suitablea; € C®°(U),anddw = diva dx! A---Adx" forsuch w (a = (a1,...,a,)).
Therefore by () above we have

0T (0) = T (dw) = /divc_l@ ac

and the assertion My (d7) = |D6|(W) then follows directly from the definition of
My (0T ) and | D 0| (in §2 of Ch.2).

2.43 Theorem. Suppose U is open in RY, and let T € D, (U) with My (T), My (aT) <
oo for every W CC U. Then pur is absolutely continnous with respect to H" on U. That is
H'(E) =0= pur(E) =0, hence (by the abstract Radon-Nikodym theorem 4.17) we have
wr = H" L 6 for some non-negative Borel measurable function 6 on U.

Proof of 2.43: Take any E C U with H"(E) = 0. Since there is a Borel set B D E
with H"(B) = 0, we can assume E is Borel. We have to show pur(E) = 0. Since
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K1 (E) = SUPg g K compace HT (K) by 1.22 of Ch.1, we can (and we shall) without loss
of generality assume E is compact.

In the proof we use the notation that, for « = (i1,...,in) € In p, po denotes the
orthogonal projection of R? onto R” given by

(xl,...,xp) — (xi‘,...,xi").
Ifow eD"(U)thenw =3¢ ,@adx®, 0y € C°(U), and hence
T(0) =T (0adx®) = 3, (T L wg)(dx*)
=3 (T Lwy)pL dy.
(dy =dy' A---Ady™, y', ..., y" the standard coordinate functions in R”.) Thus
(1) T(w) =3y par(T L wo)(dy)

(which makes sense because spt(7T L wy) C sptwg = a compact subset of U). Now
observe that M(3(T L wy)) < 00, because, for any n € D"~ 1(U),

T Lwa)(n) = (T Lay)(dn)
= T (wedn)
= T(d(wan)) — T (dwa A1)
=0T (wgn) — T (dwy A 1),

S0
My (3(T L wy)) < My (0T )|wg| + Mw (T)|dwy| < 0o

as claimed.
Of course then M(9py#9(T L wq)) = M(pa#d(T L wy)) < 00, and hence by 2.42(%)

we have a 0, € L'(pe(U)) (depending on both o and wy) such that
Par(T Lwa)(n) = [, ) (mex Ao Aen) badL”,
and hence pgs(T L wy) L py(E) = 0 because L (py(E)) < H"(E) = 0. Then

(2)  M(pas(T L we)) < M(pas(T L wa) L (R"\ pa(E)))
= M(par (T L o) L (R”\ p; ' pa(E)))) (by 2.30(2))
< CM((TLws) L (R"\ p; ' poE)) (by 2.30(1))
< CMw (T L (R”\ pg' pe E)) sup |
w

for any W such that sptw C W CC U, where C = (5)1/2. Since E C p;'po E, we
have thus proved

M(pas(T L wy)) < C My (T L (RP \ E)) sup log| < CMy (T L (R \ E)) |l
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Using this in (1) we then have
IT(0)| < CMw (T L (R \ E)) sup ||
w

for suitable C = C(P,n) and Vo € D*(U) with sptw C W, so
My (T) = € My (T L (R” \ E)),

which says

(3) pr(W) < Cur(W\ E).

Since E is compact, we can choose { Wy } so that W, CC U, Wy1 C Wy, NG W, = E;
using (3) with W = W, then gives ur(E) = 0. O

In the following corollary, we continue to use the notation that, for @ = (iy,...,iy) €
I,.p, po denotes the orthogonal projection of R” onto R” given by

(xl,...,xp) — (xi‘,...,xi”).
Observe that the proof of Theorem 2.43 used only the fact that £"(py E) = 0 for each
o € I, p, hence we have the following corollary:

2.44 Corollary. Suppose T € D, (U) with My (T ), My (dT) < oo for every W CC U,
and suppose E is a closed subset of U with L™ (py(E)) = 0 for each multi-index o« € I, p,
1<ij<ip<-<ipn<P.ThenTLE=N0.

2.45 Remarks: (1) The hypothesis £ (po(E)) = 0Va can be satisfied even if E has
positive H"-measure (as example 3.4 of Ch.3 shows), but, in the case when E is H"
o-finite, only if E is purely n-unrectifiable, as shown by 3.3 of Ch.3.

(2) Let Q be any orthogonal transformation of R?. Since T € D,(U) = QiT €
Dp(QU) and My (T) = Mow (Q4T) for each W C U. So if My (T') < oo for each
W cC U we have g, 7(Q(A)) = pur(A) for each A C U, hence the above lemma
guarantees L" (pa(Q(E))) = 0 for each « = pur(E) = 0. On the other hand the
Rectifiability Theorem 3.7 of Ch.3 implies that if E is a H" o-finite set which is purely
n-unrectifiable then almost all (with respect to Haar measure) orthogonal projections p
of R**¥ onto an n-dimensional subspace of R”** have H" (p(E)) = 0. But for each
o € I, p any such orthogonal projection p can be expressed p = Q* o Py o O for some
orthogonal transformation Q of R"**, where 7y (x) = (pa(x).0) € R**K. Hence
there must be many orthogonal Q such that £" (py(Q(E))) = 0 for each & € I, p, so,
by applying Corollary 2.44 with Q4T in place of T, we conclude T L E = 0 for any
purely n-unrectifiable " o-finite set £ C U.
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3 Integer Multiplicity Rectifiable Currents

In this section we want to develop the theory of integer multiplicity currents T € D, (U ),
which, roughly speaking are those currents obtained by assigning (in a H"-measurable
fashion) an orientation to the tangent spaces Ty V of an integer multiplicity varifold V.
(See Ch. 4 for terminology.)

These currents are precisely those called locally locally rectifiable currents by Federer and
Fleming [FF60], [Fed69].

Throughout this section 7 > 1, k > 1 are integers and U is an open subset of R" %,

3.1 Definition: If T € D,(U) we say that T is an integer multiplicity rectifiable n-
current (briefly an integer multiplicity current) if it can be expressed

(%) T(a))=/M<w(x),§(x))9(x)d7-l”(x), w e D'(U),

where M is an H"-measurable countably n-rectifiable subset of U, 6 is a positive locally
H"-integrable function which is integer-valued H"-a.c., and & : M — A, (R"*¥) is a
H"-measurable function such that for 7{"-a.c. point x € M, &(x) can be expressed in
the form 11 A -+ A Ty, where 11, . .., 7, form an orthonormal basis for the approximate
tangent space T M . (See Ch.3 and Ch. 4.) Thus £(= T) orients the approximate tangent
spaces of M in an H"-measurable way. The function 6 in 3.1 (%) is called the multiplicity

and £ is called the orientation for T. If T is as in 3.1 (%) we shall often write
T =1(M.0.§).

In this case
V =v(M.0)

will be referred to as the integer multiplicity varifold associated with T. In case 6 = 1
H"-a.e. on M we use the abbreviated notation

T =t(ME§), V=uvM).

3.2 Remarks: (1) If Ty, T» € D, (U) are integer multiplicity, thensois p1 T1+ p2 T2, p1, p2 €
Z.

(2) If T1 = ‘_L’(Ml,@l,él) S Dr(U), T2 = ‘_L'(Mz,@z,éz) (S DS(W) (W C ]RQ open),
then Ty x T» € Dyrys(U x W) is also integer multiplicity, and in fact

Ty x Tp = 1(My x M, 0105, ps(&1) A qs(&2)),

where p(x) = (x,0) and ¢(y) = (0, y) and (6162)(x, y) = 61(x)62(y).
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(3) UT =1(M,0,¢) € D,y(U) is an integer multiplicity current then
Mw (T) = /MG dH" =Mw (V) Yopen W C U,
where V = v(M, 0) is the rectifiable varifold associated with 7.

Next we want to discuss pushing forward an integer multiplicity T = (M, 0,§) €
Dn(U) (M C U)byaLipschitzmap f : U — W such that f|spt T is proper. First, if f
isC1, 1:1, f|spt T is proper, M is an embedded C! submanifold, £ is any #"-measurable
orientation for M, and 6 is any H{"-measurable positive integer valued function on M,
then we have, by Remark 2.30(3),

33 fT(@) = [ (ffo.8)0dnH"
= [ (@) (@1700)- 1) 6(3) aH" (2)
= [ (o100 (de)s(81)) 6) dH" (x).

Now &y = £11 A+ ATy, where 71, . .., 7, is an orthonormal basis for the tangent space
T M, so
3.4 dfx#‘é;_\x = :I:dfx#fl ARRRRA dfx#fn

=D f(x) A2 A Dy, f(x)

which = 0 at points x € M where JfM (x) = 0, because J}’I (x) =0 & rank(dM f,) <
n. On the other hand at points where J;"’ (x) # 0 the rank is n and hence there is

p > O such that f|M N B,(x) is a diffcomorphism onto an n-dimensional embedded C'*
manifold N, and at the image point y = f(x) we let 1, ..., 5, be an orthonormal basis
for Ty N. Then, since Dy, f (x) € Ty N, we have Dy, f(x) = >_7_| Dy, f - 1;1;,and so

Dflf(x) A=A Dq, f(x) =det(Drif~771)771 AN Np.
On the other hand

M (x) = \Jdet(De, £ (x) - De, £ (x)) = \/(det(De, f (x) - 17))?
= | det(Dr, f (x) - 1;)].

Thus we see that 3.4 implies, at points x € M where J]M (x) #0,

35 dfesbe = JM (x)n,

where 7 is an orienting n-vector for N (so n = £n1 A-++ Any). 1 is called the orientation
Jor N induced by f at each point x where JM (x) # 0.
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Now suppose f : U — W isLipschitz, T = t(M,0,§) € D,(U) (M C U) is an integer
multiplicity current, and f|spt T is proper, then we can define f;T € D, (W) by

@) = [ {01700 dMFué(x) ) 0(x) dH" ().

Let no be H"-measurable such that, for H"-a.e. y € f(M), no(y) = £n1 A+ A np,

wheren, ..., Nn are an orthonormal basis for the approximate tangent space 7y, ( f (M )).

At H"-a.e. point x where J jM (x) # 0 the above discussion shows

3.6 dMf4E(x) = U(x)é(x)JfM(x)no where 0 (x) = %1,

so by the area formula

3 AT@) = [ (00 1000) Dy a0 ()00 dH (),

where My = {x € M : Jy f(x) > 0}. Of course since f(M ) has locally finite H"-
measure in V we know by the area formula [, JM OdH" = ff Yoxer—1(y 0(x)dH" (y),
so f~1(y) is a finite set for H"-a.e. y € f(M )and Dxef—1(y)nmy 0 (x )9(x) € Z for

H"-a.e.y € f(M). By replacing 19 be —ng atall points y € f( M) where 3 e r—1(,)am, 0(x)0
0, we get a new orientation 1 for f (M) (called the orientation of f (M) induced by f)
such that

3.8 fiT () = /f(M)<w\y,n(y)>N(y)dHn(y),

where 7(y) is a suitable orientation for the approximate tangent space Ty, ( f (M )) and
N () is a non-negative integer given by

3.9 — [Caer 1o, 0)O()|. H'ae.y € f(M).

with 0(x) = %1 according as dMf,4£(x) = :E:J}”(x)r)(y). Thus for H"-a.e. y €
/(M) we have

310 N() = Xier—1mnmy 0(x). N(¥) = Xser—1(y)nn, 0(x) (mod 2).
Also of course

3.11 N(y) =00 f1(y)in case f is 1:1.

Thus we have proved

3.12 Lemma. If f : U — W islocally Lipschitz and f|sptT is proper, with T =
©(M,&,0) € Dy(U) an integer multiplicity current, then f4T is an integer multiplicity
curvent in W in fact fyT = t(f(M),n, N), as in 3.8, 3.9 above.
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3.13 Remark: If f : U — W is Lipschitz and if V' = v(M, ) is the varifold associated
with T = t(M, £, 0), then

KAT = KfY
(in the sense of measures) with equality if and only if, for H"-a.e. y € f (M), the sign
o (x) in 3.6 above remains constant as x varies over f ~!(y) N M, which is the same as
saying N (y) (in 3.9) satisfies N (y) = 3 1c r-1(3)nm 0(x) for H"-ae. y € f(M). In
particular we have g = gy in case f is 1:1.

Notice also that, by applying 3.12 to the current R = 0XT in 2.39, we have

3.14 U starshaped from 0, T integer multiplicity in U, spt T compact, 7 = 0
= Jan integer multiplicity R with dR = T, spt R compact.

A fact of central importance concerning integer multiplicity currents is the following
compactness theorem, first proved by Federer and Fleming [FF60]:

3.15 Theorem. (Federer-Fleming Compactness Theorem.) If {T;} C D,(U) is a se-
quence of integer multiplicity currents with

sup(Mw (T;) + Mw (8T;)) < oo VW CC U,

Jj=1
then there is an integer multiplicity T € Dy (U ) and a subsequence { T} such that Tj» —~ T
inU.

We shall give the proof of this in §8. Notice that the existence of a T € D,(U) and a
subsequence {7} with Tj» — T is a consequence of the elementary 2.17; only the fact
that 7 is an integer multiplicity rectifiable current is non-trivial.

3.16 Remark: Notice that the proof of 3.15 in the codimension 1 case (when P = n) is
a direct consequence of Remark 2.42 and the Compactness Theorem for BV functions (§
2.6 of Ch.2).

In contrast to the difficulty in proving 3.15, it is quite straightforward to prove that if
T; converges to T in the strong sense that imMy (T; —T) = 0 VW CC U, and if T
are integer multiplicity V j, then T is integer multiplicity. Indeed we have the following

lemma.

3.17 Lemma. The set of integer multiplicity currents in D, (U) is complete with respect to
the topology given by the family {Mw }wccu of semi-norms.

Proof: Let {Tp} be a sequence of integer multiplicity currents in D, (U) and {Tp } is
Cauchy with respect to the semi-norms My, W CC U. Suppose

To =(Mg,00.60)
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(0o positive integer-valued on Mg, Mg countably n-rectifiable, H" (Mo N W) < oo for
each W cC U). Then

(1) My (To — Tp) E/Ww,,gp—erQuH" <ew(0)

VP > Q, where e (Q) | 0as Q — oo and where we adopt the convention ép = 0,
Op = 0on U \ Mp. In particular, since [Ep| = 1 on Mp, we get

(2) | 100 =60l a¥" < ew(Q) ¥P = 0.

and hence 0p converges in L'(H") locally in U to an integer-valued function 6. Of
course (2) implies

(3) H' (M \ Mo) U (Mo \ M1.)) N W) < ew(Q),

where My = {x € U : 6(x) > 0}. (1), (2) also imply
| brlsr — ol 2" 26w (0) VP = 0.

and hence by (3) £p converges in L!(#H") locally in U to a function £ with values in
An(R"5) with |&] = 1 and & simple on M.

Now &;(x) € Ay(TxMp), H"-a.e. x € Mg, and (by (3)) TxM4+ = TxMg except for
a set of measure < ey (Q) in My N W. It follows that §(x) € A, (TxMy) for H"-ae.
x € M4 and we have shown that My (Tp — T) — 0, where T = 7(M4,6,£) is an
integer multiplicity n-current in U. O

Finally, we shall need the following useful decomposition theorem for codimension 1 inte-
ger multiplicity currents.

3.18 Theorem. Suppose P = n + 1 (i.e. U is open in R" 1) and R is an integer multiplicity
current in Dy 1 (U) with My (0R) < oco VW CC U. Then T = R is integer multiplicity,
and in fact we can find a decreasing sequence of L -measurable sets {U; } of locally
finite perimeter in U such that (in U)

R=372 U0 - 2] [Vi]. ¥, =U\U;. j=0,

T =372 oMUl

1T = 372 oo a[u; ]

and in particular

Mw(T) = Zoo Mw(a[[Uj]]) YW cc U.

Jj=—00

e}
J=—00



§3 or CHAPTER 6: INTEGER MULTIPLICITY RECTIFIABLE CURRENTS 177
3.19 Remark: Let * : C2°(U;R"t!) — D" (U) be defined by
xg = Z;if(—l)j_lgj dx' Ao AdxTTVAdxT TV A A dx T
sothatd x g = div g dx! A--- Adx"T1. Then for any £"*'-measurable A C U we have
[A] (xg) = [A] (d = g)
= [ 2adiv gacrt,
Ju

and hence by definition of | D X4| (in §2 of Ch.2) and M(T') (in §2 of the present chapter)
we see that

A has locally finite perimeter in U <= My (3[A]]) < oo VW CC U,

and in this case
My (3[A]) =/ DXl YW cC U
—_ w
A[A] = xv4, |DXy|ae. inU.

Here vy 1s the inward unit normal function for A (defined on the reduced boundary 9*4
as in 4.4 of Ch.3).

Proof of 3.18: R must have the form
R=1(V.0.§),

where V is an £"!-measurable subset of U and £(x) = +e; A---Aepyq foreach x € V.
Thus letting

O(x) whenx e Vandé(x) = +e1 A-- Aeptr
6(x) =<—0(x) whenxeVandé(x)=—e; A+~ Aenqr
0 when x ¢ V,

(1) R(w) = /agdﬁnﬂ,
14
o =adx!' A+ Adx"T € D"TH(U) and (cf. 2.10)
2) My (R) =/ B]d L+, My (T) =/ D8] VW cc U
w 14

(and 0 € BV, (U)).
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Define
Uj:{er:g(x)>J} jEezZ
Vj=U\U_,~={er:§( ) < —1—,} j <o.
Then one checks directly that
GEDI AT EIED D 47
(X4 = indicator function of A, A C U), and hence by (1)
(3) R=3352[U/] - Xf-—[lVi]in U.
Since T (w) = dR(w) = R(dw), w € D" (U ), we then have

4) T =R = X2, 0[U;] ~ X0 V]
=55 AU,

j=—00

so we have the required decomposition, and it remains only to prove that each U; has
locally finite perimeter in U and that the corresponding measures add. To check this,
take ¥; € C'(R) with

Yi(t)=0 for t<j—1+e y;j(t)=1 t>j—¢
0<vy; <1, sup‘l///’fl—i—?ss,

where ¢ € (0,4). Thenifa € C®(U) and g = (g'...., g"t), g/ € C*(U), with
|g| < a, we have (since Xy, = ¥ 06 Vj) that forany M < N

5) /U dive YNy Xy, d L = /U dive Ny vy 0 Bd L)
= liin/ divg Z;V:ij 00, d LM
ol0

:—lim/g Vo, ¥ (By) d L

al0
< (14 3¢) lim a|V9g|d£"+1.
ol0JU
On the other hand
/a|V§;| = sup / divg 6, dL", and
(6) v geCl(U)Jgl=a 'V

/ divg By d L” =/ divge 8dL" = R(dwy) = T(wy) < M(T)|w].
U U
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where we = Y7 (=1)/'gjodx! Ao Adx/TH AdxI T Ao A dx™. Thus, taking
M = N, we deduce from (5) and (6) that My (0[U;]]) < Mw (T) < oo for each j and
each open W CcC U.

By taking M = —N in (5) and defining Ry = Z_ﬁ\;l il - Z;)=7N [Vi] we see that
(with g asin 3.19)

|Rn(d xg)| < (1 +3£)/UaduT,
and hence, with Ty = 0Rp,
(7) /aduTN E/ad,ur VN > 1,
JU U

a>0,a € CX®(U). On the other hand by 4.1 of Ch.3 we have

(8) R(dxg) = Ty [ div g1y, acm!

where v; is the inward unit normal for U; and 9*Uj is the reduced boundary for U; (see
§4 of Ch.3 and in particular 4.4 of Ch.3). By virtue of the fact that U; 11 C U; we see
from 4.4 (11) of Ch.3 that v; = vg on 3*U; N 0*Uy Vj, k. Hence (8) can be written

Tn(xg) = —/Uv-ghNdH”,

where hy = ZJIL_NXa*Uj and where v is defined on U2 _ 9*U; by v = v; on 9*U;.

Since [v| = 1 on USZ_ 0" U; this evidently gives

/a dury = /a hy dH"
— Z?;—N/a*uja dH"
=YL /a dpagu,)-
Letting N — oo we thus have (by (7))
1T = Y72 o Halu;]-
Since the reverse inequality follows directly from (4), the proof is complete. [

3.20 Corollary. Let R be integer multiplicity € Dy41(U), U C R, P > n + 1, and
suppose there is an (n + 1)-dimensional C' embedded submanifold N of RY with spt R C
N N U. Suppose further that T = dR and M(T) < co VW CcC U. Then T (€ D,(U)) is
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integer multiplicity and for each point y € N N U there is an open Wy, CC U, y € Wy, and
H"T! measurable subset {Uj}2_ o withUj11 C U; C N NU, M, (3[U;]) < o0V,
and with the following identities holding in W,,:
R=3721U] - Y- U\ U]
T =372 Ul
IT = 2072 o0 U, -

Proof: The proof is an easy consequence of 3.18 using local coordinate representations
for N. O

4 Slicing

We first want to define the notion of slice for integer multiplicity currents. Preparatory
to this we have the following lemma:

4.1 Lemma. If M is H"-measurable, countably n-rectifiable, f is Lipschitz on R"** and
My = {xeM:|VMf(x)| > 0}, then for L'-almost all t € R the following statements
hold:

(1) M, = f~Y(t) N My is countably H" ' -rectifiable
(2) For H" '-ae. x € My, Ty M, and Tx M both exist, Ty M, is an (n — 1)-dimensional
subspace of Ty M, and in fact

(1) TxM = {y +AVMf(x):yeTxM,,AeR}.

Furthermore for any non-negative H" -measurable function g on M we have
"y & g

[ eaneyan= [ 94| sane

Proof: In fact (1) is just a restatement of 2.10(2) of Ch. 3, and (2) follows from 1.6 of Ch.
3 together with the facts that for £'-a.e. t € R and H" '-a.e. x € M,

VMf(x) e TuM (by definition of VM f in §2 of Ch.3)
and
(VMf(x),7) =0V e TM,.
(This last follows for example from Definition 2.1 of Ch.3.)

The last part of the lemma is just a restatement of the appropriate version of the co-area
formula (discussed in §2 of Ch. 3).
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4.2 Remark: Note that by replacing g (in 4.1 above) by g times the indicator function
of {x: f(x) <t} we get the identity

t
/ |VMf|gdH"=/ / gdH"Vds
MN{f(x)<t} —o0 J My

so that the left side as an absolutely continuous function of 7 and

d

—/ VM flg dH" :/ gdH™, ael €R.
dt IMn{f(x)<t} M,

Now let T = t(M,0,£) be an integer multiplicity current in U (U open in R**K,
M C U), let f be Lipschitz in U and let 04 be defined H"-a.e. in M by

04 (x) =

{0 fVMf(x)=0
0(x) i VMf(x) #£0.

For the (£!-almost all) # € R such that Ty M, T, M exist for H" '-a.e. x € M; and such
that 4.1(2) (%) holds, we have

vMf(x)

43 £(x) L—|VMf(x)|

issimple € Ap—1(TxM;) C Ap—1(Tx M)

and has unit length (for H" '-a.e. x € M,). Here we use the notation that if v €
Ap(TxM) and w € TyM,then v w € Ay—;(Tx M) is defined by

(v w,a) =(v,wAa), ae€ A1 (TeM).

Using this notation we can now define the notion of a slice of T by f; we continue to
assume T € D, (U) is given by T = (M, 0, £) as above.

4.4 Definition: For the (£!-almost all) t € R since that Ty M, Ty M; exist and Lemma 4.1
(2)(1) holds H"'-a.e. x € M;, with the notation introduced above (and bearing in mind
4.3) we define the integer multiplicity current (7, f,7) € D,—;(U) by

(T, fit) =1(M;, 0. &),

where
VM (x)
|VM f(x)]

So defined, (7, 1, 1) is called the slice of T by f att.

Ei(x)=¢(x)L , 0 =04 |M,.
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4.5 Lemma. (1) For each open W C U

/OOMW(<T,f,t>)dt=/ |VM£10 dH" < (esssup| VM f|)Mw (T).
Mow MnW

(2) If My (dT) < 0o YW CC U, then for L' -a.e. t € R

(Tfit) =8[TL {f <t} (OT)L{f <.
(3) If OT is integer multiplicity in Dy—1 (U), then for L'-a.e.t € R

(T, f,1) = (T, f,1).

Proof: (1) is a direct consequence of the last part of 4.1 (with g = 6,).
To prove (2) we first recall that, since M is countably n-rectifiable, we can write (see
Remark 1.3 of Ch.3)

M = U2 M;,
where MiNM; = D Vi # j, H"(My) =0,and M; C N; j > 1, with N; an embedded
C! submanifold of R"**. By virtue of this decomposition and the definition of VM (in

§2 of Ch.3) it easily follows that if / is Lipschitz on R**¥ and if #(®) are the mollified
functions (as in §2 of Ch.2) then, as o | 0,

(1) /U'VMh(o)dMT—)[ U-VMhd[LT
w w

for each W cC U and each fixed bounded #"-measurable v : U — R**¥. (Indeed to
check this, we have merely to check that (1) holds with N; in place of M; and with v
vanishing on R**k \ M;; since N; is C! this follows fairly easily by approximating v by
smooth functions and using the fact that 4(?) converges to & uniformly.)

Next let ¢ > 0 and let y be the Lipschitz function on R defined by

1, s<t—eg
y(s) = linear, t—e<s<t
0, s>t

and apply the above to & = y o f. Then letting w € D" (U ) we have
AT (W' w) = T(d(h'?w))
=T(dh') Aw) + T(h'9dw).

Then using the integral representations of the form 2.9 for 0T we see that

(2) (T L h)(w) =1i%T(dh<0> Ao)+ (T Lh)(do).
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Since £(x) orients Ty M, we have
<§(x),dh<") A a)> - <g(x), (dh® (x))T /\a)T>
= (£(x). (@ (x))" A o)
(where ()T denotes the orthogonal projection of A7 (IR"**) onto A4 (T, M)). Thus
T(dh') A w) = / (£(x), (@h@ ()T A w) 6 dH"
M
— / (6(x) L VYR (x), ) 0 1"
M
so that by (1)

(3) lim 7 (dh(*) ) = /M (6(x) L VM h(x).0) 6. aH".

By 2.1 of Ch. 3 and by the chain rule for the composition of Lipschitz functions we have
(4) VMp =y (/)VM f H"ae.on M

(where we set y'(f) = 0 when f takes the “bad” values ¢ or ¢ — &; note that VM h(x) =
VM f(x) = 0for H"-a.e.in {x € M : f(x) = c}, ¢ any given constant).
Using (3), (4) in (2), we thus deduce

(0T L h)(w) = —8—1/

<g L VMf,w> 0dH" + (T L h)(do).
M {t—e<f<t}

vM r
|9 1
the proof of (2); by considering a countable dense set of @ € D" (U) one can of course

Finally we let ¢ | 0 and we use 4.2 with ¢ = 0(§ L ,) in order to complete

show that 4.2 is applicable with g = (¢ ’zgﬁ ,w) except for a set F of 7 having

L'-measure zero, with F independent of w.

Finally to prove part (3) of the theorem, we first apply part (2) with 8T in place of T'.
Since 92T = 0, this gives

(0T, 1) = 8[(AT) L{Sf < 1}].
On the other hand, applying 9 to each side of the original identity (for T') of (2), we get
A[OT)LA{f <t} =—-«T. f.1)

and hence (3) is established. O
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Motivated by the above discussions we are led to define slices for an arbitrary current
€ D, (U) which, together with its boundary, has locally finite mass in U. Specifically,
suppose My (T') + My (dT) < co VW CC U. Then we define “slices”

4.6 (T, fit—)y =0(TL{f <t})—(@T)L{f <1t}
and
4.7 (T, fitxy=—0(TL{f >t})+@T)_{f >1t}.

Of course (T, f,t4+) = (T, f,1—) (and the common value is denoted (T, f, 7)) for all but
the countably many values of 7 such that M(T L { f = ¢}) + M((dT)L{f =1t}) > 0.

The important properties of the above slices are that if f is Lipschitz on U (and if we
continue to assume My (T) + My (3T) < oo VW CC U), then

4.8 spt(T, fity) CsptT N{x: f(x) =1}
and, ¥V open W C U,

Mw ((T. f.t4+)) < esssupy, |Df| liglﬁ)nfh_lMW(T L{t< f<t+h})

4.9
My ((T. f.1-)) < esssupy, | Df| lir]ﬁanfh*MW(T L{t—h< f<t}).

Notice that My (T L { f < t}) is increasing in ¢, hence is differentiable for £'-a.e.# € R

b
and/ %MW(TL{]( <t})dt <Mw (T L{a < f <b}). Thus 4.9 gives

4.10 /.*bMW(<T,f,ti>)dt <esssupy |Df| M(T L {a < f <b})

for every open W C U.

To prove 4.8 and 4.9 we consider first the case when f is C! and take any smooth in-
creasing function y : R — Ry and note that

411
T Lyo fllo)=(OT)Lyo f)(w) =(TLyo f)(do)—((dT)Lyo f)(o)
=T(yo fdw)=T(d(yo fw))
=-T(y'(f)df ro).

Now let ¢ > 0 be arbitrary and choose y such that

+¢&
fora <t < b.

1
y(t) =0fort <a, y(t) = lfort > b, 0 <y'(t) < b



§5 oF CHAPTER 6: THE DEFORMATION THEOREM 185

Then the left side of 4.11 converges to (7, f.a4) if we let b | a, and hence 4.8 follows
because spt y’ C [a, b]. Furthermore the right side R of 4.11 evidently satisfies

Rl = (sup | D (=) M (T {a < £ <bDlol - (spro € W)

and so we also conclude the first part of 4.11 for f € C!. We similarly establish the
second part for f € C'. To handle general Lipschitz f we simply use f (%) in place of
f in 4.6, 4.7 and in the above proof, then let o | 0 where appropriate.

5 The Deformation Theorem

The deformation theorem, given below in 5.1 and 5.3, is a central result in the theory of
currents, and was first proved by Federer and Fleming [FF60].

The special notation for this section is as follows:

n,ke{l,2,...},

C =10,1] x---x[0,1] (standard unit cube in R”*%)
72"tk = {z=('....2") ez}

Fy = C Nspan{ej,,....ej, }fora = (ji,..., jn) € Inn+k

L; =setofall jfaces={z+ Fy:z € 7tk o e Lin+i}
Lj = j-skeleton of the decomposition = Urer, F
Li(p)={pF:FeLi},p>0

Se = span{e;,,.... e, }fora = (i1,....int1) € Insy1ntk-

Pa denotes the orthogonal projection of R”** onto Sy, a € Lnt1n+k-

5.1 (Deformation Theorem, unscaled version.) Suppose T is an n-current in R"** (i.e.
T € Dy (R"K)) with M(T) + M(3T) < oo. Then we can write

T—P=0R+S
where P, R, S satisfy
P =% rer,Br[F] (BF €R),
with
M(P) < CM(T), M(3P) < CM(3T)
CM(T), M(S) < CM(3T)
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(C = C(n,k)), and
spt P UsptR C {x sdist(x,sptT) < 2+/n + k}
sptdP Uspt S C {x s dist(x,spt dT) < 2+/n + k} .
In case T is an integer multiplicity current, then P, R can be chosen to be integer multiplicity

currents (and the B appearing in the definition of P are integers). If in addition 9T is integer
multiplicity?, then S can be chosen to be integer multiplicity.

5.2 Remarks: (1) Note that this is slightly sharper than the corresponding theorem in
[FF60], [Fed69], because there is no term involving M(37') in the bound for M(P).

(2) It follows automatically from the other conclusions of the theorem that M(3S) <
CM(AT). Also, it follows from the inequalities M(dP), M(S) < CM(dT) that S = 0
and 0P = 0 when 97 = 0.

The following “scaled version” of 5.1 is obtained from the above by first changing scale
s — p~'x, then applying 5.1, then changing scale back by x — px.

5.3 (Deformation Theorem, scaled version.) Suppose T, OT are as in 5.1, and p > 0.

Then
T—P=0R+S

where P, R, S satisfy

P =3 rer;pPrlF] (BF €R)
M(P) < CM(T), M(3P) < CM(3T)
M(R) = CpM(T), M(S) = CpM(T),
and
spt P Uspt R C {x sdist(x,spt T) < 2+/n —i—kp}
sptdP Uspt S C {x sdist(x,sptdT) < 2vn + k }

Asin5.1, in case T is integer multiplicity, so are P, R; if 0T is integer multiplicity then so is
s.

The main step in the proof of the deformation theorem will involve “pushing” T onto
the n-skeleton L, via a certain retraction map . We first have to establish the existence
of a suitable class of retraction maps. This is done in the following lemma, in which we

2 Actually if M(3T') < oo then 8T is antomatically integer multiplicity if T is—see 6.3 below.
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use the notation

11 1)

g = center point of C = (5, 5,....5

Lk,1 (Cl)
Li—1(a;p)

=a+ Lg—; (a agiven point in By4(q)).
= {x e R dist(x, Ly (a)) < p} (pe(0,7)).
Note that dist(Lg—1(a), Ln) >  for any point a € By/4(q).
5.4 Lemma. For cverya € B (q) there is a locally Lipschitz map
YRR\ Ly (a) - R\ Ly (a)
such that
Y(C\ Lk—1(a)) =C N Ly ¢ICNLy=1lcnLy,.

1Dy (x)] < % L% g6 x € C\ Li_y(asp). pe (0.1),
(c = c(n,k)), and such that

Y(iz+x)=z+y(x), x e R"*\ Ly (a), z € Z"*F,

Proof: We first construct a locally Lipschitz retraction ¥ : C \ Lx—1(a) onto the n-faces
of C. This is done as follows:

Firstly for each j-face F of C, j > n + 1, let ar € F denote the orthogonal projection
of a onto F, and let ¥F denote the retraction of F \ {ar} onto dF which takes a point
x € F\ {aF} tothe point y € 9F such that x € {ar +A(y —aF) : 2 € (0,1]}. (Thus
Y F is the “radial retraction” of F with ar as origin.) Of course ¥ ¢|0F = 1yr. Notice
also that for any j-face F of C, j > n+1, the line segment aa is contained in Lx_;(a);
in fact if Jr denotes the set of £ such that Sy (see notation prior to 5.1) is parallel to an
(n + 1)-face of F, then (because @ar is orthogonal to F, hence orthogonal to each Sy,
L € Jr) we have

(1) aar C Neeyppy ' (pe(a)),
and this is contained in Li_;(a), because (by definition)
(2) Li—1(a) = Uil Ugegntr (2 + pit (pe(a))).
Next, for each j > n + 1, define
Yy U{F\{ar}: Fisajfaceof C} - U{G:Gisa(j—1)faceof C}

by setting .
yOIF\{ar} =yr.
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(Notice that then /) is locally Lipschitz on its domain by virtue of the fact that each
Y F is the identity on dF, F any j-face of C.)

Then the composite ¥ "+ oy ("+2) o...0 yr("+%) makes sense on C \ Lx_; (a) (by (1)),
SO we can set

Yo =yt oy ooy HIC Ly (a).
Notice that ¥y has the additional property that if

zeZ"*andx, 7+ x € C, then Yo(z + x) = z + Yo(x).

(Indeed x, z + x € C means that either x, z + x are in L, (where v is the identity)
or else lie in the interior of parallel j-faces F1, Fo = z+ F1 (j > n+ 1) of C with z
orthogonal to Fy and ap, = z + ar,.) It follows that we can then define a retraction ¥
of all of C \ Li—_;(a) onto L, by setting

Y(z+x) =2+ vo(x), x € C\ Lg1(a), z € Z"*E.
We now claim that

(3) sup|DY| < < on R™E\ Ly (a. p). ¢ = c(n. k).
o

(This will evidently complete the proof of the lemma.)

We can prove (3) by induction on k as follows. First note that (3) is evident from con-
struction in case Kk = 1. Hence assume k > 2 and assume (3) holds in case k — 1
replaces k in the above construction. Let x be any point of interior (C) \ Lix—_1(a;p),
let y = " (x) (y"*¥ is the radial retraction of C \ {a} onto dC, and let F be any
closed (n + k — 1)-face of C which contains y.

Suppose now new coordinates are selected so that F C R**K=1 x {0} ¢ R"**, and also
let Ly_s(a) = Lg—1(a) N R* =1 x {0}). By virtue of (1) we have ar € Li_(a),
hence

(4) ly —ar| = dist(y, Ly—1(a)).

Let pr be the orthogonal projection of R"** onto R"**~1 x {0} (D F), so that ap =
pr(a). Evidently |pr(x) —arp| > dist(x, pr! (pr(a))) and hence by (2) we deduce

(5) lpr(x) —ar| = dist(x, Lr-1(a)).
Furthermore by definition of y we know that y —a = % (x —a) and hence, applying
PF, we have
|y —a|
y—ar = pr(x—a).

|x —al
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Hence since |y — a| > 3/4, we have

lpr(x—a)l

6 — >3
(6) y=arlz3 |x —a|

Now let ¥ be the retraction of F\ Li_,(a) onto the n-faces of F ( defined as for ¥ but
with (k — 1) in place of k, ar in place of a, R***~1 in place of R"** and Zk_z(a) =
Li—>(ar) in place of Lx_1(a)). By the inductive hypothesis, together with (4), (5), (6)

we have

— c —~ . W(Z)—W(J’”
(7) Dy (y)| < ——, (|Dy¥(y)| = limsup ————=
‘ ( )| dlst(y,Lk_z(a)) (| ( )} z—>yp |z =yl )
1 |x —al
<(3)c
S —arliprG—a)
4 |x —al
=G Tt Loy @)’
when k = 2. For general k, we label L = Li—>(ar) and note that — t?iSt;yle()L)) = ‘I)yc:zl‘
ist(x,p
by similarity, and pz' (L) C Lx—q1(a). So [Dy (y)| < % as required. Also,

by the definition of ¥/"** we have that

c

ntk () gtk (o
®) lﬁw"+k<x>|s|x_a|,\m"+k<x>|=myn:3p’*” (Ty)_ii] ()]

Since ¥ (x) = ¥ o ¥ ¥ (x), we have by (7), (8) and the chain rule that

—~ DU ()| < ¢ I —al
DYDY )| < o e T @)

~ dist(x, L1 (a))

| Dy ()]

IA

O

Proof of the Deformation Theorem:

We use the subspaces S1, ..., Sy and projections p1, ..., py introduced at the beginning
of the section. Let F; = C N S; (so that Fj is a closed (n + 1)-dimensional face of C),
let x; by the central point of Fj, and for each j = 1,..., N define a “good” subset

G; C FjN By (x;) by g € G; <= g€ F;N By(x;)and

(1) M(TL Uzeznthns; pj_l(Bﬂ(g +2))) < " IM(T) Vp € (0, 4‘1‘)

(B to be chosen, G; = G;(B)).
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We now claim that the “bad” set B; = F; N B (x;)\ G; in fact has £""!-measure (taken
in S;) small; in fact we claim

(2) L"(B;) = 20" B w1 ()" (0ng1 = L7F1(B1(0))),

which is indeed small if we choose large 8. To see (2), we argue as follows. For each
b € B; there is (by definition) a pp, € (0, 1) such that

(3) M(T L UzEZ”'H‘ﬂSj pj_l (pr (b + Z))) > ﬁ,OZ+1M(T),

and by the 5-times Covering Lemma 3.4 of Ch. 1 there is a pairwise disjoint subcollection
{Boe(be)} =15, (P = po,) of the collection { By, (b) },c p, such that

(4) Bj C UgBsp,(by).
But then, setting b = by in (3) and summing, we get
B(Xepy TM(T) =M(T)  (ie. Xppf ™ < B7H),

(using the fact that {pj_l By, (b + z)} =t zezhns, is a pairwise disjoint col-

lection for fixed j). Thus by (4) we conclude
L (B;) < 715" wpg,
which after trivial re-arrangement gives (2) as required. Thus we have
LHGy) = (1= 207 B Y (341,

and it follows that

(5)  LRGPNG) N By(g) = (1 - 220 B (),
4 Wn+k
where g is the center point (1,....1) of C. (So p;(q) = x;.)

Then selecting B large enough so that 20" 1w, 1 NB™! < w,4x/(n+k), we see from (5)
that we can choose a point a € ﬂszlpj_l (G;)n By (¢)- Nextlet Lg_1(a) =a+ Lg_q,
Ly—1(a;p) = {x € R""* : dist(x, Lg—1 (a)) < p} (as in the proof of 5.4) and note that
in fact

Li-1(a;p) = ij:l U eznthns, Pj_l(Bp(Pj (a) +2)).

Then since p;(a) € G; we have (by definition of G;)

(6) M(T L Lg-1(as p)) < NBo""'M(T)  ¥p e (0, ).
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Indeed let us suppose that we take B such that 20" ™ w, 41 NB™! < wy44/2(n+k). Then
more than half the ball By (¢) is in the set ﬂj.vzlpfl (G;) and hence, repeating the whole
argument above with 97 1n place of T, we can actually select a so that, in addition to (6),
we also have

(7) M(OT L Le—1(as p)) < NB"T'M(dT)  Vpe (0,1).
Now let ¥ be the retraction of R"** \ Ly _(a) onto L, given in 5.4, and let
(8) T,=TL Lig_y1(a;p), (0T), =0T L Lg—1(a;p),

so that by (6), (7)

(9) M(T,) < ep" " 'M(T), M((3T),) < cp" " 'M(IT). ¥p € (0. 7).

Furthermore by 4.10 we know that for each p € (0, 1) we can find p* € (p/2, p) such

4
that

(10) M((T. d. p")) < SM(T, = Typo) < cp"MI(T),

where d is the (Lipschitz) distance function to Lg_;(a) (d(x) = dist(x, Lx—1(a)),
Lip(d) = 1) and (T.d, p*) is the slice of T by d at p*. (Notice that we can choose
p* such that (10) holds and such that (T, d, p*) is integer multiplicity—see 4.5 and the
following discussion.)

We now want to apply the homotopy formula 2.32 to the case when A(x,t) = x +
t(y(x) —x), € R***\ Ly_i(a;0), o > 0. Notice that & is Lipschitz on R**¥ \
Li—1(a;0), so we can define hy, ¥4 as in 2.36. (We shall apply %4, ¥4 only to currents
supported away from [0, 1] X Lx_1(a) and Lg_;(a) respectively.)

Keeping this in mind we note that by 5.4, (6) and (7) we have

(11) Mwun—nn»sgw“muvswmw>
and
(12) M(¥4((0T)p — (3T )p2)) < pnc_l p" P IMI(IT) < cpM(IT).

Similarly by the homotopy formula 2.32, together with 2.34 and (6), (7) above, we have

(13) M4 ([0, )] x (T = Tpy2))) < cpM(T)

and

(14) M(hy([(0, )] x ((8T')p — (9T)p/2)) < coM(IT).
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Notice also that by (6), (10) and 2.34 we have

(15) M(yy (T,d, p*)) < coM(T)
and
(16) M(#([(0, D]} x (T.d, p*))) < cpM(T).

Next note that by iteration (11), (12) imply

(17)

M(y#(Tp — Tp/2v)) < 2¢pM(T)
M(y4((9T), — (8T ) p2v)) < 2cpM(T)

for each integer v > 1, where c is as in (11), (12) (¢ independent of v). Selecting p = %

and using the arbitrariness of v, it follows that

My (T )) M(T)
(1%) { M($s(3T — (AT),)) < CM(3T)
for each o € (0, 1) (with ¢ independent of o).

Now select p = p, =27 and p} € [277",27"] such that (10), (15), (16) hold with p}
in place of p*; then by (15), (16), (17), (18) we have that

V(T = Ty ), ha([(0, D] > (T = Ty)),
Y (0T — 9T px), hy([(0. )] x (T — Tpy))

are Cauchy sequences relative to M, and M((T, d, p¥)) + M (v (T, d, p})) — 0. Hence
there are currents Q, S1 € D, (R"™*) and R, € D, 11 (R"¥) such that

BmM(Q — yu(T —Tpx)) =0
(19) lim M(S1 — h([(0. )] x D(T — T,3))) = 0
lim M(Ry — ho([(0.1)] x (T = T,5))) = 0.

Furthermore by the homotopy formula and 2.34 we have for each v

(20) T = Tps = (T = Tp) = 9(hs ([0, )] x (T = Tpy)))
—hs([(0. D] x (T = Tyy))-

Since dT,x = (3T') = — (T.d, p}) (by the definition 4.6, 4.7 of slice) we thus get that

(21) T—0Q =dR + 5.
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(Notice that Q, Ry are integer multiplicity by (19), 4.4, 4.5 and 3.17 in case T is integer
multiplicity; similarly S is integer multiplicity if 97 is.)

Using the fact that ¥ retracts R*t¥\ L;_; (a) onto L, we know (by 2.34) that spt v (T —
T,:) C Ly, and hence

(22) spt Q C L,.
We also have (since ¥ (z + C) C z + C Yz € Z2"+K) that

(23) spt Ry Uspt Q C {x :dist(x,sptT) < /n+k}
spt S1 C {x : dist(x,sptdT) < v/n + k}

and, by (18), (19), we have
(24) M(Q) < eM(T), M(Ry) < cM(T), M(S1) < cM(0T).

Also by (18) and the semi-continuity of M under weak convergence, we have

(25) M(0Q) < lim inf M(dy4(T — Ty ))
= liminf M(y40(T — Tpx))
< cM(3T).

Now let F be a given face of Ly(i.e. F € L£,) and let F = interior of F. Assume for
the moment that F C R” x {0} (C R"*¥), and let p be the orthogonal projection onto
R” x {0}. By construction of ¥ we know that p o ¥ = ¥ in a neighborhood of any
point y € F. We therefore have (since Q is given by (18)) that

(26) ps(QLF)=QLF.

It then follows, by the obvious modifications of the arguments in the proof of the Con-
stancy Theorem 2.41 and in 2.42, that

(27) QLF=/ﬁ<e1/\---/\en,a)(x)>9F(x)d/3"(x)
Yo € D" (R"*), for some BVio.(R") function 6, and

(28) M(Q L F) /|9F|dz:" M((3Q)L F) = /|D9F|
Furthermore, since

(29 (QLF-BIFN)(@) = [(6r =) (er A+ nenw(x)) dL7(x)
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(by (27)), we have (again using the reasoning of 2.42)

M(QL F — B[F]) /|9F—ﬂ|d£"

30
2 M(3(Q L F — BF /\D (0 — B

where X 5 = characteristic function of F. Thus taking 8 = BF such that
(31) min{ﬁn{xeﬁzerﬁ},c”{xeﬁzeF( ) < ﬁ}}

(which we can do because £" (ﬁ) = 1; notice that we can, and we do, take Br € Z if Of
is integer-valued), we have by 2.7 and 2.9 of Ch. 2, (28) and (30) that

1
2

M(QL F — B[F]) <c/}DeF1_cM 20 L F)
M(3(Q L F — B[F] <c/|D9F|—cM QL F).

We also have by 2.45(1)

(32)

(33) QL JF = 0.

Then summing over F € L, and using (32), (33) we have, with P = 3 . Br[F],
that

(34) { M(Q - P) < cM(3Q)
M(3dQ — 0P) < cM(0Q).
Actually by (31) we have
(35) Br| <2 /V|eF|d.cn,
and hence (using again the first part of (28)), since M(P) = >z |BF|,
(36) M(P) < cM(Q).

Notice that the second part of (34) gives

(37) M(dP) < cM(00Q).
Finally we note that (21) can be written

(38) T—P=0R+(S1+(Q—P)).

Setting R = Ry, S = S1 + (Q — P), the theorem now follows immediately from (23),
(24), (25) and (34), (36), (37), (38); the fact that P, R are integer multiplicity if T is should
be evident from the remarks during the course of the above proof, as should be the fact
that S is integer multiplicity if 7', 97 are. O
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6 Applications of the Deformation Theorem

We here establish a couple of simple (but very important) applications of the deforma-
tion theorem, namely the isoperimetric theorem and the weak polyhedral approxima-
tion theorem. This latter theorem, when combined with the compactness 3.15, implies
the important “Boundary Rectifiability Theorem” (6.3 below), which asserts that if 7'
is an integer multiplicity current in Dy, (U) and if My (dT) < oo VW CC U, then
0T (€ Du-1(U)) is integer multiplicity. (Notice that in the case k = 0, this has already
been established in 3.18.)

6.1 (Isoperimetric Theorem.) Suppose T € Dp—y (]R”+k) is integer multiplicity, n > 2,
spt T is compact and 0T = 0. Then there is an integer multiplicity current R € D, (R" %)
with spt R compact, 0R = T, and

n—1

M(R)"%" < eM(T),

where c = ¢(n, k).

Proof: The case T = 0 is trivial, so assume T' # 0. Let P, R, S be integer multiplicity
currents as in 5.3, where for the moment p > 0 is arbitrary, and note that § = 0 because
dT = 0. Evidently (since H" ' (F) = p" ! VF € Fy_1(p)) we have

(1) M(P) = N(p)p""!

for some non-negative integer N(p). But since M < ¢M(T) (from 5.3) we see that
necessarily N (p) = 0 in (1) if we choose p = (2¢M(T))#=T. Then P = 0, and 5.3

gives T = OR for some integer multiplicity current R with spt R compact and M(R) <
1

cpM(T) = ¢/ (M(T))n—1. O

6.2 (Weak Polyhedral Approximation Theorem.) Given any integer multiplicity T €
Dn(U) with My (T), My (0T) < oo YW CC U, there is a sequence { P } of current of
the form

— (k) (k)
(1) Pe =3 rer,(o0)Br [F]. (Br €Z). pi |0,
such that Py — T (and hence also 0Py — 0T ) in U (in the sense of 2.15).

Proof: First consider the case U = R"** and M(T), M(3T) < oo. In this case we
simply use the deformation theorem: for any sequence pi | 0, the scaled version of the
deformation theorem (with p = pg) gives Py as in () such that

(1) T — P, = 0R; + S
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for some Ry, Sy such that

2) { M(Rg) < copeM(T) — 0

M(Sk) < coeM(3T) — 0

and

M(Py) < c¢M(T), M(0P;) < cM(3T).
Evidently (1), (2) give Px(w) — Ty (@) Yo € D"(R**K), and 9P, = 0if T = 0, so
the theorem is proved in case U = R"** and T, 9T are of finite mass.

In the general case we take any Lipschitz function ¢ on R”** such that ¢ > 0in U,
@ = 0in R"*K \ U and such that {x : ¢(x) > A} CC U VA > 0. For L'-a.e. A > 0, 4.5
implies that T) = T'L {x : ¢(x) > A} is such that M(97}) < oco. Since spt T CC U,
we can apply the argument above to approximate T for any such A. Taking a suitable
sequence A; | 0, the required approximation then immediately follows. O

6.3 (Boundary Rectifiability Theorem.) Suppose T is an integer multiplicity current in
D, (U) withM(dT) < oo VW CC U. Then 0T (€ Dy—1(U)) is an integer multiplicity
current.

Proof: A direct consequence of 6.2 above and the Compactness 3.15 (applied with 97}
in place of 7). O

6.4 Remark: The above proof used the Compactness Theorem 3.15 applied to the se-
quence 97} rather than to T}, so used only the special case of 3.15 when the given sequence
{T;} has T = 0 V.

7 The Flat Metric Topology

The main result to be proved here is the equivalence of weak convergence and “flat metric”
3 convergence (see below for terminology) for a sequence of integer multiplicity currents
{T;} € Du(U) such that sup,, (Mw (T;) + Mw (37;)) < 0o VW CC U.

We let U denote (as usual) an arbitrary open subset of R”**,
Z={T €Dy(U) : T is integer multiplicity and My (0T) < co VW CC U}.

and
Iuw ={T €Z:sptT C W, M(T) +M(dT) <M} .

3Note that the word “flat” here has 70 physical or geometric significance, but relates rather to Whitney’s
use of the symbol b (the “flat” symbol in musical notation) in his work. We mention this because it is often a
source of confusion.
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forany M > 0 and open W CC U.

On Z we define a family of pseudometrics {dw }wccv by

71 dw(Th,T») = inf{MW(S) +Mw(R): Ty —T» = 0R + S, where
R € Dyt1(U), S € Dy(U) are integer multiplicity }.

We henceforth assume 7 is equipped with the topology given (in the usual way) by the
family {dw }wccu of pseudometrics. This topology is called the “flat metric topology”
for Z: there is a countable base of neighborhoods at each point, and 7; — T in this
topology if and only if dw (T;,T) - 0 VW CC U.

7.2 Theorem. Let T, {T;} C D,(U) be integer multiplicity with
sup(Mw (T;) + Mw (9T;)) < oo VW CcC U.
Jj=1

Then Ty — T (in the sense of 2.15) if and only if dw (T;, T) — 0 for each W cC U.

7.3 Remark: Notice that no use is made of the Compactness 3.15 in this theorem; how-
ever if we combine the compactness theorem with it, then we get the statement that
for any family of positive (finite) constants {c¢(W)}wccu the set {T € Z: M (T;)
+Myy (0T;) < c(W) VW CC U} is sequentially compact when equipped with the flat
metric topology.

Proof of 7.2: First note that the “if” part of the theorem is trivial (indeed for a given
W CC U, the statement dw (T, T) — 0 evidently implies (7; — T)(w) — 0 for any
fixed w € D"(U) with sptw C W).

For the “only if” part of the theorem, the main difficulty is to establish the appropri-
ate “total boundedness” property; specifically we show that for any given ¢ > 0 and
W cC W cC U, we can find N = N (e, W,W, M) and integer multiplicity currents
Py, ..., Py € D,(U) such that

N
(1) Imw C 3 1B w(P)),

where, for any P € Z, B, (P) = {S €Z:dy(S,P) <e}. This is an easy con-
sequence of the Deformation Theorem: in fact for any p > 0, 5.3 guarantees that for
T € Iy,w we can find integer multiplicity P, R, S such that

T—P=0R+S
(2) P =% rernbrlFl. pr ez

spt P C {x :dist(x,sptT) < 2v/n +k p}
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M(P) (= ZFEfn(p)|ﬁF|pn) <cM(T)<cM
(3) spt RUspt S C {x : dist(x,sptT) <2+/n+kp}
M(R) +M(S) < ¢pM(T) < cpM.
Then for p small enough to ensure 2v/n + kp < dist(W, dW), we see from (2),(3) that
dy (T, P) < cpM.
Hence, since there are only finitely many Py,..., Py currents P as in (2) (N depends

only on M, W, n, k, p), we have (1) as required.

Next note that (by 4.5(1),(2) and an argument as in 7.7 (2) of Ch.2) we can find a sub-
sequence {7/} C {T;} and a sequence {W;}, W; CC Wy CC U, U2, W; = U, such
that sup; o, M(3(7;- L W;)) < oo Vi. Thus from now on we can assume without loss
of generality that W CC U and

(4) sptT; C W V.

Then take any W such that W cC W cC U and apply (1) with & = 1, 3.3 etc. to
extract a subsequence {7}, },_, , from {7}} such that

ds (T

7 (T Tj) <277

and hence
(5) Tjrpr — Tj = 0R, £+ S,
where R, S, are integer multiplicity,

spt R, Uspt S, C w

1
M(R,) +M(S,) < >
Therefore by 3.17 we can define integer multiplicity R(), §(¥) by the M-absolutely con-
vergent series

RO =302 Ry, $19=37702,5
then
M(RY) + M(S®) < 27¢+1
and (from (5))
T-T, = aRW 4 s
Thus we have a subsequence {7}, } of {7} } such that dy; (T, Tj,) — 0. Since we can thus
extract a subsequence converging relative to dyj; from any given subsequence of {7} }, we
then have dyj; (T, T;) — 0; since this can be repeated with W = W;, W = Wiy Vi (W;
as above), the required result evidently follows. O



§8 oF CHAPTER 6: THE RECTIFIABILITY AND COMPACTNESS THEOREMS 199

8 The Rectifiability and Compactness Theorems

Here we prove the important Rectifiability Theorem for currents T which, together with
0T, have locally finite mass and which have the additional property that ®*” (11, x) > 0
for per-a.e. x. The main tool of the proof is the Structure Theorem 3.7 of Ch. 3. Having
established the Rectifiability Theorem, we show (in 8.2) that it is then straightforward to
establish the Compactness 3.15. Although this proof of the Compactness Theorem has
the advantage of being conceptually straightforward, it is rather lengthy if one takes into
account the effort needed to prove the Structure Theorem. Recently B. Solomon [Sol82]
showed that it is possible to prove the Compactness Theorem (and to develop the whole
theory of integer multiplicity currents) without use of the structure theorem.

8.1 (Rectifiability Theorem.) Suppose T € D, (U ) is such that My (T) + M (3T ) < 0o
forall W CcC U, and ®*" (ur,x) > 0 for ur-a.e. x € U. Then T is rectifiable; that is

T =1(M0¢)*

where M is countably n-rectifiable, H" -measurable, 0 is a positive locally H" -integrable func-
tion on M, and & (x) orients the approximate tangent space Ty M of M for H"-a.e. x € M
(i.e. €|x is a measurable function of x and &|x = £1v1 A -+ A Ty, where T1,..., Ty is an
orthonormal basis for the approximate tangent space Ty M of M, for H"-a.e. x € M.)

Proof: First note that for any locally finite Borel regular measure v on R"*¥, by The

Comparison Theorem 3.3 of Ch. 1, for any d > 0 and any open W C R"+*

(1) He{x e W 0% (v.x) > 1} < To(W), Vi >0,
In particular
(2) H4 {er:@*d(U,x)zoo}zo

for any open W cC R"*k.

Now let
M={xeU:0"(ur,x)>0}

and let W;, j = 1,2,..., be open with W; C Wj4; CC U Vj and U;W; = U. Then
M = U2 Mj, where M; = {x € M N W; : " (ur,x) > 1/j}, so we see from (1),
withv = ur and d = n, that H"(M;) < oo for each j, so M is H" o-finite.

*The notation here is as for integer multiplicity rectifiable currents as in §3 of the present chapter. That is,
T(M,0,8)(w) = [y (€, 0)0 dH", although 6 is not assumed to be integer-valued here.
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Suppose P is an H"-measurable purely unrectifiable subset of M. Then

(3) pr(P) =0

by Remark 2.45(2). For any open V O P N M, by (1), again with v = pur and d = n,
WP M) < ur (V).

Since infy open, Vo PNM; ur (V) = ur(P) by 1.22 of Ch. 1, we thus conclude by (3) that

(4) H"(P) =0 Vpurely unrectifiable P C M.

Then by Lemma 3.2 of Ch.3 we conclude M is countably n-rectifiable. Thus we have
proved that

(5) pr = pr L M,

with M C U is countably n-rectifiable.

By Theorem 2.43, jur is absolutely continuous with respect to H” and
(6) pr =H"L6,

where 6 is a non-negative locally H"-integrable function on M and 6 = 0O on U \ M.
Thus, with § = T, the identity T'(w) = [, (@, T) dur can be written

(7) 1) = [ (w.80an".

It thus remains only to prove that £(x) orients Ty M for H"-a.e. x € M (ie. £(x) =
+7 Ao A 1, for H'-ae. x € M, where 11,..., 1, is any orthonormal basis for the
approximate tangent space 7y M of M with respect to 6 (such Ty M exists for H"-a.e.
X € M as discussed in Theorem 1.9 of Ch.3).

To check that indeed &(x) orients Ty M, write M = U oM, M; pairwise disjoint,
H"(My) =0, M; C N;, N; aC' embedded submanifold of R**¥, j > 1. By the Upper
Density Theorem 3.8 of Ch. 1, for j > 1 we have

(8) @*”(MTL((NjUM)\Mj),x) =0, H'aexeM,.

=3 el i Padx® € D" (R"+*), and, as usual, take 1,3 (y) = A~ (y — x). Then
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M@ = A7 Y oer, ok @a © Nx,2 dx® has support in U for small enough 2, and
et T (@) = T (")
= [ (nsto.g)oan
M
= [ (nsto.g)oan
N;

[ eteg)ean — [ (nte.s)0dnt

J J\Mj

=/ (nx2 0. &) 0dH" + e(w,x. A)
N;j

where e(w,x,1) - 0as A | 0 for H"-a.e. x € M; by (8). That is, after the change of
variable z = 9, 2 (y) (e. y = x + Az),

BasT(@) = [ (0(2). 80 +22))0(x +A2) dH(2) + e(A)

Mx.A(Nj)

H"-a.e. x € M;. Since N; is C, this gives
(9) lim 1,007 (@) = 6(x) [ (0(2). £(x)) dH(2)

for H"-a.e. x € M; (independent of w), where L is the tangent space TxN; of N; at
x. Thus (by Definition 1.7 in Ch.3 of Ty M) we have (9) with L = T, M for H"-a.e.
x € M;. On the other hand, provided sptw C Bg(0),

H
(10) Oy 14T (@) = 0y 240T (w) = aT(’Ii,A“’) = /B ( )<w\nx.x<y)’ Nx,240T ) ditor
AR(X

< Clo|A"™ uar (Bir(x)) = 0as A | 0
for H"-a.e. x € M; (independent of w), because by applying (2) withd = nandv = usr

we have
O™ (uar,x) = limsup A" uyr (Ba(x)) < oo for H"-a.e. x € M;.
A0
Thus by (9) and (10), for any sequence Ay | 0,
Nx gt T — Sx, 0Sx = 0 for H"-a.e.x € M,

where Sy € D, (R"*¥) is defined by
(1) 5:(0) = 0(x) [ (0(2).6(0) 44" (2).

w € D"(R"*), L = T.M. We now claim that (11), taken together with the fact
that Sy = 0, implies that £(x) orients L (i.e. §x = £11 A -+ A 7, with 7q,..., Tn
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an orthonormal basis for L). To see this, assume (without loss of generality) that L =
R"x {0} C R"** andselect € D"~ (R"*K) sothatw(y) = y/ @ (y)dy"t A---Adyin—1,
where y = (y1,...,y""%), j > n+ 1, {i1,....in-1} C {1,....n +k},and ¢ €
C2(R**k). Then since y; = 0 on R” x {0} we deduce, from (11) and the fact that
Sy =0,

0=03Sy(w) = Sx(dw) = Q(x)/Ltp(y) (dy’ ndy™ Ao Ady'n=1 E(x)) dH"(y)

= 0(x) [00)E(x) - (e A A= mer, ) dH (7).

That is, since ¢ € CX(R" ) is arbitrary, we deduce that £(x)-(e; Aejy A-+-Ae;, ) =0
whenever j > n + 1 and {iy,...,in—1} C {1,...,n + k}. Thus we must have (since
lE(x)] = 1), E(x) = £e1 A-+- A ey as required. O

We can now give the proof of the Compactness Theorem 3.15. For convenience we first
re-state the theorem.

8.2 Theorem. (Federer-Fleming Compactness Theorem.) If {T;} C D,(U) is a se-
quence of integer multiplicity currents with
) sup(by (Ty) + My (3T;)) < 00 YW CC U,

Jj=1
then there is an integer multiplicity T € Dy (U ) and a subsequence { T} such that Tj» —~ T
inU.

Proof of 8.2: First note that the theorem is trivial in case n = 0. Then assume n > 1 and,
as in inductive hypothesis, suppose the theorem is true with n—1 in place of n. The Weak
Polyhedral Approximation Theorem 6.2 applied to T; also gives an integer multiplicity
polyhedral weak approximation to 97}, hence by applying the inductive hypothesis to
0T, we see that 07} is an integer multiplicity current for each j = 1,2,.. ..

Note that if B,,(§) C U, then by 4.5(1), (2) and an argument like that in 7.7(2) of Ch.
2, we know that, for £l-ae. 7 € (0, pol, 3(Tj- L B,(£)) are integer multiplicity and 8.2
(1) holds with T;/ L B, (&) in place of T; for some subsequence {j'} C {j} (depending
on r) (which we can take to be the original sequence { }), and, again by the inductive
hypothesis,

(1) d(T L B,(£)) isan integer multiplicity current for £'-a.e. r > 0.

In particular (in view of the arbitrariness of the ball B, (§)), we can (and we shall) assume
without loss of generality that spt 7; C Bg(0) for some fixed compact R > 0, and that
U =RP.
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Also, since we are now assuming U = R?, spt T; C Bgr(0), we know that 0%97 —T has
zero boundary and is the weak limit of 0%07; — Tj; since 0% 97T is integer multiplicity
(by the inductive hypothesis) we thus see that the general case of the theorem follows
from the special case when 97 = 0. We shall therefore henceforth also assume 97 = 0.

Next, define (for £ € R” fixed)
F(r) = M(T L B, (), 7 >0.
By virtue of 4.9 we have (since 3T = 0)
(2) M((T L B,(§))) < f'(r), L'-ae.r > 0.

(Notice that f'(r) exists a.e. r > 0 because f(r) is increasing.) On the other hand if
f (o)

ot < n", and hence
n

©*"(ur,§) < 1" /wn (n > 0 a given constant), then limsup, ,
for each § > 0 we can arrange

o) L)) =

forasetof r € (0,8) of positive £L'-measure. (Because 3 foa %(fl/” (r))dr <871 YU (8)
< n for all sufficiently small § > 0.)

Now by (1) and the Isoperimetric Theorem, we can find an integer multiplicity S, €

D, (R?) such that S, = (T L B,(£)) and

4) M(S,)"T < M(3(T L B ()))
< enM(T L B (§)"7

1

(by (2), (3))

for a set of r of positive £'-measure in (0,8).> Since § was arbitrary we then have both
(1), (4) for a sequence of r | 0. But then (since we can repeat this for any & such that
©*"(ur.§) < n) if K is any compact subset of {x € R : ©*"(ur,x) < n}, by Re-
mark 4.4(3) of Ch. 1, for each given p > 0 we get a pairwise disjoint family B; = B, (&)
of closed balls covering ur-almost all of K, with

U;B; C {x :dist(x,K) < p}
and with

(5) M(S\”)) < cqM(T L B))

SIncase n = 1, (1), (2), (3) (for n < %) imply (T L B-(£§)) = 0, hence we get, in place of (4),
M(S,) < M(T L B, (§)) trivially by taking S, = 0.
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for some integer multiplicity ;" with

(6) 85" = 3(T L B)).

Now because of (6) we have S}p) —TL B =0({}x% (S;p) — T L B;)), and hence (by
2.34, 2.37) we have for o € D"(RF)

8.3 ((S\”) =T L B;)(w)| < cpM(S” — T L B;)|dol

< cpM(T L B;)ldo|  (by (5)).

Therefore we have }; (S](p) —TL B;j) = 0asp | 0, and since the series ) S}p) and
> ;T L Bj are M-absolutely convergent (by (5) and the fact that the B; are disjoint) we
thus have

(7) (T -, TLB)+3,;8° ~T

as p | 0. Using (5) again, together with the lower semi-continuity of My, (W open)
under weak convergence, we then have

(8)  pr({x:dist(x, K) < p})
< pr({x:dist(x, K) < p} \ K) + enur ({x : dist(x, K) < p}).

Choosing 7 such that ¢y < 1, this gives
wr({x :dist(x, K) < p}) < 2ur({x :dist(x,K) < p} \ K)

Letting p | 0, we get ur(K) = 0.
Thus we have shown that ®*" (ur,x) > 0 for ur-a.e. x € RP. We can therefore apply

8.1 in order to conclude that T = z(M, 0, &) as in 8.1. It thus remains only to prove that
0 is integer-valued. This is achieved as follows:

First note that for £L"-a.e. x € M we have (Cf. the argument leading to (9) in the proof
of Theorem 8.1)

(9) NeasT = O(x)[TxM] as A 10,

where [T ] is oriented by &(x). Assuming without loss of generality that 7, M = R” x
{0} ¢ R and setting d (y) = dist(y, R" x {0}), by 4.5(1) we can find a sequence A; |, 0
and a p > 0 such that the slice (1x,5,4+T.d. p) (notation as in §4) is integer multiplicity
with

(10) Mw ((nx,;4T.d.p)) < ¢ (independent of ;)
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where W = B?(0) x RP~ < RP. Next, we choose {j'}  {j} and p > 0 so that
Nxa;#Tjr = 0(x)[TxM] (which is possible by (9) and the fact that 7; — T), and so
that (10) remains valid with Tj/ instead of 7' (which is justified by 4.5(1) and a selection
arguments in 7.7(2) of Ch.2). Then by 4.5(2) we have S; = (nx,4,;+T;) L {y : d(y) < p}
is such that

(11) sup(Mw (S;) +Mw (3S;)) < 00

Jj=1

with W = B?(0) x RP~" ¢ R”. Now let p denote the restriction to W of the orthog-
onal projection of R” onto R”; and let S; be the current in D, (W) obtained by setting
Si(w) = 8;(@), w € D"(W),® € D"(RF) such that @ = w in W and @ = 0 on
R? \ W. Then we have p#gj € D, (B} (0)), and hence, by 2.42 and (11) above,

p#Sj(w) = / ( )aej dL", o =adx' A---Adx", a € CCOO(IR"),
By (0
for some integer-valued B Vi, (B} (0)) function 6; with

MB;'<0)(P#§/') = /Bn

ME;?(0> (3P#§j) = 57 (0) |DO;|.

1

16;1d "
(12) (0)

Then by (11), (12) we deduce fB{'(o) |DO; | —I—fB{,(O) |0;|dL" < ¢, cindependent of j, and
hence by the Compactness Theorem 2.6 of Ch.2 we know 6, converges strongly in L' in
B7(0) to an integer-valued BV function 6x. On the other hand S; — 6(x)[[R” x {0}]]
by (9), and hence pzS; — 0(x) ps[R" x {0}] = 6(x)[R"] in B?(0). We thus deduce
that 0, = 6(x) in BY(0); thus 6(x) € Z as required. O
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CHAPTER 6 PROBLEMS

6.1 Let ,7(7),y be as in Q3.1 of Ch.3 problems.

(1) If h : R* — R” is continuous, prove that the change of variable formula

b L
[ 0y s = [ a7 ds
is valid at least when & > 0 with |y/(x)| > ¢ for a.e. x € [a, b].

Hint: Show in this case that T € [0, L] — ¢(t) € [a,b] isa 1 1, mcreasmg, L1psch1tz map of [0, L] onto
[a, b], and hence (by the 1-dimensional area formula) we have f W S (x)dx = f() (r))t’(tr)dt for each
L'([a, b]) function f.

(i1) Prove the formula in (i) is valid without the assumption |y/(x)| > e.

Hint: To start, apply (i) to ve(t) = (v(2),et) : [a,b] — R"T1 and note that Ye(r) — V() on
[0, L]—because if t¢(t), Ve (T), Le are the analogues of 2 (t), y (), L when we use ye in place of y, then, as
€4 0,Ls | L and (1) increases to some limit s(7) with length(y|[a, s(t)]) = t, hence s(7) < t(7),
yl[s(2), ()] = const., and Ve (1) = ye(te(7)) = v(s(2)) = y(t(7)) =¥ (7).

6.2 Using the result of 6.1(ii) above, prove that if y; : [a;,b;] — R" is a sequence as in
Q2.1 of Ch.2 problems, then there is a Lipschitz y : [0, 1] — R” and a subsequence y;-

such that ,
7 1
[l v dx = [ (@, 7' ) dx
a;’

J

for each continuous 1-form w = Y 7_, w;dx’ on R", where (»,v) denotes the dual
pairing between 1-forms and vectors in R”.

Note: The above is a vergmn of the 1-dimensional case of the Federer- Flemmg compactness theorem for inte-

gral currents, because fa , w'l’, (x)s Vi (x)) dx = Tj/(w), where T; is the 1-dimensional integer mul-
tlphcny current given by = vyj#l(a;,bj)]; by the area formula this can be represented T (w) =
fl‘ (y)}N(yj, )d?-l (), where Fj = y;(la;j,b;]) and 77; is a Borel measurable unit vector

functlon on F '/ which orients the approximate tangent space of T'; for #!-a.e. y € T;.

6.3 Let V be a convex open subset of RZ, U is open in R”, f, g : U — V are proper C*®
maps, and /1 : [0,1] x U — V is the affine homotopy A(t,x) = 1g(x) + (1 —1¢) f(x).
(1) Show that £ is not proper if g(x) = — f(x) foreach x € U.

(ii) If, in addition to the assumptions above, U is bounded and f = f|U, g = g|U with
f ., & continuous on U, prove that / is proper if f = g on dU.
Hint: By definition of proper (i.e. the preimage of each compact set in V is a compact set in U), f : U = V

is proper if and only if the following property holds: Whenever {xx} C U with either |xx| — o0 or
dist(xg, dU) — 0, then either | f (xx )| = oo or dist(f (xx), V) — 0
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6.4 In lecture we proved that if T € D, (U) with M(T) < co,M(3T) < oo, if f, g :
U — V are C! maps such that f|spt T, g|spt T are proper, and if f|sptT = g|spt T,
then fiT = g:T.

Give an example to show that this may fail without the condition M(97") < oo.

Hint: Let T € D1 (R) be defined by T (@) = a(0) for any 1-form o = adx' € D' (R).

6.5 Check the claim 2.20 of Ch.6 of the text: That by applying 2.17, 2.18, one can check
that My, xw, (S x T') = My, (S) My, (T), assuming S, T € D, (U) have locally finite

massin U.

6.6 Suppose R € D, (R") (i.e. we are in the setting P = n and U = the whole Euclidean
space), and suppose R is an integer multiplicity current of finite mass.

(1) Prove that there are pairwise disjoint Lebesgue measurable subsets U;, j = £1,+2, ...,
of R” such that R = Z;‘;l JlU;] - Z;‘;l JU-;] and M(R) = Zj’;l j (LM (U;) +
L"(U-;))-

) Ifv, = U2 Uk forj=1,2,...and W; = Uel 4, U=k for j =0,1,... (note that
then Vj41 C Vj and W; C Wj—y for each j = 1,2,...), prove that R = 372, [V;]] -
Y j=o[W;] and MI(R) = 372, (L7 (V;) + L" (W)

Hint: Ifa; > Oforeach j = 1,2,... and b; =Zf.;iaj,then2?il b; =Zj~>il jaj.

) U Vv, j =12,...,W,j =01,2,...areasin (i), and if V_; = R* \ W, for
j=0,1,2,...(sonow V41 C V;forall j =0, +£1,...)provethat R = Y22 av;]

j=—00
(and the sum makes sense—i.e. o € D" }(R") = Y72 oollVil(dw) is a convergent
series).

6.7 f T € D,—1(R") is an integer multiplicity current with spt 7 compact, M(T) < co
and 9T = 0, prove that the cone 0XT (defined as in § 2 of Ch.6 of the text) is also integer
multiplicity of finite mass. Hence, using the result of Q. 6.6 above, prove that there is a
sequence Vj, j = 0,£1, £2, ..., of Lebesgue measurable sets with V1 C V; for each j
suchthat T = Y72 0[V;] and M(T) < >, M(3[V;])).

Jj=—00

Remark: Actually equality holds in the last inequality, i.e. M(T") = >_; M(3[V;]), but we are not quite in a
position to prove this because we skipped the discussion of sets of locally finite perimeter (§ 4 of Ch.3 of the
text).

Suggestion: Take a look at a few examples of the case when T = ([0, 1]), where y is a C! immersion of
[0, 1] into R? with y(0) = y(1) (which ensures 3T = 0); it is interesting to see how the sets V; work out
in such cases, when y has a few self-intersections.
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6.8 (Degree of a mapping.) Suppose U is bounded open in R” and f : U — R" is
continuous with f|U € CH(U,R"),let U = U \ f~1(f(dU)) # @, and f=fU.
Also, let Wi, Wa, ... Wx or Wi, Wa, ... denote the connected components of R* \ f(dU)
(the latter alternative in the event there are infinitely many connected components).

(i) Provethat / : U — R"\ f(9U) is proper.

(ii) Prove f4[U] = >~ dj[[W;]l, where (a) d; € Z for each j, and (b) d; # 0 = W; C
f(U).

(iii) Prove furthermore that (a) |d;| < H°(f~'y) for L -a.e. y € W}, (b) |d;] is con-
gruent to H°(f~'y) mod 2 for L"-a.e. y € W}, and (c) d; = H°(f~'y) for any point
y € W, such that Jz(x) > 0foreachx € f~1y.

Hint: f#[[U]] = fU (d ‘va el A Aey)dL! = f (@) f(x)> Afixs(e1 Ao Aen))ydL;

compute usmg area formu a.

Note: For y € W;, d; is called the (topological) degree of the map f at y, denoted d (£, U, y).

6.9 (Invariance of degree under homotopy.)

(i) HU, f,W;,d; are asin Q.6.8, K compact D f(dU),and V = U \ f~1K # @, then
J[V] = >; ci[ Ei]l, where E; are the connected components of R” \ K, and each E; C
some W; with ¢; = d;.

(i) If U is bounded open in R” and 4 : [0, 1
is C! for each ¢ € [0, 1], with f;(x) = h(
d(f1,U,y) Yy e R"\ h([0,1] x aU).

Hint: Show d (f;, U, y) is a continuous function of ¢ for y € R" \ A([0, 1] x U ).

] x U — R" is continuous, if f; : U — R”
t,x) for x € U, prove that d(fo,U,y) =

6.10 Let P(z) = z" + Z;';(l) a;z’, where aq,...,an—1 are given complex constants.
Prove, using Q. 6.9 above, the “Fundamental Theorem of Algebra” that P(z) = 0 has a
root (hence n roots by the Remainder Theorem and induction on n).

Hint: View P as a map of R> — R? and take U = {(x,¥) : |(x,¥)| < R} (ie. {z : |z] < R}). Let
Po(z) = z" (as a map R?> — R?) and prove (by direct computation with the aid of the area forrnula) that
Po4[U] = n[U]. Then show problem 6.9 is applicable with homotopy &(¢,x,y) = 2" + ¢ Z/ —o0a;z’,
z = x + iy, if R is large enough.

6.11 (i) (Constancy theorem on a submanifold.) Suppose M is a connected oriented n-
dimensional submanifold of R? and let U C R be open with M Cc U. If T € D, (U)
withspt T C M, M(T) < oo, 7")|x € Ay (TxM) for pr-a.e. x € M, and 9T = 0, prove
that T = ¢ [M ] for some real constant c.

Hint: Use local coordinates and the constancy theorem (proved in lecture) in R”.

(i) Give an example to show that the above is false without the hypothesis 7|x €
An(TeM).
Hint: Consider M = {0} X R C R?.
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6.12 (Degree of a map between n-dimensional manifolds.) (i) If M, N are compact ori-
ented connected C'! submanifolds (without boundary) of R” and R respectively, and
if f: M — N is C1, prove (using 6.11(i) above) fi[M] = d [N] for some d € Z.

Note: d = d(f) is called the degree of the map f : M — N.

(i) If M, N are asin (i) and if 4 : [0, 1] x M — N is continuous with f; = M — N of
class C1 foreach s € [0, 1], where f;(x) = h(z,x) forx € M, provethatd (fo) = d( f1).

6.13 Give an example to show that the Federer-Fleming compactness theorem (Theo-
rem 3.11 of Ch.6 of the text) fails without the hypothesis that sup; My (37;) < oo.

Hint: Modify the example in Q2.11 of Ch.2; instead of vertical cylinders use the vertical strips {(x,y,z) €
R3:|x—i/N|<1/N2,y = j/N, z € R} with orienting 2-vector e| A e3,i,j € {0,%1,£2,...}.

Note: Even better, deleting the z coordinate in the same example (so the vertical strips become line segments
with orienting 1-vector ey) gives a 1-dimensional sequence in R?.
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1 Basic Concepts

Suppose A is any subset of R"**, A C U, U open in R**k and T € D, (U) an integer
multiplicity current.

1.1 Definition: We say that 7 is minimizing in 4 if
My (T) < Mw (S)

whenever W CcC U, 9S = 9T (in U) and spt(S — T') is a compact subset of A N W.

There are two especially important cases (in fact the only cases we are interested in here)
of this definition:
(1) when A =U

(2) when A = N with N C U an (n + k)-dimensional embedded C? submanifold of
R™*¥ (in the sense of §4 of Ch.2).

Corresponding to the current T = t(M, 0, &) € D, (U) we have the integer multiplicity
varifold V = v(M, 0). As one would expect, V is stationary in U if T is minimizing in
U and 9T = 0:
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1.2 Lemma. Suppose T is minimizing in N, where N is an (n + k)-dimensional C? em-
bedded submanifold of R*"*L (L > k,so N = U, an open subset of R"t% isan important
special case) and suppose 0T = 01in N. Then V is stationary in N in the sense of 2.6 of Ch.
4, so that in particular V has locally bounded generalized mean curvature in N (in the sense

of 3.15 of Ch.4).
In fact V is minimizing in N in the sense that
() Mw (V) < Mw (¢4V),

whenever W is open in N with W CC N and ¢ is a C' diffeomorphism of N such that
@(N) C N and ¢|N \ K = 1 y\k for some compact K C W.

1.3 Remark: In view of 1.2 (together with the fact that 6 > 1) we can represent T =
T(My, O+, &) where M, is a relatively closed countably n-rectifiable subset of U, and 6,
is an upper semi-continuous function on M with 6, > 1 everywhere on M, (and 6
integer-valued H"-a.e. on My).

Proof of 1.2: Evidently (in view of the discussion of §2 of Ch.4) the first claim in 1.2
follows from 1.2 (1) (by taking ¢ = ¢; in 1.2 (%), ¢; is in 2.5 of Ch.4).

To prove 1.2 (1) we first note that, for any W, ¢ as in the statement of the theorem,
(1) Mw (¢4V) = Mw (¢4T)
by 3.2(3) of Ch.6. Also, since T = 0 (in U), we have

(2) 8<p#T :go#aT:O.
Finally,
(3) spt(T —@sT) C K C W.

By virtue of (2), (3) we are able to use the inequality of 1.1 with § = @47 This gives 1.2
(f) as required by virtue of (1). O

We conclude this section with the following useful decomposition lemma:

1.4 Lemma. Suppose T1,T» € Dn(U) are integer multiplicity and suppose Ty + T» is
minimizing in A, A C U, and

My (Ty + T») = My (T1) + My (T2)
Joreach W CC U. Then Ty, Ty are both minimizing in A.
Proof: Let X € D, (U) be integer multiplicity with spt X C K, K a compact subset of
AN W,and with X = 0. Because T} + T is minimizing in A we have (by 1.1)

Mw (T1 + T» + X) = Mw (T1 + T2).
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However since My (71 +T2) = My (Ty) + My (T2), and M(T; + T + X ) < My (T1 +
X) 4+ My (T3), this gives

Mw (Ty) < Mw (T) + X).

In view of the arbitrariness of X, this establishes that 77 is minimizing in A N W (in
accordance with 1.1). Interchanging 71, T» in the above argument, we likewise deduce
that 75 is minimizingin AN W. O

2 Existence and Compactness Results

We begin with a result which establishes the rich abundance of area minimizing currents
in Euclidean space.

2.1 Lemma. Let S € Dy (R**F) be integer multiplicity with spt S compact and S = 0.
Then there is an integer multiplicity current T € Dy (R"*) such that spt T is compact
and MI(T) < M(R) for each integer multiplicity R € D, (R"**) with spt R compact and
oR = S.

2.2 Remarks: (1) Of course T is minimizing in R"*¥ in the sense of 1.1.

(2) By virtue of 1.2 and the convex hull property (Theorem 7.2 of Ch.4) we have auto-
matically that spt 7 C convex hull of spt S.

n—1

B)M(T) & < cM(S) by virtue of the Isoperimetric Inequality 6.1 of Ch.6.

Proof of 2.1: Let
Is = {R € D, (R"™) : R is integer multiplicity, spt R compact, dR = S} .
Evidently Zg # @. (e.g. 0XS € Zg.) Take any sequence {R;} C Zs with

(1) lim M(R;) = inf M(R),

q—>0 ReZg

let Bg(0) by any ball in R*** such that spt S C Bg(0), and let f : R"*¥ — Bg(0) be
the nearest point (radial) retract of R**¥ onto Bg(0). Then Lip f = 1 and hence

(2) M(fiRg) = M(Ry).

On the other hand df4R; = f40R; = f4:S = S, because f|BR(O) = lgg(0) and
spt S C Bgr(0). Thus fyR; C Zg and by (1), (2) we have

(3) lim M(f;R,) = inf M(R).

gq—>o0 ReZg
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Now by the Compactness Theorem 3.15 of Ch. 6 there is a subsequence {¢'} C {¢} and
an integer multiplicity current T € D, (R"**) such that f;R,» — T and (by (3) and

lower semi-continuity of mass with respect to weak convergence)

(4) M(T) < inf M(R).

However spt T C Bg(0) and 97 = lim dfy Ry’ = lim f40R, = S, so that T € Zg, and
the lemma is established (by (4)). O

The proof of the following lemma is similar to that of 2.1 (and again based on 3.15 of Ch.
6), and its proof is left to the reader.

Lemma. Suppose N is an (n + k)-dimensional compact C' embedded submanifold in R"t*
and suppose Ry € Dy (R"T*) is given such that 0R; = 0, spt Ry C N and

IR, = {R € D, (R"™%) : R — Ry = 3S for some integer multiplicity
S € Dpsr (R"F) with spt S C N} £ Q.

Then thereis T € I, such that

M(T) = Rg%ljel M(R).

2.3 Remarks: (1) R — Ry = 0S with S integer multiplicity and spt S C N means that
R, R; represents homologous cycles in the n-th singular homology class (with integer
coefhicients) of N (See [Fed69] or [FF60] for discussion.)

(2) It is quite easy to see that T is locally minimizing in N; thus for each £ € spt T there
is a neighborhood U of £ such that T is minimizingin N N U.

We conclude this section with the following important compactness theorem for mini-
mizing currents:

2.4 Theorem. Suppose {T;} is a sequence of minimizing currents in U with
sup;- (Mw (T;) + Mw (7} )) < oo for each W CC U,

and suppose T — T € Dy(U). Then T is minimizing in U and jur; — ur (in the usual
sense of Radon measures in U).

2.5 Remarks: (1) Note that 7, — j17 means the corresponding sequence of varifolds
converge in the measure theoretic sense of § 1 of Ch.4 to the varifold associated with T'.
(T is automatically integer multiplicity by 3.15 of Ch.6.)

(2) If the hypotheses are as in the theorem, except that spt7; € N; C U and T; is
minimizing in Nj, {N; } a sequence of C! embedded (n + k)-dimensional submanifolds
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of R"*¥ converging in the C! sense to N, N C U an embedded (1 + k)-dimensional C'!
submanifold of R"*¥.! then 7 minimizes in N (and we still have 17, — w7 in the sense
of Radon measures in U). We leave this modification of 2.4 to the reader. (It is easily
checked by using suitable local representations for the N; and by obvious modifications
of the proof of 2.4 given below.)

Proof of 2.4: Let K C U be an arbitrary compact set and choose a smooth ¢ : U — [0, 1]
such that ¢ = 1 in some neighborhood of K, and spt¢ C {x € U : dist(x,K) < ¢},
where 0 < & < dist(K, dU) is arbitrary. For 0 < A < 1, let

Wy={xeU:¢(x)>A1}
Then
(1) KcWw,ccU

foreach 1,0 < A < 1.

By virtue of 7.2 of Ch.6 we know that dw (T;,T) — 0 for each W CC U, hence in
particular we have

(2) T —Tj = 3R + Sj. Mw,(R;) + M, (S;) >0

(Wo ={x €U :p(x)>0}).
By the slicing theory (and in particular by 4.5 of Ch.6) we can choose 0 < o < 1 and a
subsequence {j’} C {j} (subsequently denoted simply by {j }) such that

(3) (R LWy)=(0Rj)_Wy+ P;
where spt P; C 0Wy, P; is integer multiplicity, and

(4) M(P;) — 0.

We can also of course choose @ to be such that

(5) M(T; L dW,) = 0 ¥ and M(T L 3W,) = 0.
Thus, combining (2), (3), (4) we have

(6) TL Wy=Ti L Wy+0dR; +5;

"Thus 3y : U — U, ¥;|N; in a diffeomorphism onto N, and y; — 1y locally in U with respect to
the C! metric.
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with R;, S; integer multiplicity (R; = R; L Wy, S; = S; L W, + P;) with
(7) M(R;) +M(5)) - 0.

Now let X € D, (U) be any integer multiplicity current with dX = 0 and spt X C K.
We want to prove

(8) MWa(T) SMWQ(T—FX).

(In view of the arbitrariness of K, X this will evidently establish the fact that 7' is mini-
mizing in U.)

By (6), we have

9) My, (T + X) = My, (Tj + X + 9R; + S;)
> My, (T; + X + R;) — M(S;).

Now since 7 is minimizing and 8(X + dR;) = 0 with spt(X 4+ dR;) C W, we have
(10) My, (T; + X + 9R;) = My, (T;)

for A > a. But by (3) we have M(dR; L W, ) = M(P;) — 0,and by (5) M(T; L W) =
0, (T L dW,) = 0. Hence letting A | 0 in (10) we get

(11) M, (T; + X + 9R;) = My, (T;) — M(P)),
and therefore from (9) we obtain

(12) Mw, (T + X) > Mw, (T;) —&;, & | 0.
In particular, setting X = 0, we have

(13) Mw, (T) = Mw, (T;) —¢&j. & | 0.

Using the lower semi-continuity of mass with respect to weak convergence in (12), we
then have (8) as required.

It thus remains only to prove that ju7; — 7 in the sense of Radon measures in U. First
note that by (13) we have

lim sup My, (Tj) < M, (T),
so that (since K C W, C {x : dist(x, K) < &} by construction)

lim Sup Ur; (K) = M{x:dist(x,K)<8} (T)
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Hence, letting ¢ | 0
(14) limsup ur; (K) < pur(K).

(We actually only proved this for some subsequence, but we can repeat the argument for
a subsequence of any given subsequence, hence it holds for the original sequence {7 }.)

By the lower semi-continuity of mass with respect to weak convergence we have
(15) pur (W) < liminf uz;, (W) V open W CC U.

Since (14), (15) hold for arbitrary compact K and open W C U, it now easily follows
(by a standard approximation argument) that [ f dur; — [ f dpr for each continuous
f with compact support in U, as required. O

3 Tangent Cones and Densities

In this section we prove the basic results concerning tangent cones and densities of area
minimizing currents. All results depend on the fact that (by virtue of 1.2 the varifold
associated with a minimizing current is stationary. This enables us to bring into play the
important monotonicity results of §4 of Ch.4.

Subsequently we take N to be a smooth (at least C?) (n + k)-dimensional embedded

submanifold of R?*Z (L > k), U open in R"** and (N \ N) N U = @. Notice that an
important case is when N = U (when L = k).

3.1 Theorem. Suppose T € D,(U) is minimizing in U N N, sptT C U N N, and
x €sptT \ sptdT. Then

(1) ©"(pr, x) exists everywhere in U and is an upper semi-continuous function of x € U;
(2) For each x € sptT and each sequence {A;} | O, there is a subsequence {A;'} such
that N, wT — Cand py, , v — pc in R"**, where C € D, (R"*K) is integer

)

multiplicity and minimizing in R"*K, 9o 1,C = C VYA > 0, and O"(juc,0) =
©"(ur, x).

3.2 Remarks: (1) If C is as in 3.1(2) above, we say that C is a tangent cone for T at
x. If spt C is an n-dimensional subspace P. Notice that since C is integer multiplicity
and 3C = 0, it then follows from 2.41 of Ch.6 that, assuming we chose an appropriate
(constant) orientation for P, C = m[P]| for some m € {1,2,...}. In this case we call
C a multiplicity m tangent plane for T at x.

(2) Notice that is nor clear whether or not there is an #nigue tangent cone for T at x;
thus it is an open question whether or not C depends on the particular sequence {1, } or
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subsequence {4} use in its definition. The work of [Sim83] shows that if C is a tangent
cone of T at x such that " (uc,x) = 1forall x € sptC \ {0}, then C is the unique
tangent cone for T at x, and hence 1, 47 — C as A | 0. Also B. White [Whi82] has
shown in case n = 2 that C is always unique with spt C consisting of a union of 2-planes.

Proof of 3.1: By virtue of 1.2 we can apply the monotonicity formula of 4.3 of Ch.4
(with @ = 1) and 4.7 of Ch.4 in order to deduce that ®" (uur, x) exists for every x € U
and is an upper semi-continuous function of x in U.

Thus in particular
(1) (wan)_lMéR(o)(Ux,Aj#T) = (a),,/l_;?R")_lMgljR(x)(T) — ©"(ur. x)

foreach R > 0, and hence sup; Mék(o)(nx,lj#T) < ooforeach R > 0, while 0y 34T =

0 in Bg(0) for sufficiently large j (because x ¢ sptdT), so we can apply the compact-
ness theorem 2.4 to give a subsequence j’ such 7y, 24T — Cin R"*+* with C integer

multiplicity minimizing?, so
(2) C =t(sptC,£,0" (uc,")),

Ky i W7 = e in R*"* and (by Lemma 1.2) the rectifiable varifold
"]

(3) Ve = v(sptC, 0" (uc,+))

is stationary in R"*¥. In particular for any p > 0 with jc (9B, (0)) = 0 (which is true
except for at most a countable set of p) we have

(4) Moy, 4T (Bo(0)) = e (Bo(0)),

and together with (1) gives (w,p") ' (B, (0)) = ©" (7, x) for each p > 0. Then by
the monotonicity formula 3.8 of Ch.4, applied to the stationary varifold V¢ of (3), we
have D17 = 0 juc-ae., where r = |x|, and D1r is orthogonal projection of Dr = r~1x
onto the normal space (T spt C)*. That is x € Ty spt C for puc-a.e. x, so in particular

x A C =0 pc-a.e. and hence we can apply Lemma 2.40 to deduce that C is a cone. O

3.3 Theorem.’ Suppose T € Dy (U ) is minimizinginU NN, spt T C UNN,and T =0
(inU). Then
(1) ©"(ur.x) € Z forall x € U\ E, where H" >**(E) = 0 Va > 0;

2See Remark 2.5; notice this establishes first that C is minimizing only in the (n + k& )-dimensional subspace
TN C R"tk_ However since orthogonal projection of R onto T N does not increase area, and since

spt C C Ty N, it then follows that C is area minimizing in R” ¥ as claimed.
3 Cf. Almgren [Alm84]
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(2) Thereisaset F C E (E as in (1)) with H" *T*(F) = 0 Ya > 0 and such that for
each x € spt T \ F there is a tangent plane (see 3.2 (1) above for terminology) for T at
X.

Note: We do not claim E, R are closed.

The proof of both parts is based on the abstract dimension reducing argument of Appendix A.
In order to apply this in the context of currents we need the observation of the following

remark.

3.4 Remark: Given an integer multiplicity current S € D, (R"*¥), there is an associ-
ated function g5 = (¢3,¢L,.... @) : R** — RV*! where N = (n:k), such that
(writing 05 (x) = 0*" (s, x))

g5 (x) = 05 (x). ¢5(x) = Os(x)Eg(x). j =1..... N,

where £{(x) in the j-th component of the orientation S(x) relative to the usual or-
thonormal basis e;, A+~ Aej,, 1 <iy <ip <---<ip <n-+kforA, (R"+*) (ordered
in any convenient manner). Evidently, for any x € R**¥,

os(x +Ay) = @y, ,s(). y e R,

and, given a sequence {S;} C D, (I + R"*¥) of such integer multiplicity currents, we
trivially have

o} dH" > @l dH" Vje{l.... N} < S —~§

and
¢s AH" > s dH" < ps, > s
(where ¥; dH" — Y dH" means [ fy; dH" — [fydH" V f € Cc(R"F)).

We shall also need the following simple lemma, the proof of which is left to the reader.

3.5 Lemma. Suppose S is minimizing in R"t* 98 = 0, and
Ne1sS = S Vx € R™ x {0} c R"+F
for some positive integer m < n. (Recall nx1 1 y > y —x, y € R"**.) Then
S = [R™] x So,
where Sy = 0 and Sy is minimizing in RrHk—m,

Furthermore if S is a cone (i.e. 1o S = S for each A > 0), then so is So.

Proof of 3.3(1): For each positive integer m and B € (0, 3) let

(1) Unp={x€U:0"(urx) <m—p}.
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Now T is minimizing in U N N, so by the monotonicity of 4.3 of Ch.4 (which can be
applied by virtue of 1.2) we have, firstly, that U, g is open, and secondly that for each
x € Uy, g, there is some ball B>,(x) C U,y g such that

ur(Bs(y)) B
Wfﬂ’l—z V0<p, yEBp()C).

(2)
We ultimately want to prove
(3) H 3TUS_ {x €Upp:m—1+B <O (ur,x) <m—B})=0

for each sufficiently small o, 8 > 0 and, in view of (2), by a rescaling and translation it
will evidently suffice to assume

: ur(Bs(y))

(4) By(0) = U. ==

<m-B Vo <1, y € B;(0),

and then prove
() M3 {x € B1(0) : ©"(ur.x) =m—1+ B} =0.

We consider the set 7 of weak limit points of sequences S; = 7y, 2,47 where |x;| <
1-4;,0 <A; <1,withlimx; € B;(0) andlimA; = A > 0 both existing. For any such
sequence S; we have (by (4))

(6) lim sup My (S;) < o0

for each W CC 1y (U) in case A > 0, an for each W CC R”tk in case A = 0.
Hence we can apply the Compactness 2.4 to conclude that each element S of 7T is integer
multiplicity and

(7) S minimizes in 7y U Ny a N incase S = limny, 3,47
with limx; = x and limA; = A > 0, and
(8) S minimizes in all of R** in case § = lim Nx; a4 T

with limx; = x and lim A; = 0. (Cf. the discussion in the proof of 3.1(2).)

For convenience we define

9) Ug — {Ux,AU in case limA; > 0 (as in (7))

R*tK  in case limA; = 0 (as in (8))

so that S € D, (Us) foreach S € T.
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Now by definition one readily checks that

(10) e T =T, 0<A <1, |x|<1-2,
and, by (4),
(11) O"(ns.y) <m—pVyeUs, SeT.

Furthermore by using the compactness theorem 2.4 together with the monotonicity 4.3
of Ch.4, one readily checks that if §; — S (S;, S € T)and if y,y; € B1(0) with
lim y; = y, then

(12) O"(us,y) = limsup O" (us;, yi)-

It now follows from (10), (11), (12) and 2.4 that all the hypotheses of Theorem A.4 (of
Appendix A) are satisfied with

(13) F ={¢s:S €T} (usingnotation of Remark 3.4)
and with sing defined by
(14) singps = {x € Us : " (us, -)>m—1+ B}

for § € T. We claim that in this case the additional hypothesis is satisfied with d = n—3.
Indeed suppose d > n — 2; then thereis S € T and 534S =S Vy € L, A > 0 with L
an (n —2)-dimensional subspace of R"**, L C sing 5. Since we can make a rotation of
R"** to bring L into coincidence with R?~2 x {0}, we assume that L = R"~2 x {0}.
Then by 3.5 we have

(15) S = [R"7?] x So.

where Sg € Do (RY), N = 2+ k, with Sp a 2-dimensional area minimizing cone in RY.
Then spt So is contained in a finite union U7_, P; of 2-planes, with P; N P; = {0} Vi #
J - (For a formal proof of this characterization of 2 dimensional area minimizing cones,
see for example [Whi82].) In particular, since ®" (us, - ) is constant on P; \ {0} (by the
Constancy 2.41 of Ch.6), we have that ®" (s, y) € Z for every y € R"**, and by (11)
it follows that ©" (s, y) <m —1 Vy € R"**, That is, singps = @, a contradiction,
hence we can take d = n — 3 as claimed. We have thus established (5) as required. [

Proof of 3.3(2): The proof goes similarly to 3.3 (1). This time we assume (again without
loss of generality) that

(1) U = B,(0),
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and we prove that 7 has a tangent plane at all points of spt 7 N B1(0) except for a set
F CsptT N By(0) with

(2) H'2HE(F) =0 VYa > 0.

T is as described in the proof of 3.3 (1), and for any S € 7 and 8 > 0 we let
Rp(S) = {x esptS:By(x) C Usand h(spt S, L,p,x) < Bp
for some p > 0 and some n-dimensional subspace L of Rk },

where Ug is as in the proof of 3.3(1) (so that S € D, (Us)), and where we define
(3) h(sptS,L,p,x) :SupyESPtSﬂBp(x) Iq(y—x)l,

with ¢ the orthogonal projection of R"** onto L*.
Now notice that (Cf. the proof of 3.3(1))

(4) e T =T VY0O<A<1,|x|<1=4,
and
(5) NxaRp(S) = Rp(nx4S), S€T.

Furthermoreif §; — §, S;, S € T, then by the monotonicity 4.3 of Ch. 4 it is quite easy
to check that if y € Rg(S) and if y; € sptS; with y; — y, then y; € Rg(S;) for all
sufficiently large j. Because of this, and because of (4), (5) above, it is now straightforward
to check that the hypotheses of A.4 hold with (again in notation of 3.4)

(6) F={ps:SeT}
and
(7) singps = spt ©" (15, -) N Us \ Rp(S).

(Notice that Rg (.S) is completely determined by ®" (s, - ), and hence this makes sense.)
In this case we claim that d <n —2. Indeedifd >n—2(i.e.d =n—1)then3dS € T
such that

(8) NS =S VxeL, A>0, and L C singgs

where L is an (n — 1)-dimensional subspace. Then, supposing with loss of generality that
L =R"! x {0}, we have by 3.5 that

(9) S = [R"'] x So.
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where S is a 1-dimensional minimizing cone in R¥*!. However it is easy to check that
such a 1-dimensional minimizing cone necessarily has the form

(10) So = m¢]],

where m € Z and € is a 1-dimensional subspace of R¥*!. Thus (9) gives that S = m[L]]
where L is an n-dimensional subspace and hence sing s = @, a contradiction, so d <
n — 2 as claimed.

We therefore conclude from A.4 that for each S € T

(11) H" 2+ (spt S\ Rg(S) N B1(0)) =0 Ya > 0.
If B; | 0 we thus conclude in particular that

(12) H' 2T (spt T\ USZ, R, (T') N B1(0)) = 0 Var > 0.
However by (1) we see that

(13) x € U2 Rg, (T) <= T hasatangent plane at x,

and therefore (12) gives (2) as required. O

4 Some Regularity Results (Arbitrary Codimension)

In this section, for T € D, (U) any integer multiplicity current, we define a relatively
closed subset sing T of U by

4.1 singT =sptT \ regT,

where reg T denotes the set of points § € spt T such that for some p > 0 there is a
m € Z\ {0} and an n-dimensional oriented C! embedded submanifold M of R”** with
T = m[M] in B,(£).

F.J. Almgren [Alm84] has proved the very important theorem that
H" 2+ (sing T) = 0 Vo > 0

incase spt7 C N, dT = 0 and T is minimizing in N, where N is a smooth (n + k)-
dimensional embedded submanifold of R?*% (where L > k). The proof is very non-
trivial and requires development of a whole new range of results for minimizing currents.

We here restrict ourselves to more elementary results.

Firstly, the following theorem is an immediate consequence of The Allard Theorem 5.2
of Ch.5 and Lemma 1.2 of the present chapter.
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4.2 Theorem. Suppose T € D, (U) is integer multiplicity and minimizing in U N N for
some embedded C? (n + k)-dimensional submanifold N of R***, (N\ N)NU = @, and
supposespt T CU NN, T = 0(inU). Then regT is dense inspt T.

(Note that by definition reg T is relatively open in spt T'.)

The following is a useful fact; however its applicability is limited by the hypothesis that
©"(ur.y) = 1.

4.3 Theorem. Suppose {T;} C D,(U), T € D,(U) are integer multiplicity currents with
T; minimizing in U N N;, T minimizingin U N N, N, N; embedded (n + k)-dimensional
C? submanifolds, and spt T; C N;, sptT C N, dT; = oT = 0 (in U). Suppose also that
N; converges to N in the C? sense in U, T;j — T in Dy(U), and suppose y € N N'U
with O™ (ur,y) = 1, y = limy;, where y; is a sequence such that y; € sptT; Vj. Then
y €regT and y; € regT; for all sufficiently large j.

Proof: By virtue of the monotonicity formula 4.3 of Ch.4 (which is applicable by 1.2)
it is easily checked that

limsup ®" (ur;,y;) < O"(pur,y) =1,

hence (since ®” (1, , ;) = 1 by 4.5 of Ch.4) we conclude that " (ur;, y;) — 0" (ur.y) =
1. Hence by Allard’s Theorem 5.2 of Ch.5 we have y € regT and y; € regT; for all
sufficiently large j. (1.2 justifies the use of 5.2 of Ch.5.)

Next we have the following consequences of A.4 of Appendix A.

4.4 Theorem. Suppose T is as in 4.2, and in addition suppose & € sptT is such that
O"(ur,€) < 2. Then thereisa p > 0 such that

H" 2T (sing T N B,(£)) = 0 Yo > 0.

Proof: Let o = 2 — ©" (ur, &) and let B, (&) be such that B,,(§) C U and

(1) (@n0™) " 1 (Bo(8)) <2—a/2

V¢ esptTNB,(E),0 <o < p. (Notice that such p exists by virtue of the monotonicity
4.3 of Ch. 4, which can be applied by Lemma 1.2.) Assume without loss of generality that
£=0,p=1and U = B,(0), and define 7 to be the set of weak limits S of sequences
{Si} of theform S; = ny, 3,,T, |xi| <1—21;,0 <A; <1, where limx; and limA; = A
are assumed to exist. Notice that

(2) lim sup My (S;) < o0
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for each W CC 1,.4(U) in case A > 0 and for each W cC R"*¥ in case A = 0. Hence
by the Compactness 2.4 any such S is integer multiplicity in Ug

(3) (Us = nx U incase A > 0, Us = R** in case A = 0)
and (Cf. the proof of 3.3(2))

(4) S minimizes in 7, AU N 7y 2N in case A > 0

(5) S minimizes in R"*¥ in case A = 0.

One readily checks that, by definition of T,

(6) Nyl =T,0<t<1, |yl<l—1
Furthermore we note that (by (1))

(7) O"(us,x) =1, us-a.e. x € Ug,

and by Allard’s 5.2 of Ch.5 there is § > 0 such that

(8) singS = {x € Us :0"(us.x)>1+8}, SeT.

Now in view of (4), (5), (6), (7), (8) and the upper semi-continuity of ®" as in (12) in
the proof of 3.3 (1), all the hypotheses of A.4 of A are satisfied with F = {¢s : S € T}
(notation as in 3.4) and with singgps = {x € Us : " (s, x) > 1+ 8} (= singS by
(8)). In fact we claim that in this case we may take d = n — 2, because if d = n — 1
3S € T and gy 24S = S Vx € L, A > 0, where L C sing S is an (n — 1)-dimensional
subspace of R"*¥, then (Cf. the last part of the proof of 3.3(2)) we have § = m[[Q] for
some n-dimensional subspace Q. Hence sing S = @, a contradiction. O

The following theorem is often useful:

4.5 Theorem. Suppose C € Dy, (R"**) is minimizing in R"**, 9C = 0, and C is a cone:
10,4#C = C VA > 0. Suppose further that spt C C H where H is an open 3 -space of R"+k
with0 € dH. Then sptC C d0H.

4.6 Remark: The reader will see that the theorem here is actually valid with any station-
ary rectifiable varifold V in R+ satisfying 1o 14V = V in place of C.

Proof of 4.5: Since the varifold V associated with C is stationary (by 1.2) in R**¥ we
have 6.1 of Ch.4 (Since (Dr)+ = 0 by virtue of the fact that C is a cone),

d

(1) d_p(p_”/wkh‘”(’/p) duc) = p‘”“/}Ron A(VER)p(r/p) duc
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for each p > 0, where r = |x| and ¢ is a non-negative C! function on R with compact
support, and £ is an arbitrary C!(R"**) function. (V€h(x) denotes the orthogonal
projection of Vgn+xh(x) onto the tangent space T,V of V at x.)

Now suppose without loss of generality that H = {x = (x!,... . x"™*): x! > 0} and
select £(x) = x'. Then x - V€h = el - x = e; - xT = re; - VEr, where vT denotes
orthogonal projection of v onto T, V. Thus the term on the right side of (1) can be
written — [pntx (€1 - VEr)(ro(r/p)) dpc, which in turn can be written — [« €g -
VY, duc, where ¥, (x) = f‘i(l) ro(r/p) dr. (Thus ¥, has compact support in R?*¥.)
But e; - V€, = divy (¥,e1), and hence the term on the right of (1) actually vanishes
by virtue of the fact that V' is stationary. Thus (1) gives

p_”/]RHkxl(p(r/p) duc = const., 0 < p < oo.

In view of the arbitrariness of ¢, this implies
p_"/ x1djuc = const.
B,(0)

However trivially we have lim, 0 o™ [, B,(0) X1 due = 0, and hence we deduce
,o_”/ x1dpuc =0Vp> 0.
By (0)

Thus since x; > 0 on spt C (C H), we conclude spt C C 9H (= {x : x! =0}). O
The following corollary of 4.5 follows directly by combining 4.5 and 3.1(2).

4.7 Corollary. If T isas in 4.2, if € € spt T, if Q isa C' hypersurface in R*** such that
& € Qandifspt T islocally on one side of Q near &, then all tangent cones C of T at & satisfy
sptC C TeQ NTeN.

5 Codimension 1 Theory

We begin by looking at those integer multiplicity currents 7 € D, (U) with spt T C
N NU, N an (n + 1)-dimensional oriented embedded submanifold of R*** with (N \
N)NU = @ and such that

5.1 T =90[E]

(in U), where E is an H"*!-measurable subset of N. (We know by 3.20 of Ch.6, 1.4
that all minimizing currents T € D, (U) with 7 = 0 and spt 7 in N can be locally

decomposed into minimizing currents of this special form.)
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5.2 Remark: The fact that 7 has the form 5.1 and 7T is integer multiplicity evidently is
equivalent to the requirement that if V' C U is open, and if ¢ isa C? diffeomorphism of V
onto an open subset of R"** such that (VN N) = G, G open in R"*1, then ¢(E) has
locally finite perimeter in G. This is an easy consequence of 2.42 of Ch. 6, and in fact we
see from this and 4.4 of Ch.3 that any 7T of the form 5.1 with My (T) < co VW CcC U
is automatically integer multiplicity with

(%) O"(T,x) =1, pur-ae. x € U.

We shall here develop the theory of minimizing currents of the form 5.1; indeed we show
this is naturally done using only the more elementary facts about currents. In particular
we shall not in this section have any need of the Compactness 3.15 of Ch. 6 (instead we
use only the elementary BV Compactness Theorem 2.6 of Ch.2), nor shall we need the
Deformation Theorem and the subsequent material of Chapter 6.

The following theorem could be derived from the general Compactness 2.4, but here (as
we mentioned above) we can give a more elementary treatment. In this theorem, and
subsequently, we take U C R"*¥ to be open and O will denote the collection of (1 + 1)-
dimensional oriented embedded C2 submanifolds N of R*** with (N \ N) N U = @,
NNU #@. Asequence {N;} C O issaid to converge to N € O in the C? sense in U
if there are orientation preserving C? embeddings ¥; : N N U — N; with ¥, — Iynu
then 1y, N converges to Tx N in the C? sense in W as A | 0, for each W cC R Tk,

In the following theorem p is a proper C? map U — N N U such that in some neigh-
borhood V'C U of N N U, p coincides with the nearest point projection of V onto N.
(Since the nearest point projection is C2 in some neighborhood of N N U it is clear that
such p exists.)

5.3 (Compactness Theorem for minimizing 7 as in 5.1). Suppose T; € D,(U), T; =
AE;] (in U), E; H" ' -measurable subsets of N; N U, N; € O, N; — N € O in the C?
sense described above, and suppose T is integer multiplicity and minimizing in U N N;.
Then there is a subsequence {T;+} with Tj» — T in D,(U), T integer multiplicity, T =
IWE] (inU), Xpg;,) — XE in LL (K" U), I1;, —> T (in the usual sense of Radon
measures) in U, and T is minimizing in N N U.

5.4 Remarks: (1) Recall (from 5.2) that the hypothesis that 7 is integer multiplicity is
automatic if we assume merely that My (7;) < co VW CC U.

(2) We make no a-priori assumptions on local boundedness of the mass of T; (we see in
the proof that this is automatic for minimizing currents as in 5.1).

(3) Let h(x,t) = x +t(p(x) —x),x € U,0 <t < 1. Using the homotopy formula
2.32 of Ch.6 (and in particular the inequality 2.34 of Ch.6) together with the fact that
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N; — N in the C? sense in U, it is straightforward to check that
Ty =T = 0R;, R = he([(0. )] x T}) + p+[[E;] - [E]

with
My (R;/) — 0 VW cC U,

provided that X, (E;,) — XE as claimed in the theorem. Thus once we establish X ,( ) =
Xg for some E, then we can use the argument of 2.4 (with S; = 0) in order to conclude

(1) T is minimizing in U

(i) pr;, = prinU.
(Notice we have not had to use the deformation theorem here.) In the following proof
we therefore concentrate on proving Xpg,,) — Xg in L (H"T',N N U) for some

J
subsequence {j’} and some E such that [ E] has locally finite mass in U. (T is then
automatically integer multiplicity by 5.2.)

Proof of 5.3: We first establish a local mass bound for the 7 in U: if § € N and B, (§) C
U, then

(1) M(T; L By(£)) < 437 (9B,(6) N V). L. p € (0. po).

This is proved by simple area comparison as follows:

With r(x) = |x —&|, by the elementary slicing theory of 4.5(1),(2) of Ch. 6 we have that,
for £L'-a.e. p € (0, po), the slice ([E;], . p) (i-e. the slice of [E;]] by 9B, (£)) is integer
multiplicity, and (using 7; = 9] E;])),

A[E; N B,(&)] = T; L By(§) + ([Ej]. . p)-
Hence (applying 9 to this identity)
0(Tj L B,(£)) = —0([E;].r.p). L'-ae. p € (0. po).

and by Definition 1.1 of minimizing

M(T; L By (§)) = M([[E;], 7, p)-

Since —7T; is also minimizing in N N U we then have
(2) M(Ty L B,(§)) < min {M([E,]..0). (IE].7.0) }

for £1-a.e. p € (0, pg), where E; = NN U \ E;.
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Now of course [E]] + [E;] = [N N UJ, so that (for a.e. p € (0, po))

([E;D.r.p) + ([E;]. 7. p) = (N.7.p)

and hence (2) gives (1) as required (because M(((N,r, p)) < H"(N N dB,(§)) by virtue
of the fact that [Dr| = 1, hence [V¥r| < 1).

Now by virtue of (1) and 5.2 we deduce from the BV Compactness 2.6 of Ch.2 that
some subsequence {2, (£, )} of {Xp(E;)} converges in LL (H"™',NNU)to Xg, where

E C N is H""-measurable and such that d[[E] is integer multiplicity (in U). The
remainder of the theorem now follows as described in 5.4(3). O

5.5 (Existence of tangent cones). Suppose T = J[[E] € D, (U) is integer multiplicity,
withE C NNU, N € O,and T is minimizingin U N\N. Then for each x € spt T and each
sequence {1; } | O there is a subsequence {1;'} and an integer multiplicity C € D, (R" %)
with C minimizing in R"tk 0 € sptC C TyN, ©"(uc,0) = 0" (ur,x), C = 9[F],
F an H" " -measurable subset of Ty N,

(1) B, o1 = e R Ay, () = XF in Lig (K™ TeN),

where p is the orthogonal projection of R" tk onto Ty N, and
(2) nosC =C, norF = F VA > 0.

5.6 Remark: The proof given here is independent of the general tangent cone Existence
3.1.

Proof of 5.5: As we remarked prior to 5.3, 1 3, N converges to Ty N in the C? sense in
W for each W cC R"**. By the Compactness 5.3 we then have a subsequence ;, such
that all the required conclusions, except possibly for 5.5(2) and the fact that 0 € spt C,
hold. To check that 0 € spt C and that 5.5(2) is valid, we first note by 1.2 that the varifold
V associated with T is stationary in N N U (and that V therefore has locally bounded
generalized mean curvature H in N N U). Therefore by the monotonicity formula 4.3
of Ch.4, and by 4.5 of Ch. 4, we have

O"(uy,x) exists and is > 1.

Since g T = HCs We then have ©"(uc,0) = O"(ur,x) > 1,500 € sptC,
and by Theorem ?? of Ch.4 we deduce that the varifold V¢ associated with C is a cone.
Then in particular x A C(x) = 0 for uc-ae. x € R*"* and hence, if we let & be the
homotopy A(t,x) = tx + (1 —t)Ax, we have h4([[(0,1)]] x C) = 0, and then by the
homotopy formula 2.32 of Ch. 6 (since dC = 0) we have 79 #C = C as required. Finally
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since spt C has locally finite H"-measure (indeed by 4.5 of Ch.4 spt C is the closed set
{y e R"*: ©"(uc,y) > 1}), we have

where F is the (open) set {y € TxN \'spt C : " (H"*! TN, y) = 1}. Evidently
o (F) = F (because ng s (spt C) = spt C). Hence the required result is established
with F in place of F. O

5.7 Corollary.* Suppose T is as in 5.5 and in addition suppose there is an n-dimensional
embedded submanifold ¥ in R"** with x € £ € N N U for some x € spt T, and suppose
spt T \ X lies locally, near x, on one side of T. Then x € regT. (regT is as in 4.1)

Proof:l Let C = 9J[[F]] (F C TxN) be any tangent cone for T at x. By assump-
tion spt[F]] C H, where H is an open 3-space in T N with 0 € 3H. Then, by 4.5,
spt C C 0H and hence the Constancy 2.41 of Ch.6 since C is integer multiplicity recti-
fiable, it follows that C = +d[[H]. However spt[F]] C H, hence C = +3[[H]]. Then
©"(uc,y) = 1for y € dH, and in particular " (uc,0) (= O"(ur,x)) = 1, so that
x € reg T (by Allard’s Theorem 5.2 of Ch.5) as required.

We next want to prove the main regularity theorem for codimension 1 currents. We
continue to define sing T, reg T as in 4.1.

5.8 Theorem. Suppose T = [ E] € D,(U) is integer multiplicity, with E C N N U,
n € O,and T minimizingin N NU. ThensingT = @ forn < 6, sing T is locally finite in
Uforn="7and H" "% (singT) = 0 Ya > 0 in casen > 7.

Proof: We are going to use the abstract dimension reducing argument of Appendix A
(Ct. the proof of 4.4).

To begin we note that it is enough (by re-scaling, translation, and restriction) to assume
that
U = B,(0)

and to prove that
singT N B1(0) =@ ifn <6, singT N B;(0) discrete if n = 7,
H" 7T (sing T N B1(0)) =0 Ya > 0ifn > 7.

Let 7 be the set of currents as defined in the proof of 4.4°, and for each S € T let g5 be
the function : R”t* — R"*1 associated with S as in 3.4. Also, let

.F={(ps:S€T}

4Cf. Miranda [Mir67]
SWe still have ®” (us, x) — 1 for us-a.e. x € Us, this time by 5.3 and 5.2 (})
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and define
sing s = sing S.

(sing S as defined in 4.1.)
By A.4 we then have either sing S = @ for all S € T (and hence singT = @) or

dim B;(0) Nsing S < d,
where d € [0,n — 1] is the integer such that
dim B;(0) NsingS <d forall S € T
and such that there is S € 7 and a d-dimensional subspace L of R*** such that
NeasS =S VxeL, A >0
and
5.9 singS = L.
Supposing without loss of generality that L = R¢ x {0}, we then (by 3.5) have
5.10 S = [RY] x So

where Sy = 0, So is minimizing in R*k=1 and singSo = {0}. (With S as in
5.10, sing Sy = {0} <= 5.9.) Also, by definition of T, sptS C some (n + 1)-
dimensional subspace of R"**, hence without loss of generality we have that Sp is an
(n — d)-dimensional minimizing cone in R"~4*+! with sing Sy = {0}. Then by the re-
sult of J. Simons (see B) we have n —d > 6; i.e. d < n — 7. Notice that this contradicts
d > 0incase n < 7. Thus for n < 7 we must have sing7 = @ as required. If n = 7,
sing T is discrete by the last part of A.4.

5.11 Corollary. If T isasin 5.8, and if Ty € Dy (U) is obtained by equipping a component
of reg T with multiplicity 1 and with orientation of T, then Ty = 0 (in U) and Ty is
minimizing in U N N.

5.12 Remark: Notice that this means we can write
o0
= Zj:lTj’

where each Tj is obtained by equipping a component M; of reg T with multiplicity 1 and
with the orientation of T; then M; N M; = @ Vi # j, dT; = 0, and T} is minimizing
in U V. Furthermore (since pur; (By(x)) > ¢p” for By(x) C U and x € sptT; by
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virtue of 1.2 and the monotonicity 4.3 of Ch.4) only finitely many 7; can have support
intersecting a given compact subset of U.

Proof of 5.11: The main point is to prove
(1) 3T1 =0 n U.

The fact that T is minimizing in U will then follow from 1.4 and the fact that My (77) +
Mw(T - Tl) = Mw(T) YW ccU.

To check (1) let @ € D" (U) be arbitrary and note that if { = 0 in some neighborhood
of spt T\ M,

(2) Ti(d(¢w)) = T(d({w)) = 9T ({w) = 0.

Now corresponding to any & > 0 we construct ¢ as follows: since H" ! (sing T') = 0 (by
5.8) and since sing 7 Nspt w is compact, we can find a finite cover of sing T’ Nspt @ by balls
{B,, (éj)}jzl ,,,,, p With & € sing T N sptw and Zlep;’_l <e Foreachj=1,...,P
let 9; € C°(R"*F) be such that ¢; = 10n B, (&), ¢; = 0 on R""F\ By, (&),
and 0 < ¢; < 1 everywhere, and |Dy;| < 2/p;. Now choose { = ]_[f;l @ in a
neighborhood of spt 77 and so that { = 0 in a neighborhood of spt T \ spt ;. Then
dc=Y"F ]_[j;i @; dg; on spt Ty, and hence

|T(d(¢tw) —tdw)| < c|w|2f=1p7_1 < c¢|w| on spt Ty.

The letting ¢ | 0 in (2), and noting that {dw — dw H"-a.e. in spt Ty N N N sptw (and
using |¢] < 1), we conclude T} (dw) = 0. That is 373 = 0in U as required. O

Finally we have the following lemma.

5.13 Lemma. If Ty = d[[E,], T» = 9[Ez]] € Dy(U), U bounded, E\,E» C U NN,
N of class C*, N € O, Ty, T» minimizing in U N N, reg T}, reg Ty are connected, and
E1 NV C E; NV for some neighborhood V of dU, then spt[[E1]] C spt[[E2] and either
[E1]] = [E2] or spt Ty Nspt T C sing Ty N sing T».

Proof: Since H" ! (spt T;) = 0 (in fact spt T; has locally finite H"-measure in U by
virtue of the fact that " (ur;,x) > 1 Vx € spt T}), we may assume that E; and E; are
open with U NJE; = U NIE; =sptTj, j = 1,2.
Let S1, S2 € Dy (U) be the currents defined by

S1 =0[E1 N Ez]|, S =9[E1 U E,].

Using the hypothesis concerning V' we have

(3) SSL(VNU)=T;L(VNU), j=1,2.
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On the other hand we trivially have

[Ex N Ex] + [E1 U Ex] = [Ex] + [[£2].
so (applying 0) we get
(4) S1+ S =T+ T>».
Furthermore E;1 N E; C E1 U E5, so
(5) My (S1) + M(S2) = My (51 + S5)

=Mw (T, +T2) (by (4)
<Mw (T1) + Mw (T2)

VW cC U. On the other hand, choosing an open V} so that dU C Vj CC V, and using
(3) together with the fact that T} is minimizing, we have

Mw (S1) = My (T1), W = U\ Vo,
and hence (combining this with (5))
My (S2) < Mw (T2)
for W = U \ V. Thus (using (3) with j = 2) S, is minimizing in U. Likewise S; is
minimizing in U.
We next want to prove that either Ty = T, or reg 7Ty NregT, = @. Suppose reg T1 N
regT» # @. If the tangent spaces of reg 71 and reg 7> coincide at every point of their

intersection, then using suitable local coordinates (x,z) € R” x R for N near a point
& € reg Ty N reg Tz, we can write

reg T; = graphu;, j = 1,2,
where Du; = Du, at each point where u; = u5, and where both u1, u, are (weak) C'!

solutions of the equation

—(x,u, Du)) — 8—F()c,u, Du) =0,

0z
where F = F(x,z,p), (x,z,p) € R" x R x R, is the area functional for graphs
z = u(x) relative to the local coordinates x, z for N. Since N is C* we then deduce
(from standard quasilinear elliptic theory—see e.g. [GT01]) that uy, us are C*%. Now
the difference u; — u5 of the solutions evidently satisfies an equation of the general form

Dj (a,-_,-D,-u) +b;Dju + cu =0,
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where a;;, b;, ¢ are C*%. By standard unique continuation results (see e.g. [Pro60]) we
then see that Duy; = Du, at each point where u; = u5 is impossible if u; — u, changes
sign. On the other hand the Harnack inequality ([GT01]) tells us that either u; = u; or
|u1 —uz| > 0in case u; — up does not change sign. Thus we deduce that either 77 = 7>
orreg Ty NregTr = @ or there is a point & € reg 71 N reg T» such that reg Ty and reg 7>
intersect transversely at &. But then we would have H" ™! (sing d[E; N E])) > 0, which
by virtue of 5.8 contradicts the fact (established above) that d[E1 N E5] is minimizing
mU.

Thus either Ty = T, or reg Ty Nreg T, = @, and it follows in either case that £y C E.
On the other hand we then have singTh NregT> = @ and singT> NregTy = @ by
virtue of 5.7. Thus we conclude that E1 C E3 and spt 71 Nspt T C sing Ty N sing 75 as
required.
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1 Basics, First Rectifiability Theorem

We let G (n+k, n) denote the collection of all n-dimensional subspaces of R”**, equipped
with the metric o(S,T) = |ps — pr| = (z;{j.il(pg! — p?)z)%”where ps pr denote
the orthogonal projections of R"** onto S, T respectively, and p = e; - ps(e;), py =
e; - pr (e; ) are the corresponding matrices with respect to the standard orthonormal basis

€1, ..., enpi for R*Tk,

For a subset A C R"t* we define
Gn(A)=AxG(n+k,n),

equipped with the product metric. Of course then G, (K) is compact for each compact
K C R"*. G,(R"*¥) is locally homeomorphic to a Euclidean space of dimension
n+k+nk.

By an n-varifold we mean simply any Radon measure V on G, (R"**). By an n-varifold
on U (U open in R"**) we mean any Radon measure V on G, (U). Given such an n-
varifold V on U, there corresponds a Radon measure 4t = uy on U (called the weight of
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V) defined by
u(4)=Vv(x~'(4)). ACU.

where, here and subsequently, 7 is the projection (x,S) + x of G,(U) onto U. The
mass M((V) of V is defined by

M(V) = pv(U) (= V(Gn(U))).

for any Borel subset A C U we use the usual terminology V L G,(A) to denote the
restriction of V to G,(A); thus

(VL Gu(A))(B) = V(B N Gn(A)), BC Gu(U).

Given an n-rectifiable varifold v(M, 0) on U (in the sense of Ch.4) there is a correspond-
ing n-varifold V (also denoted by v(M, 0), or simply v(M ) in case = 1 on M), defined
by

V(A) = pn(x(TM N A)), AC G,(U),
where p = H" L0 and TM = {(x,TxM) : x € M}, with M, the set of x € M such

that M has an approximate tangent space Ty M with respect to 6 at x in the sense of 1.7
of Ch.3. Evidently V, so defined, has weight measure uy = H" L 6 = p.

The question of when a general n-varifold actually corresponds to an n-rectifiable varifold
in this way is satisfactorily answered in the next theorem. Before stating this we need a
definition:

1.1 Definition: Given T € G(n+k,n),x € U,and 6 € (0, c0), we say that an n-varifold
V on U has tangent space T with multiplicity 6 at x if

(i) ki'% Vx,l = QQ(T>7

where the limit is in the usual sense of Radon measures on G, (R"*¥). In 1.1 () we use
the notation that Vi j is the n-varifold defined by

Veir(A) =A27"V{(Ay +x,8): (»,.5) € A} NG, (U))

for A C G, (R"*F).

1.2 (First Rectifiability Theorem.) Suppose V' is an n-varifold on U which has a tangent
space Ty with multiplicity 6 (x) € (0, 00) for py-a.e. x € U. Then V is n-rectifiable; in fact
M = {x € sptV : Ty and 0(x) both exist} is H" -measurable, countably n-rectifiable, 0 is
locally H" -integrable on M, and V = v(M, ).

In the proof of 1.2 (and also subsequently) we shall need the following technical lemma:
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1.3 Lemma. Let V be any n-varifold on U. Then for 1y -a.e. x € U there isa Radon measure
ngj” on G(n + k,n) such that, for any continuous B on G(n + k,n),

(x) _ fGn(Bp(x))ﬂ(S)dV(yvs)
/G(n-i-k,n)ﬁ(S) v (S = 1y (By(x))

Furthermore for any Borel set A C U,

L @ avees)= [ [ p(s)dng (§)duy(x)
provided f > 0.

Proof: The proof is a simple consequence of the differentiation theory for Radon mea-
sures and the separability of (X, R) (notation as in §5 of Ch. 1) for compact separable
metric spaces X. Specifically, write K = K(G(n + k,n),R), Kt = { e £: B >
0}, and let B1,B2,... € KT be dense in £*. By the XXX Theorem 4.16 of Ch.1
we know that (since there is a Radon measure y; on R"*¥ characterized by y;(B) =
J6,8)Bi(S)dV (y.S) for Borel sets B C R k)

fGn (Bp(x ﬁ/( )dV(y,S)
m el ) = lim =S

exists for each x € R"** \ Z;, where Z; is a Borel set with uy (Z;) = 0 and e(x, j) is
a y-measurable function of x, with

@ et vy = [ pi(s)av(.s)

for any Borel set A C Rtk

Nowlete > 0,8 € KT, x € R”*‘k\(Uj?’ile), and choose B; such that sup |8 — ;| < e.
Then for any p > 0

(3)
’fgnwp(x))ﬁ(S)dV(y,S) J6u (8, Bi (S) AV (3. S) | V(Gu(By(x)))

v (By(x)) Mv(Bp(x)) =T (Bo(x))

and hence by (1) we conclude that

:(C/‘7

7x) = lim
(4) nV (:B) - lpJ, HV(B/)(X

J6,(Byx)) B(S) AV (y.S)
)

exists for all B € KF and all x € R**F \ (U2,Z;). Of course, since \'ﬁg>(ﬁ)| <
sup |B| VB € K, by the Riesz Representation Theorem 5.14 of Ch. 1 we have 'ﬁﬁf) B) =

B(S)d ngf) (S), where ngf) is the total variation measure associated with ﬁg)
G(n+k,n)
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Finally the last part of the lemma follows directly from (2), (3) if we keep in mind that
e(x.j)in (s exacty iy (8) [ pi(S)dny(5) O

We are now able to give the proof of 1.2.

Proof of 1.2: By definition 1.1, jy has approximate tangent space Ty with multiplicity
6(x) in the sense of 1.7 of Ch.3 for puy-a.e. x € U. Hence by 1.9 of Ch.3 we have that
M is H"-measurable countably n-rectifiable, 6 is locally H"-integrable on M and in fact
uy =H"LOinU (fweset 6 =0in U \ M).

Now if x € M is one of the py-almost all points such that ngf)

exists, and if 8 is a

non-negative continuous function on G(n + k,n), then we evidently have ngf)(ﬂ ) =

6(x)B(Tx) and hence by the second part of 1.3 we have
(M) L Bs)avies)= [ BT duy(x)
n(A) MNA
for any Borel set A C U. From the arbitrariness of A and B it then easily follows that
@ L ss)avies) = [ 1Ty duy(x)
G, (U) M

for any non-negative /' € C.(G,(U)), and hence we have shown V = v(M,0) as
required (because uy = H" L 6 as mentioned above). O

2 First Variation

We can make sense of first variation for a general varifold V on U. We first need to discuss
mapping of such a general n-varifold. Suppose U, U open C R"** and f : U — U is
C! with f|spt uy N U proper. Then we define the image varifold f4V on U by

2.1 £V (4) = /F_l(A)JSf(x)dV(x,S), ABorel, A C G, ().

where F : GF(U) — G,(U) is defined by F(x,S) = (f(x),df.(S)) and where

Jsf(x) = (det((dfe]$)* o (df]$)))2, (x,8) € Ga(U).
G, (U) = {(x.5) € Gu(U) : Js f(x) # 0}.

(Notice that this agrees with our previous definition given in §1 of Ch.4 in case V =
v(M.0).)
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Now given any n-varifold V on U we define the first variation 8V of V, which is a linear
functional on KC(U, R"**) (notation as in §5 of Ch. 1) by

d
22 8V (X) = - MlgwV L Gu(K))|
t=0

where {¢; }—1<t<1 1s any 1-parameter family as in 5.8 of Ch.2 (and K compact is as in
5.8 of Ch.2). Of course we can compute §V (X ) explicitly by differentiation under the
integral in 2.1. This gives (by exactly the computations in §6 of Ch.2)

23 5V (X) =/ divs X (x) dV (x, S),
Gn(U)

where, forany S € G(n + k,n),
2.4 dive X = YRV X = S (5, Do X)),

where 71, ..., 1, 1s an orthonormal basis for S and VZ-S = ¢; - V5, with VS f(x) =
ps(Vgnix f(x)), f € CH(U). (ps is the orthogonal projection of R*** onto S.)

By analogy with 2.4 of Ch.4 we then say that V is stationary in U f §V (X) =0 VX €
K(U,R"k),

More generally V is said to have locally bounded first variation in U if for each W C
C U there is a constant ¢ < oo such that [§V (X )| < csupy |X| VX € K(U R"F)
with spt|X| C W. Evidently, by the general Riesz Representation 5.14 of Ch.1, this
is equivalent to the requirement that there is a Radon measure ||§|| (the total variation
measure of §V') on U characterized by

2.5 1sVi(w) = sup SV (X)] (< o0)
XeK(U,R™), |X|<1,spt| X|CW

for any open W CC U. Notice that then by 5.14 of Ch.1 we can write

2.6 SV (X) = /

divs X (x)dV(x,S) = —/ v X d|sV],
JGu(U) U

where v is ||§V ||-measurable with |[v] = 1 |[§V]-a.e. in U. By XXX Theorem 4.16 of Ch.
1 we know furthermore that

VI
2.7 Duy 18VIGe) = lim =g o)

exists y-a.e. and that (writing H (x) = D, |8V ]|(x)v(x))

2.8 /v-Xd||5V||=/g-de+/v-Xdo,
U U U
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with

2.9 o=|8V|LZ, Z={xeU:Du,|§V|(x)=4oc0}.(uv(Z)=0.)
Thus we can write

2.10 5V (x) =/ divs X(x)dV (x, 5)
Gn(U)
:—/H-de/—/v-Xda
U z

for X € K(U, IR"+k).

By analogy with the classical identity 5.7 of Ch.2 we call H the generalized mean curvature
of V, Z the generalized boundary of V, o the generalized boundary measure of V, and v|Z
the generalized unit co-normal of V.

3 Monotonicity and Consequences

In this section we assume that V' is an n-varifold in U with locally bounded first variation
in U (asin 2.5).

Choose (as in 2.3 of Ch.4) X|, = h(y)y(r)(x — &) where y : R - Ris C! and
h € C1(U) are such that hy has compact support in U (as in §3 of Ch.4). Note that (by
essentially the same computation as in §3 of Ch.4)

3.1 divs X = ny(r) —i—ry’(r)zg’jilegjﬁﬁ,

r r

where (e ) is the matrix of the orthogonal projection ps of R"** onto the n-dimensional
subspace S. Thus the first variation identity

3.2 /an) divs X (x)dV (x,S) = 8V (X)

with X|x = h(x)y(r)(x — &) implies the following natural generalization of the iden-
tity 3.4 of Ch.4:

33 /(ny(r)h+ry’(r)|VSr|2h+y(r)(x—$)-VSh)dV(x,S) — 8V (hy(r) (x—E)).
Now consider a ball B,,(§) C U and A > 0 with

3.4 I8VI(Bo(€)) < Ay (By(£)), 0< p < po.
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Subject to 3.4 we can then take # = 1 and y(r) = ¢(r/p) (again as in §4 of Ch.4) and,
noting that Zf’jﬁleg] i |pst (xr;E) |2, conclude (Cf. 4.3 of Ch.4 with

r r

o = 1) that e®?p™" uy (B, (£)) is increasing in p, 0 < p < po, and, for 0 < o < p < py,

35 O"(o.§) =Moo 1y (Bo(§)) < eMoy o7 v (B, (§))

) r_"_2|ps¢(x—§)|2dV(x,S).

-1
" /G,,<Bp<s>\Ba<s>>

In fact if A = 0 (so that V is stationary in B, (§)) we get the precise identity
-1 - _ e 2
36 070y (By(6) () =07 [ 1 pg (-6 aV(x.S).
Gn(Bp(£))

By a similar argument (using 3.3 with an arbitrary & € C!(U) rather than the special
choice h = 1 used above) we also deduce that the following analogue of 6.1 of Ch. 4:

d

3.7 —
dp

(7" T(0) = "5 flpss (= £)/rPolr/plh(3) dV (x.5)
POV (X0 + [(x =) VSh()e(r/p)aV (1.5)).

where I'(p) = [@(r/p)hduy and X|x = hy(r)(x —£).

3.8 Lemma. Suppose V has locally bounded first variation in U. Then for puy-a.e. x € U,
O" (y, x) exists and is real-valued; in fact ®" (uy, x) exists whenever there is a constant
A(x) < oo such that

1SV I(By(x)) < A(x)py (By(x)), 0 < p < %dist(x, oU).

(Such a constant A (x) exists for juy-a.e. x € U by virtue of Theorem 4.16 of Ch.1.)

Furthermore ©" (ly, x) is a Ly -measurable function of x.

Proof: The first part of the lemma follows directly from the monotonicity formula 3.5.

The py-measurability of " (uy, - ) follows from the fact that uy (B,(x)) > limsup,,_, . v (B,
which guarantees that y (B, (x))/(wnp™) is Borel measurable and hence py-measurable

for each fixed p. Since

0" (uy,x) = 1iig(wnp")“w(3p(X))
p
for py-a.e. x € U, we then have juy-measurability of ®” (uy, -) as claimed.

3.9 Theorem. (Semi-continuity of ®”" under varifold convergence.) Suppose V; — V
(as Radon measures in G, (U)) and O™ (V;,y) > 1 except on a set Bi C U with jy, (B; N
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W) — 0foreach W CC U, and suppose that each V; has locally bounded first variation in U
withliminf |8V; (W) < oo foreachW CC U. Then |8V (W) < liminf |§V;||(W) VW C
CUand ®" (uy,y) > 1 py-ae inU.

3.10 Remarks: (1) The fact that |§V|(W) < liminf ||§V;||(W) is a trivial consequence
of the definitions of ||8V]|, ||8V; || and the fact that V; — V, so we have only to prove the
last conclusion that ©" (uy, y) > 1 uy-a.e.

(2) The proof that ©" (uy,y) > 1 py-a.e. to be given below is slightly complicated; the
reader should note that if [|§V|| < Ay in U (i.e. if V has generalized boundary measure
0 = 0 and bounded H—see 2.10 above—then the result is a very easy consequence of the
monotonicity formula 3.5.

Proof of 3.9: Set ; = py;, 0 = py, and take any W CC U and po € (0. dist(W, U )).
Fori, j > 1, consider the set A; ; consisting of all points y € W \ B; such that

(1) 18Vill(Bo(y)) < jui(Bp(y)), 0 < p < po,
and let B; ; = W\ 4; ;. Thenif x € B; ; we have either x € B; N W or

(2) 1i(Bo(x)) < j~18Vill(Bo (x)) for some o € (0. po).

Let B be the collection of balls By (x) with x € B; j, 0 € (0, po), and with (2) holding.
By the Besicovitch Covering Lemma (§4.5 of Ch. 1) there are families B;,...,By C B
with N = N(n + k), with B; ; \ B; C U?’zl (Ugen, B) and with each By a pairwise
disjoint family. Hence if we sum in (2) over balls B € U}_, By, we get

wi(Bij) < Nj I8Vill(W) + i (Bi O W)
(W = {x e U : dist(x, W) < po}), so
ui(Bij) <¢j™ + pwi(Binw),

with ¢ independent of i, j. In particular for each i, j > 1

(3) p(interior (N2, By, ;)) < liminf yq (interior(NG2; By ;) < ¢j ",
q—>00

since fg(Bg N W) — 0as g — oo.
Now let j € {1,2,...} and consider the possibility that there is a point x € W such
that x € W \ interior(NJ; By,;) for each i = 1,2,.... Then we could select, for each
i=12,..,yi € W\NJ, By, with |y; — x| < 1/i. Thus there are sequences y; — x
and ¢; — oo such that y; ¢ By, j foreachi = 1,2,.... Then y; € Ay, ; and hence (by
(1)

18Va; 1 (Bp(3i)) < jitg; (Bo(yi)), 0 < p < po,
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foralli = 1,2,.... Then by the monotonicity formula 3.5 (with A = j) together with
the fact that ©” (g, yi) > 1 we have

Hai (Bp(3i)) = e Panp”. 0 < p < po,

so that ©”" (i, x) > 1 for such an x. Thus we have proved ©" (i, x) > 1 for each x with
x € W\ (U2, interior(Ng2. By ;)) for some j € {1,2,...}. Thatis

(4) O"(u,x)>1Vx e W\ (ﬂ;’il Uf2, interior(Ng2,; By, ;).
However

(5)  w(N$Z, VP2, interior(Ng2; By ;) < u(UFZ, interior(NG2; By, ;) Vj > 1

= lim w(interior(N2; By, ;))
1—>00
<¢j 7 by (3).

so (N9, UP2, interior(N2; By, ;)) = 0 and the theorem is established (by (4)). O

4 Constancy Theorem

4.1 (Constancy Theorem.) Suppose V is an n-varifold in U, V is stationary in U, and
U Nsptuy C M, where M is a connected n-dimensional C? embedded submanifold of
R" K. Then V = Opv (M) for some constant 6.

4.2 Remarks: (1) Notice in particular this implies (M \ M) N U = @ (if V # 0); this
is not a-priori obvious from the assumptions of the theorem.

(2) J. Duggan in his PhD thesis [Dug86] has extended 4.1 to the case when M is merely
Lipschitz.

(3) The reader will see that, with only minor modifications to the proof to be given below,
the theorem continues to hold if N is an embedded (n + k )-dimensional C? submanifold
of R"*¥ and if V is stationary in U N N in the sense that §V (X) = 0 VX € K(U; R"*k)
with X € Ty N Vx € N, provided wearegivenspt V C {(x,S) :x € Nand S C TxN }.
(This last is equivalent to spt uy C N and p4V =V, where p : U — U N N coincides
with the nearest point projection onto U N N in some neighborhood of U N N.)

Proof of 4.1: We first want to argue that V = v(M, ) for some positive locally H"-
integrable function 6 on M.
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To do this first take any f € C2(U) with M C {x € U : f(x) = 0} and note that by
2.3

(1) sV(rVe) = [Ips(VNF av(x.s).
because (using notation as in 2.3)

divs(fVf)=VS5f .- Vf + fdivs Vf
= \pS(Vf)|2 on M,

where we used f = 0 on M. Since §V = 0, we conclude from (1) that
(2) ps(Vf(x))=0 forall (x,S)esptV.

Now let § € M be arbitrary. We can find an open W C U with £ € W and such
that there are C2(U) functions fi,..., fx with M C ﬂ;‘zl{x : fi(x) = 0} and with
(Tx M)~ being exactly the space spanned by V £ (x),...,V fi(x) foreachx e M N W.
(One easily checks that such W and fi,. .., fi exists.) Then (2) implies that

(3) ps((TxM)LY) =0 forall (x,S)e G,(W)NnsptV.

But (3) says exactly that § = T, M forall (x,S) € G, (W) Nspt V, so that (since § was
an arbitrary point of M), we have

@ [res)avies)= [ e TM)dpc). f € C(GaU)).

MnU

On the other hand we know from monotonicity 3.5 that 8(x) = ©"(uy, x) exists for
all x € M N U, and hence (since ®" (1" L M, x) = 1 for each x € M, by smoothness
of M), we can use the XXX Theorem 4.16 of Ch. 1 to conclude from (4) that in fact

(5) /f(x,S)dV(x,S) =/M0Uf(x,TxM)9(x)dH"(x), f € Co(Gn(U)),

(so that V = v(M, ) as required).

It thus remains only to prove that § = const. on M N U. Since M is C? we can take
X € K(U,R"**) such that X, € TyM ¥x € M N U. Then by (5) and 2.3 §V(X) = 0

is just the statement that / divX 0 dH" = 0, where div X is the classical divergence

ny
of X|M in the usual sense of differential geometry. Using local coordinates (in some
neighborhood U € R”) this tells us that

0X; . N
/ﬁz;’:lgedc’:o if XiechO).i=1...n.
1
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where 0 is 6 expressed in terms of the local coordinates. In particular

/Eédﬁ':ov;ecc(u), i=1,....n

U 8x,~

and it is then standard that 6 = constant in U. Hence (since M is connected) 6 is constant
mM. O

5 Varifold Tangents and Rectifiability Theorem

Let V be a n-varifold in U and let x be any point of U such that

5.1 O"(uy,x) =0 € (0,00) and liinpl_”||8V||(Bp(x)) = 0.
pl0

By definition of §V (in 2) and the Compactness Theorem 5.15 of Ch. 1 for Radon mea-
sures, we can select a sequence A; |, 0 such that 7y 3,4V converges (in the sense of Radon
measures) to a varifold C such that
C is stationary in R" K
and
pc (Bp(x))
wnP"

5.2 =0y Vp > 0.

Since C = 0 we can use 5.2 together with the monotonicity formula 3.6 to conclude

2
|ps1(x)]
————dC(x,S)=0Vp>0,
/anp(o» [x[+2 5 5) g
so that pgi(x) = 0 for C-ae. (x,5) € G,(R"¥), and hence pg1(x) = 0 for all
(x,8) € spt C by continuity of pgi (x) in (x, S). We can apply the same argument as
in the proof of Theorem 5.1 of Ch.4 with § = 0, except that we now use 3.7 in place of
6.1 of Ch.4, so uc satisfies

53 ®"(uc.y) = 0" (uc.Ay) YA >0

We would /ike to prove the stronger result 79 34C = C (which of course implies 5.3), but
we are only able to do this in case ®" (¢, x) > 0 for juc-a.e. x (see 5.7 below). Whether
of not 79 1#C = C without the additional hypothesis on ®”" (uc, - ) seems to be an open
question.

5.4 Definition: Given V and x as in 5.1 we let Var Tan(V, x) (“the varifold tangent of V
at x”) be the collection of all C = lim 1y 4V obtained as described above.
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Notice that by the above discussion any C € Var Tan(V, x) is stationary in R”** and
satisfies 5.3.

The following rectifiability theorem for n-varifolds is a central part of the theory of n-
varifolds with locally bounded first variation.

5.5 Theorem (Rectifiability Theorem.) Suppose V has locally bounded first variation in
U and O"(uy,x) > 0 for uy-a.e. x € U. Then V is an n-rectifiable varifold. (Thus
V = v(M.,0), with M a H"-measurable countably n-rectifiable subset of U and 6 a
non-negative locally H"-integrable function on U.)

5.6 Remark: We are going to use 1.2. In fact we show that V' has a tangent plane
(in the sense of 1.1) at the point x where (i) ©"(uy,x) > 0, (it) ngf) (as in 1.3) ex-
ists, (i) ©"(puy, -) is uy-approximately continuous at x, and (iv) |8V [[(B,(x)) <
A(x)py (Bp(x)) for 0 < p < pp = min{l,dist(x,dU)}. Since conditions (i)—(iv)
all hold pty-a.e. in U (notice that (iii) holds pty-a.e. by virtue of the uy-measurability of
®"(uy, -) proved in 3.8), the required rectifiability of V' will then follow from 1.2

Before beginning the proof of 5.5 we give the following important corollary.

5.7 Corollary. Suppose x € U, 5.1 holds, and lim, o p™" 1y ({y € Bo(x) : ©"(puy,y) <
1}) = 0. If C € Var Tan(V, x), then C is rectifiable and

no’l#c =C VA>0.

Proof: From the hypothesis p™ uy ({y € By(x) : " (uy,y) < 1}) — 0 and the Semi-
continuity 3.9, we have ©" (jic, y) > 1for uc-a.e. y € R"**. Hence by 5.5 we have that
C is n-rectifiable. On the other hand, since " (uc,y) = " (uc,Ay) VA > 0 (by 5.3),
we can write C = v(M,0) with 9o, (M) = M VYA > 0and 6(1y) = 6(y) VA > 0,
y € R"*. (Viz. simply set 6(y) = ©"(uc,y) and M = {y € R"** : §(y) > 0}.)
It then trivially follows that y € T, M whenever the approximate tangent space 7y M
exists, and hence 79 14C = C as required. [

Proof of 5.5: Let x be as in 5.6(1)-(iv) and take C € Var Tan(V, x). (We know Var Tan(V, x) #
@ because 5.6(i), (iv) imply 5.1.) Then C is stationary in R**¥ and

He (Bp (0))

o =60y Vp>0 (6o =0"(uy,x)).
n

(1)
Also for any y € R"** (using (1) and the monotonicity formula 3.5)

ne(Bo(y)) _ pe(Br(y)) _ e (Br4iyi(0)) n
onp® T oaR" T wp(RA+ |y (1+1y1/R)

= 90(1 + |y|/R)n — 90 as R T Q.
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That is (again using the monotonicity formula 3.5),

pe(Bo(y))

oo <6y Vy e Rk p>o0.
n

(2) O"(uc.y) <

Now let V; = nx 4,4V, where A; | 0is such that limn, 3,4V = C and where we are
still assuming x is as in 5.6 (1)—(iv).

From 5.6 (iii) we have (with £(p) | O as p | 0)

(3) ®"(uy.y) = 6o —e(p), y € G N By(x),
where G C U is such that

(4) 1y (Bo(x) \ G) < e(p)p", p sufficiently small.
Taking p = A; we see that (3), (4) imply

(5) ®"(uy;.y) <o —e;j, ¥y € G; N B1(0)

with G; such that

(6) ny; (B1(0)\ G;) <e¢j,

where ¢; — 0 as j — oco. Thus, using (5), (6) and the semi-continuity result of 3.9, we
obtain

(7) O" (e, y) = 0o for puc-ae. y € R" ¥

(and hence for every y € spt juc by 3.6). Then by combining (2) and (7) we have

c(B
0" (uc,y) =0 = %;ij)) Yy €sptuc, p>0.
n

Then by the monotonicity formula 3.6 (with V = C), we have
psi(x —y) =0for C-ae. (x,5) € G, (R"F).

Thus (using the continuity of pgi(x —y) in (x, S)) we have

(8) x—yeSVyesptucandV(x,S) esptC.

In particular, choosing T such that (0, 7) € spt C (such T exists because 0 € spt uc =
7 (sptC)), (8) implies y € T Vy € sptuc. Thus spt uc C T, and hence C = 6pv(T)
by Constancy 4.1.
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Thus we have shown that, for x € U such that 5.6(i), (iii), (iv) hold, each element
of Var Tan(V, x) has the form 6yv(T'), where T is an n-dimensional subspace of R"*¥.

)

On the other hand, since we are assuming (5.6(i1)) that ngf exists, it follows that for

continuous f on G(n + k,n)

L. )
(9) lim Gn(Bp(x))
P40 wv (Bp(x)

V(y.S) . "
) - /G P AM(S).

Now let 0ov(T') be any such element of Var Tan(V, x) and select 4; |, Osothat lim 7y 3,4V =
Bov(T). Then in particular

S)dV;(y,S
- L i PS4V 0)

Jm oy P

and hence (9) gives
(x)
)= [ S)dni(S),
B = [ B s)
thus showing that 6yv(T) is the unigue element of Var Tan(V, x). Thus
li V = 6ou(T),
lim 0, as ov(T)

so that T is the tangent space for V at x in the sense of 1.1. This completes the proof. [

The following compactness theorem for rectifiable varifolds is now a direct consequence
of the Rectifiability 5.5, the Semi-continuity 3.9, and the Compactness Theorem 5.15 of
Ch. 1 for Radon measures, and its proof is left to the reader.

5.8 Theorem (Compactness theorem for n-varifolds.) Suppose {V;} is a sequence of
rectifiable n-varifolds in U which are locally bounded first variation in U,
sup(iey, (W) + I8V (W) < 00 YW C U,
Jj=1
and O" (uy;,x) = Lon U \ Aj, where puy; (A; N W) — 0as j — oo VW CC U.
Then there is a subsequence { V;+ } and a rectifiable varifold V of locally bounded first variation

in U, such that Vj» — V (in the sense of Radon measures on G, (U)), " (uy,x) > 1 for
uy-ae x € U,and ||§V| (W) < liminf; o |8V || (W) for each W CC U.

5.9 Remark: An important additional result (also due to Allard [All72]) is the Integral
Compactness Theorem, which asserts that if all the V; in the above theorem are integer
multiplicity, then V is also integer multiplicity. (Notice that in this case the hypothesis
©"(uy;.x) = lon U\ A; is automatically satisfied with an A4; such that uy, (4;) = 0.)
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Proof that V' is integer multiplicity if the V; are: Let W CC U. We first assert that
for pty-a.e. x € W there exists ¢ (depending on x) such that

(1) liminf |8V || (Bp(x)) < cuv (Bp(x)), p < min{1, dist(x,dU)}.

Indeed otherwise 3 a set A C W with uy(A) > 0 such that for each j > 1 and each
x € A there are px > 0, iy > 1 such that B, (x) C W and

1y (Bp, (x)) < jHIVill(Boy (%)), i > ix.
By the Besicovitch Covering Lemma (§4.5 of Ch. 1) we then have
v (4i) < cj ISVl (W), €= i,
where A; = {x € A:iy <i}. Thus

v (A4;) < cj Himsup |8V |[(W),

{—o00
and hence 4; 1 A asi 1 oo we have

py(A) <cj™!

for some ¢ (< 00) independent of j. That is, uy (A4) = 0, a contradiction, and hence (1)
holds. Since ®"(y, x) exists uy-a.e. x € U, we in fact have from (1) that for py-a.e.
x € U thereisa ¢ = ¢(x) such that

(2) liminf [|8V;]|(Bp(x)) < ¢p”, 0 < p < min{1, dist(x,dU)}.

Now since V = v(M, ), it is also true that for uy-a.e. £ € spt uy we have ng 14V —
Bov(P) as A | 0, where P = TgM and 6y = 6(§). Then (because V; — V, and hence
Nea#Vi = g a4V for each fixed A > 0), it follows that for uy-a.e. § € U we can select a
sequence A; | 0 such that, with W; = n¢ 5,4V,

(3) Wi — Bou(P)
and (by (2)) foreach R > 0
(4) I6Will(Br(0)) — O.

We claim that 6y must be an integer for any such £; in fact for an arbitrary sequence { W; }
of integer multiplicity varifolds in R**¥ satisfying (3), (4), we claim that 6 always has
to be an integer.
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To see this, take (without loss of generality) P = R”x{0}, let ¢ by orthogonal projection
onto (R"” x {0})*, and note first that (3) implies

() pre#(Wi L Gu{x € ™ 1 [q(x)| < £}) — fov(R")

for each fixed ¢ > 0. However by the mapping formula for varifolds (§1 of Ch.4), we
know that (5) says

(6) (R, i) — bov(R").
where
Vilx) = Lepgh, o ntzer+ig(oi<e) 61 )

(6; = multiplicity function of W, so that ¥; has values in Z U {o0}). Notice that (6)
implies in particular that

(7) /Rnfw,-d,c"—>90/]Rnfd,c" Vf e CORM).

(i.e. measure-theoretic convergence of ¥; to 6p.)

Now we claim that there are sets A; C B;(0) such that
(8) 1//,-(x)§90+£,- VXEBI(O)\AZ', En(Al)—>O, g 4 0;

this will of course (when used in combination with (7)) imply that for any integer N >
6o, max{y;, N } converges in L' (B1(0)) to 6, and, since max{y;, N } is integer-valued,
it then follows that 6y is an integer.

On the other hand (8) evidently follows by setting W = W; in the following lemma, so
the proof is complete. [

In this lemma, p, ¢ denote orthogonal projection of R"** onto R” x {0} C R"** and
{0} x R¥ C R"*¥ respectively.
5.10 Lemma. Foreach§ € (0,1), A > 1, thereise = (8, A, n) € (0,8%) such that if W
is an integer multiplicity varifold in B3(0) with
() uw(Bs(0) = A ISWI(B5(0)) <, [ lips = pldW(y.5) <

3

there there is a set A C B} (0) such that L™ (A) < § and, Vx € B1(0) \ 4,
B
pw(Ba(x)) o

wp 2"

5.11 Remark: It suffices to prove that for each fixed N there isa 8o = 8o(N) € (0,1)
such that if § € (0,80) then 3 & = &(n, A, N,§) € (0,8?) such that 5.10 (f)implies

Zyep_‘(x)ﬁsptuwﬂ{z:lq(z)|<s}®n (l’LWa y) = (1 + 8)
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the existence of A C B} (0) with £"(A4) < § and, for x € B}(0) \ A and distinct
Yieeoon¥N € p7H(x) Nspruw N{z : lq(2)] <&},

pw (B (x))

8.
w, 2" +

() SN0 (uw.yi) < (1+86)
Because this firstly implies an a-priori bound, depending only on n, k, A, on the number
N of possible points y;, and hence the lemma, as originally stated, then follows. (Notice
that of course the validity of the lemma for small § implies its validity for any larger §.)

Proof of 5.10: By virtue of the above Remark, we need only to prove 5.11(f). Let
i = [tw, and consider the possibility that y € B;(0) satisfies the inequalities

(1) SIWI(By(y)) < en(By(y)), pe(0,1),
) /. Ips = PlaW (z.) < &' pe(0,1).
Let

Ay = {y € B2(0) Nspt W : (1) fails for some p € (0,1)}
Az ={y € B2(0) Nspt W : (2) fails for some p € (0,1)}.

Evidently y € spt uw N B2(0) \ A; = (by the monotonicity formula 3.5)

1(Bo(») _ e m(B1(y))

wpp" T Wn

(3)

(¢ =c(A,n)), whileif y € A5 \ A1 we have (using (3))

<c, O<p<l,

) [ lps—plaw(z.s) = oo} = cen(Bs, (7))
By(y)

for some p, € (0,1). If y € Ay then

(5) 1(Bp, () < e I8WII(By, (¥))
for some p, € (0, 1).
Since then { B,, (y) }yeAl A, covers AyU Az we deduce from (4), (5) and the Besicovitch

Covering (§4.5 of Ch. 1) that

(6) n(A; U Az) < Cg_l(/B

<ce

(O)IIPS —pldW(a.S) + 15W](B3(0)))

3
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by the hypotheses on W.

Our aim now is to show 5.11 () whenever x € B} (0) \ p(A4; U A>). In view of (6) this
will establish the required result (with A = p(A4; U 43)). So let x € B (0) \ p(4; U
A3). In view of the monotonicity formula 3.6 it evidently suffices (by translating and
changing scale by a factor of 3/2) to assume that x = 0 € B}(0) \ p(4; U A>). We shall
subsequently assume this.

We first want to establish the two inequalities, that, for y € B} (0) \ p(4; U 43) and
>0,

U2‘C
7) ®"(/L,y)§eww+ceo/r, 0<o <1,
w,o"
Uz U2t
(8) M5680M+C80/T,0<0<[)51,
w,o" w,o"
where

Uf(y) = Bo(y)N{z e R"** 1 |g(z —y)| < T}

Indeed these two inequalities follow directly from 3.5 and 3.7. For example to establish
(7) we note first that 3.5 gives (7) directly if T > o, while if T < ¢ then we first use 3.5 to
give ©" (1, y) < e”& and then use 3.7 with £ of the form h(z) = f(lg(z —»)|),
f()—lfort<randf()_0fort>21

Since |VS f(lg(z = y))| < f'(la(z — ¥)I)|ps — p| (Cf. the computation in ?? of Ch.4
we then deduce (by integrating in 3.7 from 7 to o and using (3))

n(Be(y)) _ n(UZ(y))

w, T - wyo"

+ ceo/t.

(8) is proved by simply integrating 3.7 from o to p (and using (3)).

Our aim now is to use (7) and (8) to establish

o) o FUACHEN) BN ILA) R

w,o" w, 2"

with ¢ = ¢(n.k, N, A), provided 26?0 < t < L min;z¢ |y; —yel, y; € sptun p~1(0) N
{z:1q9(2)| <€},0 ¢ p(A1UAz). (In view of (7) this will prove the required result 5.11
(1) for suitable §o(N).)

We proceed by inductionon N. N = 1 trivially follows from (8) by noting that U>*(y;) C
B,(y1) (by definition of U>*(y1)) and then using the monotonicity 3.5 together with
the fact that |y;| < . Thus assume N > 2 and that (9) has been established with any
M < N in place of N.
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Let y1,....,yn be as in (9), and choose p € [0,1) such that min; ¢ |g(y;) — q(ye)l
(= minj ¢ |y; — ye|) = 48%p, and set T = 2§%p (> 27). Then

1~

r(UF (7)) _ #Us (7))
o” - o
Uz (yj
ICHCT B
o
¢ =c(n,k,8). Now since T = 1 min; ¢ |q(y;) —q(ye¢)| we can select {z1.....20} C

{y1,...,yN} (Q <N —1)and T < ¢7 such that T > 3§%p and

~

UL, Up?(yj) c U£Q=1 U i4es2)(20);

where ¢ = ¢(N), and such that T < § min;; |z; — z;|. Since ¢§? < 1/2 for § < §o(N)
(if 8o(N ) is chosen suitably) we then T > 282 and

w03 ()
= (14X, —5—

v k(U ()
Z./=1 o"

where p = (1+c¢8?)pandc = ¢(N). Since Q < N — 1, the required result then follows
by induction (choosing € appropriately). O






Appendix A

A General Regularity Theorem

We here prove a useful general regularity theorem, which is essentially an abstraction
of the “dimension reducing” argument of [Fed70]. There are a number of important
applications of this general theorem in the text.

Let P > n > 2 and let F be a collection of functions ¢ = (¢!,...,¢2) : RP — R?
(Q = 1is an important case) such that each ¢/ is locally H"-integrable on R”. For
@ € F,y € RP and X > 0 we let ¢, be defined by

oya(x) =9(y +Ax), x e RP.

Also, for ¢ € F and a given sequence {¢r} C F we write gy — ¢ if [¢p f dH" —
[ of dH" (in R?) for each given f € C2(R?).
We subsequently make the following 3 special assumptions concerning F:

A.1 (Closure under appropriate scaling and translation): If [y| <1—-21,0 < 1 < I,
and if ¢ € F, then ¢, 4 € F.

A.2 (Existence of homogeneous degree zero “tangent functions”): If |y| < 1, if
{Ax} | Oand if ¢ € F, then there is a subsequence {Ax/} and ¥ € F such that
@y — ¥ and Yo ) = ¥ for each A > 0.

A.3 (“Singular set” hypotheses): We assume there is a map

sing : F — C (= set of closed subsets of R”)
such that:

(1) singp = @ if ¢ € F is a constant multiple of the indicator function of an n-
dimensional subspace of RP,

(2) H|y|<1—-21,0 <A < 1,thensingp, » = A~ !(singp — y),
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(3) If g, ¢ € F with ¢ — @, then for each & > 0 there is a k(&) such that
B1(0) Nsinggr € {x e RY : dist(singp, x) < e} Yk > k(e).

We can now state the main result of this section:

A.4 Theorem. Subject to the notation and assumptions A.1, A.2, A.3 above we have
() dim(B1(0) Nsingp) <n—1Ve € F.
(Here “dim” is Hausdorff dimension, i.e. (1) means H"~'**(singg) = 0 Ya > 0.)

In fact either sing o N B1(0) = @ for every ¢ € F or else there is an integer d € [0,n — 1]
such that
dimsingg N B1(0) <d Vo € F

and such that there is some r € F and a d-dimensional subspace L C RY with
(1H) singy = Landy,; =% VyeL, A>0.
Ifd = 0 then singp N B, (0) is finite for each ¢ € F and each p < 1.

A.5 Remark: One readily checks that if L is an n-dimensional subspace of R” and ¢ € F
satisfies A.4 (1}), then ¥ is exactly a constant multiple of the indicator function of L
(hence singy = @ by A.3(1)); otherwise we would have P > n and ¢ = const. # 0
on some (n + 1)-dimensional half-space, thus contradicting the fact that ¥ is locally H"-
integrable on RY.

Proof of A.4: Assume singg N B1(0) # @ for some ¢ € F, and let d = sup{dim L : L
is a d-dimensional subspace of R” and there is ¢ € F with singg # @ and ¢, = ¢
Vy e L,A > 0}. Then by A.5 we haved <n — 1.

For a given ¢ € F and y € B1(0) we let T (¢, y) be the set of ¢ € F with Yoy =
¥ VA > 0 and with limg, 3, = ¥ for some sequence Ax | 0. (T'(¢.y) # @ by
assumption A.2.)

Let £ > 0 and let
e o s o)

Our first task is to prove the implication
(1) peFt=3yeT(p,x)NF*

for H'-a.e. x € singp N B1(0).

To sce this, let 5 be the “size § approximation” of H* as described in §2 of Ch.1 and
recall H4(4) > 0 < HE,(A4) > 0, so that

Ft = {(p € F : Hi,(singg N By (0)) > 0}'
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Also note that (by 3.8(2) of Ch. 1), for any bounded subset A of R”,
H(A) > 0= O (HE LA, x) >0 for Hae x € A
Thus we see that if ¢ € F¢ then for #*-a.c. x € singp N B, (0) we have
O* (1L, L singg, x) > 0.

For such x we thus have a sequence A | 0 such that

2) lim Hﬁo(sing(p N By, (x))

7 > 0,
k—o00 )Lk

and by assumption A.2 there is a subsequence {A/} such that ¢y 3, , — ¥ € T(¢, x). If
now H*_(sing ) = 0, then for any & > 0 we could find open balls { By, (x;)} such that

sing ¥ C Uy By, (x7)

and
®) Yo <
(be definition of HY,). Now (2) in particular implies that K = B1(0) \ U; By, (x;) is a
compact set with positive distance from sing . Hence by assumption A.3(3) we have

sing @x.1,, N B1(0) C U; By, (x;)
for all sufficiently large k, and hence by (3)

HE (sing @x i, N B1(0)) <&, k > k(e).
Thus since A; ! (sing g — x) = sing ¢ 1, (by A.3(2)) we have
A FHE (singp N By, (x)) <e

for all sufficiently large k, thus a contradiction for & < limg_, oo /\,:e'Hf;o (sing@N By, (x)).
(Such & can be chosen by (2).)

We have therefore established the general implication (1). From now on take £ > d — 1
so that F¢ # @ (which is automatic for £ < d by definition of d). By (1) there is ¢ € F*
with ¢g 2 = ¢ VA > 0. Suppose also that there is a k-dimensional subspace (k > 0) S of
R? such that ¢, » = ¢ Vy € S, 1 > 0. (Notice of course this is no additional restriction
for p in case k = 0.) Now if k > d + 1 then, by definition of d, we can assert sing ¢ = @,
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thus contradicting the fact that ¢ € Ft. Therefore 0 < k < d,andifk <d —1 (< ),
then H*(S) = 0 and in particular

(4) 3x € B1(0) Nsingg \ S.

But by A.2 we can choose ¥ € T (¢, x). Since { = lim g, ;  for some sequence A; | 0,
we evidently have (since ¢y 1x 3 = @52 Vy € S, 1 > 0)

Yy = lim(py+x,kj = lim(px,,lj =y VyeS

and
Vpxa =lim@yiapxa, =¥ VB ER.

(All limits in the weak sense described at the beginning of the section.) Thus ¥, 4, = ¥
for each A > 0 and each z in the (k + 1)-dimensional subspace 7' of R¥ spanned by S
and x. sing # @ (by A.3(3)), hence by induction on k we can take k = d — 1; i.e.
dimT = d, and hence singyy C T by A.3(2). On the other hand if 3X € singy \ T
then we can repeat the above argument (beginning at (4)) with T in place of S and ¥ in
place of ¢. This would then give a (d + 1)-dimensional subspace T and a ¥ € F with
sing O T, thus contradicting the definition of d. Therefore sing = T. Furthermore
if £ > d then the above induction works up to k = d and again therefore we would have
a contradiction. Thus dim(B;(0) Nsingy) <d Ve € F.

Finally to prove the last claim of the theorem, we suppose that d = 0. Then we have
already established that

(5) H(singp N B1(0)) =0 Vo > 0, ¢ € F.

If singp N B,(0) is not finite, then we select x € B,(0) such that x = lim x; for some
sequence xi € sing@ N B1(0)\{x}. Then letting Ax = 2|xx — x| we see from A.3(2) that
there is a subsequence {Ax/} with @y 1, , = ¥ € T(¢,x) and (xgr —x)/|xp — x| = £ €
dB1(0). Now by A.3(2), (3) we know that {¢§/2} N {0} C sing ¢ and, since Yo 1 = V¥,
this (together with A.3(2)) gives L¢ C sing where L¢ is the ray determined by 0 and
g. Then H' (singy N B;(0)) > 0, thus contradicting (5), because € F. O



Appendix B

Non-existence of Stable Minimal
Hypercones, n < 6

Here we describe J. Simons [Sim68] result on non-existence in R” ! of n-dimensional sta-
ble minimal cones (previously established in case n = 2,3 by Fleming [Fle62] and Alm-
gren [ Alm66] respectively). The proof here follows essential Schoen-Simon-Yau [SSY75],
which is a slight variant of the original proof in [Sim68].

Suppose to begin that C € D, (R"*!) is a cone (19.24C = C) and C is integer multi-
plicity with dC = 0. If singC C {0} and if C is minimizing in R"*! then, writing
M = sptC \ {0} and taking M; as in §6 of Ch.2, we have %'H"(M;)L:O = 0 and
%H" (M;)|,_, = 0. (This is clear because in fact H" (M) takes its minimum value at
t = 0, by virtue of our assumption that C is minimizing.) Notice that M is orientable,
with orientation induced from C, and hence in particular we can deduce from 6.5 of Ch.
2 that

B.1 | (9Me = lapyane o

for every { € C}(M) (notice 0 ¢ M, so such ¢ vanish in a neighborhood of 0). Here
A is the second fundamental form of M and | 4] is its length, as described in §4 of Ch.2
and 6.5 of Ch.2.

The main result we need is given in the following theorem.
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B.2 Theorem. Suppose2 < n < 6 and M is an n-dimensional cone embedded in R" !
with zero mean curvature (see §4 of Ch.2) and with M \ M = {0}, and suppose that M is
stable in the sense that B.1 holds. Then M is a hyperplane.

As explained above, the hypotheses are in particular satisfied if M = spt C \ {0}, with
C € D, (R"*!) a minimizing cone with 3C = 0 and sing C C {0}.)

B.3 Remark: B.2 is false for n = 7; J. Simons [Sim68] was the first to point out that the
cone M = {(xl, LX) eRE Y (62 = ZfzS(xi)z} is a stable minimal cone.
(Notice that M is the cone over the compact manifold (%83) X (%83) C S’ c R3.)
The fact that the mean curvature of M is zero is checked by direct computation. The fact
that M is actually stable is checked as follows. First, by direct computation one checks
that the second fundamental form A of M satisfies |A|?> = 6/|x|?.

On the other hand for a stationary hypersurface M C R"*1 the first variation formula
?? of Ch.2 says [ divyy X dH" = 0 if spt|X| is a compact subset of M. Taking X, =
(82/r*)x, L € CX(M), r = |x|, and computing as in §4 of Ch.4, we get

(n—z)/M(;2/r2)dH" - —2/M§r_2x-VM§d7-[n.

Using the Schwarz inequality on the right we get

—2)2
4 M M
Thus we have stability for M (in the sense of B.1) whenever A4 satisfies |x|?|A|*> < (n —
2)2 /4.
For the example above we have n = 7 and |x|?| A|?> = 6, so that this inequality is satisfied,
and the cone over S* x S? is stable as claimed. (Similarly the cone over S¢ x S is stable
for ¢ > 3; i.e. when the dimension of the cone is > 7.)

Before giving the proof of B.2 we need to derive the identity of J. Simons for the Laplacian
of the length of the second fundamental form of a hypersurface (B.8 below).

The simple derivation here assumes the reader’s familiarity with basic Riemannian geom-
etry. (A completely elementary derivation, assuming no such background, is described
in [Giu84].)

For the moment let M be an arbitrary hypersurface in R"*! (M not necessarily a cone,

and not necessarily having zero mean curvature).

Let 7y, ..., 7, be alocally defined family of smooth vector fields which, together with the
unit normal v of M, define an orthonormal basis for R"*! at all points in some region
of M.
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The second fundamental form of M relative to the unit normal v is the tensor 4 =
hijti ® tj, where hj; = <Dtj v, ri>. (Cf. §4 of Ch.2.) Recall (see 4.32 of Ch.2) that

B4 hij = hji.

and, since the Riemann tensor of the ambient space R”*! is zero, we have the Codazzi
equations

B.5 hij,kzhik,jv i,j,ke{l,...,n}.

Here h;j i denotes the covariant derivative of A with respect to tx; that is, h;; & are such
that Vo A = hij et ® 1.

We also have the Gauss curvature equations
B.6 Rijke = highjx — hirhjq,
where R = Rjjketi ® 1j ® ¢ ® 7¢ is the Riemann curvature tensor of M, and where we
use the sign convention such that R;jj; (i # j) are sectional curvatures of M (= +1, if
M =S").
From the properties of R (in fact essentially by definition of R) we also have, for any
2-tensor a;;T; ® Tj,
ije = Qijtk + Aim Rmjeke + amj Rmitk

(where a;j x¢ means a;j x ¢—i.e. the covariant derivative with respect to 77 of the tensor
ajjkTi @ T ® ti). In particular
B.7 hijie = hijere + him Rmjex + hmj Rmick

= hijuk + him[hmehje — hmichje] = hmj [Riehmi — hixhme)

by B.6, where, here and subsequently, repeated indices are summed from 1 to n.

B.8 Lemma. In the notation above,
Am(51A17) =X xhiiw —|AI* + hij Hij + Hhimihmjhij.,
where H = hyy = trace A.

Proof: We first compute h;; kk:
hijkk = hik,jx  (by B.5)
= hkijk (by B.4)
= hkixj + hm[hmjhix — hmichij]
— hmi [hkjhmi — hxxhmj]  (by B.7)
= i) = (Lo sl )iy + hickchmi him,j
= hickij = (Lo )hij + hickchmihm; - (by B.5)
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. . . 1
Now multiplying by /;; we then get (since hijhijpe = 5 (30, 1) ke = 20517 4)

B9 (i) ke = X jkhii = (i ki) A hipHij + Hhmihmghij,

which is the required identity.

. 5 . . .
We now want to examine carefully the term ) ; ; o 47; | appearing in the identity of B.8 in
case M isacone with vertexat 0 (i.e. o, M = M VA > 0). In particular we want to com-
pare _; ; khl, . with [VM]4]|? in this case. Since [VM|A4||2 = Y7 |AI72(hijhijx)?,
we look at the difference

B.10 D=3 i xhi = Xk |A (hijhijx)?.

B.11 Lemma. If M is a cone (not necessarily minimal) the quantity D defined in B.10 satisfies
D(x) > 2|x|?|A(x)|*, x € M.

Proof: Let x € M and select the frame 11, ..., 7, so that 7, is radial (x/|x|) along the
ray £ through x, and so (as vectors in R"*1) 7y, ..., 7, are constant along £,. Then
(1) hpj =hjn=0 ondly, j=1,....n

and (since h;; (Ax) = A7 h;; (x), A > 0)
(2) hijn = —l’_ll’lij on {y.
Rearranging the expression for D, we have

D =330 20 st | AT (Rrshijae — hijhrg i)

as one easily checks by expanding the square on the right. Now since

Zz TS = 1(hrshzjk _hzjhrs k) > 421 jor= 1(hrshij,k - hijhrs,k)z»

s=n

we thus have
D >2|A| 22]{ IZl]r l(hi./hrn,k)z'

By the Codazzi equations B.5 and (2) this gives

D >2”_2|A| ZZk IZZJr lhlzjhrz*k
= 2r?|A[?A[* (by (1))

= 2r_2|A|2,
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as required. O

Proof of B.2: Notice that so far we have not used the minimality of M (i.e. we have not
used H (= hgr) = 0). We now do set H = 0 in the above computations, thus giving (by
B.8, B.11)

(1) Am (51AP7) + |A[* = 2r 2142 + |V|4]?

for the minimal cone M. (Notice that |A| is Lipschitz, and hence |V|A|| makes sense
H"-a.e.in M.)

Our aim now is to use (1) in combination with the stability inequality B.1 to get a con-
tradiction in case 2 < n < 6.

Specifically, replace ¢ by ¢|A| in B.1. This gives
@ [ s [ [veEanf
= [ (VEPIAP + 1V141R) +2 [ 14198 - Vl4l.
M M
Now
2] ¢laive-Vid =2 [ V8-V (L14P)
= | (v&)-V(31aP)
M
— - [ E8u(314P)
< [ (4FE = 2221AR + 2VIAIP) by (1),

and hence (2) gives

3) 2 r2ER1APR < [ JAPIVER Ve e clm).

Now we claim that (3) is valid even if ¢ does not have compact support on M, provided
that ¢ is locally Lipschitz and

(4) [ 2214 < o,
M
(This is proved by applying (3) with ¢y, in place of {, where y; is such that y.(x) = 1

for |x| € (e,&7 1), |Vye(x)| < 3/|x| for all x, ye(x) = 0 for |x| < &/2 or |x| > 2¢71,
and 0 < y, < I everywhere, then letting ¢ | 0 and using (4).)
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Since M is a cone we can write

(5) /M( YdH" (x /W”I/(pra)d’;‘-lnl()

for any non-negative continuous ¢ on M, where ¥ = M N'S” is a compact (n — 1)-
dimensional embedded submanifold. Since |A(x)|? = r~2|A(x/|x|)|?, we can now use
(5) to check that £ = r1+£r11_n/2_28, r1 = max{l,r}, is a valid choice to ensure (4),

hence we may use this choice in (3). This is easily seen to give
6) 2/ r2e,2ne 412 < (2 0 8)2/ |A2r2 =28
M Mn{r>1}

+ (1 +8)2/ |A]*r?¢ < oo.
Mn{r<1}

For 2 < n < 6 we can choose ¢ such that (3 —2 + ¢)? < 2and (1 + ¢)? < 2, hence (6)
gives |A|> = 0 on M as required. O
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